
Bond University

DOCTORAL THESIS

Experiments with property driven monitoring of C programs

Vorobyov, Kostyantyn

Award date:
2015

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

https://research.bond.edu.au/en/studentTheses/ba16a084-0cfe-42e7-9504-473b9e0c3908

Bond University

DOCTORAL THESIS

Experiments with property driven monitoring of C programs

Vorobyov, Kostyantyn

Award date:
2015

Awarding institution:
Bond University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2020

https://research.bond.edu.au/en/studentTheses/ba16a084-0cfe-42e7-9504-473b9e0c3908

EXPERIMENTS WITH PROPERTY DRIVEN

MONITORING OF C PROGRAMS

Presented by

Kostyantyn Vorobyov

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

DEPARTMENT OF INFORMATICS

BOND UNIVERSITY

AUSTRALIA

JULY 2015

ii

c© Kostyantyn Vorobyov, 2015.

Typeset in LATEX 2ε.

Abstract

Monitoring is a dynamic technique that observes executions of programs and detects

errors at runtime. The key issue in monitoring is performance overhead: if the over-

head is too high, then monitoring takes too long to terminate or runs out of system

resources.

This thesis investigates aspects of monitoring for bug detection, seeking imple-

mentations that identify errors precisely and that have overheads acceptable for use

with testing. These concerns are addressed by instantiating monitoring analyses for

the problems of memory leaks and disclosure of confidential information, and using

experimentation to investigate incurred overheads. A generalisation is then provided

over primitives identified during the instantiations. This enables monitoring via ab-

stract specifications aimed at reducing the cost of developing monitoring analysis from

scratch.

First, this thesis presents an approach to memory leak detection. The key issue

addressed by the author’s technique is detection of locations where the leaked mem-

ory was lost. Leak detection is enabled by tracking each allocated memory block and

computing the dereference of the block’s address space. This represents reachability

of the memory block with respect to program variables. Unreachable blocks that have

not been de-allocated by the program are reported as memory leaks at the end of

execution. The locations of leakage are given by the locations where blocks were last

reachable. The results of experimentation with the prototype implementation for C

programs indicate that, for monitoring test suites of UNIX utilities and programs se-

lected from the Standard Performance Evaluation Corporation (SPEC) CPU datasets,

the overheads of the present approach compare favourably to the results produced by

the Valgrind memory debugger.

This thesis also describes an approach to preventing leakage of sensitive informa-

tion used by a program. The technique analyses values and has the ability to identify

whether a disclosed value represents an information leak with respect to the values

considered secret at runtime. This is enabled by tracking secret values and checking

whether assignments transfer secret values to publicly observable locations. A pro-

totype implementation for C programs was used to analyse security-oriented UNIX

utilities and programs chosen from the SPEC CPU datasets. The results of the ex-

periments indicate that the overhead required to detect password disclosure in real

iii

iv

software does not exceed 1%. The overheads associated with detection of Common

Weakness Enumeration security vulnerabilities in real applications and SPEC CPU

programs are higher, but remain acceptable for use with testing.

Finally, this thesis presents a mechanism, called Specification for Monitoring (SFM),

for concise specification of monitoring analysis. The strength of SFM is that it sep-

arates semantic issues related to monitoring from the implementation details. This

separation of concerns results in compact specifications, as the implementation de-

tails are delegated to the implementation of API. Further, although SFM is abstract,

it is less so than many specification techniques, which means that implementation of

the API can still be very efficient. Several specifications are presented to illustrate the

key ideas.

Declaration

This thesis is submitted to Bond University in fulfilment of the require-

ments of the degree of Doctor of Philosophy. This thesis represents my

own original work towards this research degree and contains no mate-

rial which has been previously submitted for a degree or diploma at this

University or any other institution, except where due acknowledgement

is made.

Kostyantyn Vorobyov
Date: July 1, 2015

Department of Informatics

Bond University

Robina 4229

Australia

v

Acknowledgements

First, I would like to express my deepest gratitude to my advisor, Dr. Padmanabhan

Krishnan, for his mentoring, patience, guidance and support throughout all stages of

this project. I am greatly appreciative of his commitment to his students and deep in-

volvement in my PhD even after he left Bond University. I would also like to thank Dr.

Krishnan for financially supporting my research via the Centre for Software Assurance

fund and for giving me an opportunity to be involved in research projects outside of

this PhD.

I would like to thank Dr. Marcus Randall and Dr. Phil Stocks who also supervised

my PhD. I am very grateful for their guidance and support.

I am incredibly thankful to Oracle Labs in Brisbane (formerly Sun Microsystems

Laboratories) for funding this PhD. Without their financial support, completing this

thesis would be an extremely difficult task. I am very grateful to all staff at Oracle

Labs and, especially, to the Research Director, Dr. Cristina Cifuentes, for many oppor-

tunities to present my research, continuous feedback and countless useful discussions.

Finally, I am greatly thankful of the invaluable time spent at Oracle Labs during my

two internships there.

Many thanks go to the former School of Information Technology at Bond Univer-

sity for a truly enjoyable time and financial support for conference travel.

I am grateful to Dr. Matt Carter and Vandy Mau for an opportunity to work at

MFDC, which allowed me to support myself while finalising this thesis. I would also

like to thank my colleagues at the Thought Fort co-working space, where I spent last

seven months.

I appreciate editorial advice provided by Elite Editing. This editorial intervention

was restricted to Standards D and E of the Australian Standards for Editing Practice.

Last, but not the least, I would like to thank my mother and my sister for their love,

unconditional support and their belief in me. I cannot put to words the level of sincere

gratitude and appreciation I feel; without them this thesis would not be possible. I

am also endlessly grateful to my late father, whose dedication and integrity have been

an inspiration to me all these years.

vi

Contents

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.1.1 Monitoring for Bug Detection . 3

1.1.2 Memory Leaks . 4

1.1.3 Information Leakage . 5

1.2 Aims and Scope . 6

1.3 Research Questions . 7

1.4 Contributions . 7

1.5 Thesis Structure . 9

2 Literature Review 11

2.1 Memory Leaks . 11

2.1.1 Memory Debuggers . 12

2.1.2 Detecting Locations of Leakage . 13

2.1.3 Dynamic Sampling . 15

2.1.4 Detecting Memory Leaks at the Hardware Level 16

2.2 Information Leakage . 16

2.2.1 Language-based Information Flow Security 17

2.2.2 Data Flow Tracking . 17

2.2.3 Information Flow Analysis . 18

2.2.4 Dynamic Taint Analysis . 19

2.2.5 Secure Executions . 20

2.2.6 Testing . 20

2.3 Monitoring Specifications . 21

2.3.1 Low-Level Instrumentation . 21

2.3.2 Monitoring Program Events . 22

2.3.3 Behavioural Interface Specification Languages 23

2.3.4 Runtime Verification . 25

2.3.5 Trace Monitors . 27

vii

viii CONTENTS

3 Preliminaries 30

3.1 Syntax . 30

3.2 Memory Semantics . 31

3.3 Operational Semantics . 32

3.3.1 Evaluation of Expressions . 32

3.3.2 Operational Semantics of Program Commands 32

4 Detection of Memory Leaks and Locations of Leakage 34

4.1 Syntax and Semantics . 35

4.1.1 Syntax . 36

4.1.2 Memory Semantics . 36

4.1.3 Operational Semantics . 37

4.2 Memory Leak Detection . 43

4.2.1 Memory Tracking State . 43

4.2.2 Semantics of Monitoring Commands 44

4.2.3 Syntactic Transformations . 47

4.2.4 Execution of Instrumented Programs 49

4.3 Application on C Programs . 50

4.3.1 Memory Blocks . 50

4.3.2 Labels . 50

4.3.3 Memory Tracking . 50

4.3.4 Memory Allocation and De-allocation 51

4.3.5 Memory Leak Reporting . 51

4.4 Empirical Evaluation . 51

4.4.1 Objectives . 52

4.4.2 Experiment Setup . 52

4.4.3 Memory Leak Reports . 53

4.4.4 Performance Overheads . 53

4.4.5 Threats to Validity . 61

4.5 Detecting Illegal Memory Modifications 61

4.5.1 Extension at the Abstract Level . 62

4.5.2 Application on C Programs . 63

4.5.3 Experimentation Results . 64

4.6 Concluding Remarks . 66

5 A Value Tracking Approach to Information Flow Security 68

5.1 Syntax and Semantics . 70

5.1.1 Syntax . 70

5.1.2 Memory Semantics . 71

5.1.3 Operational Semantics . 71

5.1.4 Information Leak . 74

CONTENTS ix

5.2 Information Leak Detection . 75

5.2.1 Monitoring State . 75

5.2.2 Semantics of Monitoring Commands 75

5.2.3 Transformation Rules . 78

5.2.4 Execution of Instrumented Programs 80

5.3 Application to C Programs . 80

5.4 Experimental Results . 82

5.4.1 Objectives . 83

5.4.2 Experimental Setup . 84

5.4.3 Password Flow . 85

5.4.4 CWE-based Security Properties . 86

5.4.5 Threats to Validity . 90

5.5 Concluding Remarks . 91

6 Concise Specification Language for Monitoring 93

6.1 Need for Generalisation . 93

6.2 The SFM Language . 96

6.2.1 Informal Model . 96

6.2.2 Actions . 97

6.2.3 Events . 98

6.2.4 Patterns . 98

6.3 Monitoring API . 100

6.4 SFM Examples . 102

6.4.1 Stack Overflow Detection . 102

6.4.2 Explicit Information Flow . 103

6.4.3 Resource Leakage . 104

6.4.4 Detection of SQL Injections . 105

6.5 Concluding Remarks . 106

7 Summary and Future Work 108

7.1 Summary of Contributions . 108

7.1.1 Detection of Memory Leaks and Leakage Locations 108

7.1.2 A Value Tracking Approach to Information Flow Security 110

7.1.3 Common Specification Language 111

7.2 Future Work . 112

7.2.1 Improving Overhead Results . 112

7.2.2 Using Different Properties . 113

7.2.3 Generating Monitoring Analysis . 113

A Grammar of the SFM language 114

B Acronyms 116

List of Figures

3.1 Standard Abstract Language . 31

3.2 Evaluation of Program Expressions . 32

3.3 Operational Semantics of Program Commands 33

4.1 Abstract Language Extended with Dynamic Memory Allocation 36

4.2 Evaluation of Expressions . 38

4.3 Operational Semantics of Program Commands 39

4.3 Operational Semantics of Commands (cont.) 40

4.4 Operational Semantics of Monitoring Commands 45

4.5 Syntactic Transformations . 48

4.6 art: Valgrind Report . 53

4.7 art: Skiff Report (Full mode) . 54

4.8 twolf: Skiff Report (Full mode) . 54

4.9 locate: Valgrind Report . 54

4.10 locate: Skiff Report (Minimal mode) . 54

4.11 Valgrind vs. Minimal Mode. Memory Overhead 55

4.12 Valgrind vs. Minimal Mode. Runtime Overhead 56

4.13 UNIX Programs Runtime Overhead . 57

4.14 UNIX Programs Memory Overhead . 58

4.15 SPEC CPU Runtime Overhead . 58

4.16 UNIX Programs Overhead Relative to Memory Usage 59

4.17 SPEC CPU Overhead Relative to Memory Usage 59

4.18 SPEC CPU Overhead Relative to Memory Usage 60

4.19 Operational Semantics of a checkDereference 63

4.20 Syntactic Transformations for Illegal Dereference Detection 63

4.21 Valgrind vs. Skiff. Runtime Overhead . 65

5.1 Abstract Language . 70

5.2 Evaluation of Program Expressions . 72

5.3 Operational Semantics of Program Commands 73

5.4 Operational Semantics of Monitoring Commands 76

5.5 Transformation Rules . 78

x

LIST OF FIGURES xi

5.6 Runtime Overheads of UNIX Utilities . 85

5.7 Runtime Overheads of Programs from SPEC CPU Datasets 88

5.8 Runtime Overheads of Security Programs 89

List of Tables

5.1 Instrumentation Statistics of UNIX Utilities 86

5.2 Instrumentation Statistics of Programs from SPEC CPU Datasets 87

5.3 Instrumentation Statistics of Security Programs 89

6.1 Program Events . 99

6.2 SFM API . 101

xii

1
Introduction

1.1 Motivation and Problem Statement

The effects of software errors (often referred to as bugs) differ in severity. While some

are relatively harmless, others often lead to such serious problems as data corruption,

breaches of security, disclosure of confidential information, performance deteriora-

tion and system crashes. Given that software is widely used (including safety critical

systems), detecting computer bugs has long become very important.

Nowadays, software has grown large and complex, often spanning over hundreds

of thousands and even millions lines of code. As a result, manual detection of errors

in large programs is a non-trivial task. Issues associated with manual error detection

are often solved using program analysis, an approach capable of detecting errors with

no or little human interaction.

Program analysis is a broad area that focuses on automatic analysis of program

behaviours with respect to a given property (or a set of properties). For example, a

program can be analysed to ensure that it fulfils certain requirements (e.g., check if a

program is compliant with a given language standard). Then, an error formalised as

a property (for instance, using a code pattern that represents the error) can be also

be detected by means of program analysis.

Program analysis detects software bugs either statically (without executing a pro-

gram) or dynamically (at runtime). A static approach detects errors in a program by

examining the states of its abstract representation, an approximation to the real pro-

gram. The benefit of using a static technique, is that it can identify errors without user

1

2 INTRODUCTION

interaction or code instrumentation. The precision of the analysis, however, depends

on the approximations made by the analyser. The complexity of a precise static tech-

nique for solving problems such as aliasing, which is common to many programming

languages, ranges between NP-hard and undecidable [1]. As a result, precise static

analysis of large programs is often not feasible in practice.

Static techniques that use imprecise approximations can check large code bases

in reasonable time, but typically report alarms that do not correspond to real errors

or miss bugs. False positive or false negative results (i.e., incorrectly reported or

missed errors) are produced due to the imprecise approximations used. Therefore,

a developer or an analyst, who receives a potentially incomplete bug report, also

needs to identify whether the reported results correspond to real errors. Verifying

bug reports in large programs is not a trivial task.

The trade-offs of using static techniques of different precision for bug detection are

demonstrated in the preliminary work [2]. This work compares model checking and

static program analysis for a buffer overflow problem using an empirical evaluation

of the tools that implement these techniques – CBMC [3] (a model checker) and

Parfait [4] (a static program analysis tool) . Even though the authors used small

programs, the runtime and memory usage of CBMC were significantly greater than

those of Parfait. For example, to check benchmarks from the Iowa suite [5], CBMC

used over 18 hours and 2.4 GB of memory, while Parfait checked the same programs in

under one minute with less than 7MB of memory. However, CBMC was 98% accurate,

while Parfait missed 35% of the seeded bugs. The present findings indicate that, even

though model checking was more accurate, it is unlikely to scale to full-sized systems.

A similar study, consistent with these results, was reported by Engler [6].

Author’s further experimentation [7] with detection of buffer overflow errors us-

ing symbolic execution gave an indication that issues associated with scalability and

precision of static methods can be addressed using a dynamic approach. One such dy-

namic technique is monitoring, which observes executions of a program and detects

errors at runtime. Since monitoring operates on instantiated values, problems such

as aliasing rarely result in infeasible computations. However, unlike static analysis,

which considers all program behaviours, monitoring checks only individual execu-

tions.

A key issue in monitoring is the cost of analysis. This cost, also known as perfor-

mance overhead, accounts for additional resources (e.g., memory or CPU consump-

tion) and time required to complete the analysis. If the overhead is too high, the

analysis does not scale, so that monitoring takes too long to terminate or runs out of

system resources.

It is not atypical for a monitoring technique to incur runtime overheads of tens

of times those of the normal execution [8–13]. This is because a monitoring analysis

1.1 MOTIVATION AND PROBLEM STATEMENT 3

often requires tracking large amounts of data and checking many operations per-

formed by the program. For example, the Memcheck tool of the Valgrind memory

debugger [14] keeps track of all memory allocated by the program and checks each

memory read or write operation with respect to the captured allocation. As a re-

sult, the memory consumption of the program under Memcheck supervision doubles.

Further, the experimentation with computationally expensive programs [14] indicates

that the runtime overheads of Memcheck for individual runs average 26.5 times those

of the unobserved execution, and can be as high as 47.8 times. Nevertheless, due to

the value of the Memcheck monitoring analysis, which precisely identifies issues in

memory safety, such overheads are deemed acceptable for use with testing. This is

evidenced by the application of Memcheck to testing large and complex projects such

as Mozilla, OpenOffice, MySQL, GIMP and many others [15].

The overheads associated with monitoring can be reduced by using only an ap-

proximation to the actual information required. For example, the AddressSanitizer

memory debugger [16] assumes that all memory accesses are aligned at an 8-byte

boundary. This allows it to shadow the virtual address space of a program using one-

eighth of its original size. However, such approximations are prone to missing bugs.

Similarly, sampling techniques used to track memory leaks [17–19] assume that the

memory regions that are not accessed for a “long time” leak memory. This approach

reduces runtime overheads (compared to conventional techniques that capture mem-

ory and track accesses and allocations); however results in an analysis that is not

sound. Imprecise approximations in monitoring can also lead to false alarms. For

example, a technique for detecting locations of memory leaks by Maebe et al. [20]
reports both false positive and false negative results. This is because this approach

handles the majority but not all of the cases required to detect leaks precisely. Maebe

et al. indicate that accurate analysis is possible, but likely to result in greater over-

heads.

In summary, the overheads of monitored executions vary based on the precision

of the approximations used by the monitor. A more precise approximation typically

results in greater overheads (where 20-40 times slowdown is still considered accept-

able for use with testing), but greater accuracy in identifying issues during a run of

a program and vice versa. Imprecise approximations result in cheaper analysis, but

raise false alarms or miss bugs.

1.1.1 Monitoring for Bug Detection

Research in the field of precise and scalable monitoring for bug detection often focuses

on specific types of defects, such as buffer overflows or SQL injections. This is because

detection of different types of errors potentially requires different implementation

techniques. Therefore, addressing a small issue is more likely to yield an efficient

implementation, as it can be tailored to specific needs.

4 INTRODUCTION

The following section discusses some of the limitations of monitoring for specific

problems. First, it deals with issues related to dynamic detection of memory leaks in

languages where memory is not managed. It then then describes limitations associ-

ated with discovering disclosure or sensitive information at runtime.

1.1.2 Memory Leaks

A memory leak is a type of software defect that occurs when a program fails to de-

allocate memory that is no longer being used. Memory leaks can have serious con-

sequences, potentially leading to such issues as performance degradation or program

crashes.

In languages, such as C or C++ that have no built-in garbage collection, a memory

leak typically accounts for allocated memory that is no longer reachable via program

pointers. Such leaks are often referred to as physical. Another type of leak, known as

logical, refers to unused memory that is still reachable (e.g., through variable refer-

ences). The focus in the present thesis is on physical leaks only.

A physical leak occurs when a block of memory allocated by a programmer via a

memory allocation function (such as malloc) is no longer reachable through a pointer

that can be used to de-allocate this block (e.g., by using the free function). Even

though many monitoring techniques for detecting memory leaks have been devel-

oped [14, 17, 18, 21–24], they typically report only program locations where leaking

blocks have been allocated. While such information provides a good starting point

for tracking a memory leak, detecting the location where the leakage actually occurs

(and thus where it needs to be eliminated) is not a trivial task. This is especially the

case for large programs, where the trace from allocation point to the point of leakage

can span across different files and libraries.

Techniques that aim to detect leakage locations have been also reported in the lit-

erature. For example, Maebe et al. [20] use machine-level instrumentation to track all

pointers to allocated memory using reference count and operations that potentially

change the pointer structure of a program and associated locations. At a program

point, where reference count for a block drops to zero, the block is considered a mem-

ory leak and the program point is determined as the location of the leakage. Clause

and Orso [12] track leakage locations in a similar manner via taint analysis, where

each tracked block receives a taint mark. The taint marks associated with memory

blocks are propagated as execution proceeds. This is based on the propagation policy,

which models operations that change memory structure.

Even though the above approaches can identify locations of leakage, they result in

a runtime slowdown factor of 100-300. Most importantly, these techniques lack pre-

cision. The approach of Maebe et al. reports false alarms and misses memory leaks.

While Clause and Orso identify all memory leaks correctly, their propagation policy is

neither sound nor complete; that is, the reported sources of the leaked memory are

1.1 MOTIVATION AND PROBLEM STATEMENT 5

not guaranteed to be precise.

Another solution that aiming at detection of leakage locations is Boehm GC [25],
a conservative garbage collector for C and C++ languages that uses a variation of

the mark-and-sweep algorithm. This technique is capable of identifying locations of

leakage and is sufficiently scalable to be used with such large projects as Mozilla [26].
However, Boehm GC relies on periodic scanning of the program address space to de-

termine lost memory, and thus also lacks precision in determining locations of leak-

age.

In summary, even though many techniques for memory leak detection exist, they

report only where the leaked memory was allocated. The handful of approaches that

target leakage locations specifically result in high overheads or lack precision.

1.1.3 Information Leakage

This section discusses issues associated with the detection of leakage of sensitive in-

formation at runtime.

The problem addressed by information leakage detection is to ensure that data

(i.e., a set of values in a program run) identified as secret are not exposed externally,

for example, through a publicly visible variable, or direct output by a print function. If

the secret values in a run of a program are known, the program can be checked for in-

formation leakage by calculating dependencies between secret and publicly available

data.

A monitoring approach to information flow [13, 27, 28] or taint analysis [29,

30] is appropriate for the detection of information leakage. This is because such an

approach captures every assignment and evaluates values for a particular program

run. However, tracking every assignment often results in high overhead costs [9, 11,

13].

Additionally, in memory-unsafe languages such as C or C++, precise and scalable

information leakage analysis is a challenge due to language features such as pointer

arithmetic, weak type system or dynamic memory allocation. As a result, the question

of practical information leakage detection in memory-unsafe languages has not been

fully addressed by the existing research.

Techniques for information leakage detection often analyse languages that use

safe memory models [31–33], where features such as dynamic memory allocation

or pointer arithmetic are restricted by the execution environment. Although these

approaches have been applied in practice, they cannot be adopted for monitoring C

programs.

Other approaches, consider restricting features of target languages. For example,

Magazinius et al. [13] developed a framework for inlining dynamic information flow

monitors. This approach, however, does not support aliasing and assumes that func-

tions have no side-effects. An approach called Resin [34] tracks values and detects

6 INTRODUCTION

leakage using data-flow assertions checked at runtime. However, since Resin mainly

targets web systems, it does not support analysis in the presence of aliasing or pointer

arithmetic.

Assaf et al. [35] described a dynamic flow-sensitive information flow monitor for

sound enforcement of non-interference property in programs with pointers. However,

this approach uses the semantics of the Clight language [36] (a subset of the C pro-

gramming language used by the CompCert verified compiler [37]), which does not

support pointer arithmetic.

1.2 Aims and Scope

This thesis investigates aspects of monitoring for bug detection that lead to imple-

mentations that identify errors precisely and with overheads acceptable for use with

testing.

One of the goals of this research is to investigate techniques for detecting memory

leaks and locations of leakage in languages where memory is not managed (primarily

C and C++). As stated previously, the focus of this approach is to yield a moni-

toring analysis with overheads acceptable for use with testing. It also concentrates

on detecting physical memory leaks only: in other words, detection of logical leaks

or tolerating memory leaks [38, 39] (task mainly aimed at eliminating performance

degradations) is out of the scope of this work.

This thesis also aims to address the question of high overheads often associated

with runtime detection of disclosure of confidential information and support informa-

tion leakage detection in the presence of features of memory-unsafe languages, such

as dynamic memory allocation, pointer arithmetic and aliasing. The scope of this

problem is to detect leakage of entire values; detection of values that leak via parts

(e.g., bit by bit) is beyond the scope of this thesis. Further, this work concentrates

only on leakage detection; it does not involve tracking issues in memory safety, such

as buffer overflows or use after free errors.

Finally, this thesis aims to provide generalisations for the monitoring components

developed for runtime detection of specific defects. In other words, it aims to employ

monitoring primitives identified from the present analysis for memory leaks and in-

formation leakage to develop an approach in which monitoring is specified concisely

at an abstract level. The aim of such a generalisation is to reduce the development

cost of specifying monitoring for defect detection from scratch, but still yield efficient

implementations.

In summary, the scope of this thesis is limited to developing monitoring analyses

for the detection of memory leaks and information leakage and identifying abstract

representations capable of expressing such issues concisely. Thus, monitoring for

problems other than bug detection (such as debugging or profiling) or discovering

1.3 RESEARCH QUESTIONS 7

different defects (e.g., bugs in concurrency) will be beyond the scope of this work.

1.3 Research Questions

The goals stated in the previous section are addressed by instantiating monitoring

analyses for specific issues. First, techniques are developed for runtime detection of

memory leaks and information leakage; empirical evaluation that implements such

techniques is conducted and results reported. Next, a generic monitoring solution is

developed that uses abstract descriptions to specify monitoring for software defects

concisely.

In summary, the research questions addressed in this thesis can be stated as fol-

lows:

1. What features of monitoring enable precise runtime detection of memory leaks

and leakage locations, and enable disclosure of confidential information using

overheads acceptable for use with testing (as specified on page 3)?

2. What features can be used to specify monitoring using concise abstract specifi-

cations that enable instantiation of monitoring analyses?

The following section discusses the contributions made by this thesis.

1.4 Contributions

• This thesis presents an approach to detection of memory leaks in languages that

support dynamic memory allocation (e.g., C or C++) with acceptable over-

heads. The key issue addressed by this technique is the detection of precise

locations where the leaked memory was actually lost.

To enable detection of leakage locations at runtime, the project tracks memory

allocated by a program and associate each tracked block with two types of loca-

tions: allocation and usage. An allocation location represents a program point

at which a memory block associated with it was allocated on the heap. The lo-

cations of usage are updated every time a variable containing references to the

allocated block is accessed by a running program. This represents the reacha-

bility of a memory block with respect to program variables, and is achieved by

computing the dereference of a block’s address space. Unreachable blocks that

have not been de-allocated by the program are reported at the end of execution

as memory leaks. Such reports include information that describes where the

leaked blocks were allocated and where the leakage occurred. The computa-

tion is tunable. Runtime overheads can be reduced for the cost of reporting less

information without losing precision.

8 INTRODUCTION

Further, it is shown that this technique is not limited to the detection of memory

leaks: the author employs the monitoring primitives used to detect memory

leaks in monitoring analysis for illegal memory modifications.

The approach is supported by a prototype implementation for C programs. Its

applicability is demonstrated by monitoring real UNIX utilities and programs

selected from the CPU [40] datasets of the Standard Performance Evaluation

Corporation (SPEC). The results of this experimentation show that the perfor-

mance overhead of the present approach compare favourably to those produced

by the Valgrind [14] memory debugger.

• This thesis also describes an approach to preventing leakage of sensitive infor-

mation used by a program at runtime.

Instead of analysing programs by way of its variables, as is common in informa-

tion flow or taint analyses, the present technique analyses values. This method

has the ability to identify whether a disclosed value represents an information

leak with respect to the values considered secret at runtime. Tracking only a

handful of values whose disclosure constitutes information leakage reduces the

overheads associated with tracking.

The suggested approach is supported by a prototype implementation for C pro-

grams. Its applicability is shown using experimentation on detecting leaks of

confidential information in real, security-oriented UNIX software and programs

selected from SPEC CPU datasets.

From experimentation it is shown that the present approach is suitable for ad-

dressing application-specific issues, such as the problem of password disclosure.

The results of experimentation with a number of UNIX security utilities suggest

that the present approach soundly identifies leakage of passwords and incurs

overhead of only 1%. Further experimentation shows that the technique is suit-

able for analysing programs for information flow security vulnerabilities from

the Common Weakness Enumeration (CWE). Results of experimentation with

real UNIX programs and programs from the SPEC CPU datasets indicate that

this approach handles complex programs and yields acceptable overheads.

• Finally, this thesis presents a mechanism called Specification for Monitoring

(SFM), for concise and expressive specification of monitoring analysis for a

range well-defined problems in bug-checking.

The strength of SFM is that it separates the semantic issues related to moni-

toring from their implementation details. This separation of concerns results

in compact specifications, as the implementation details are delegated to the

implementation of the SFM API, which makes SFM very flexible. Further, al-

though SFM is abstract, it is not so abstract as many specification techniques,

1.5 THESIS STRUCTURE 9

which means that the implementation of the API still has the power to be very

efficient.

In addition to the details of abstract representation, SFM also describes the

monitoring API: a collection of functions that encapsulate monitoring tasks (e.g.,

tracking source locations). The API relieves users of the burden of dealing with

minor implementation details or re-implementing well-known paradigms, yet

does not significantly increase overheads compared to manual actions.

To support the present approach, the expressive power of SFM is shown by ex-

ample, using a case study that demonstrates how well-defined problems in bug

checking can be expressed concisely in SFM. The case study presents a complete

analysis for such issues as stack overflows, information flow vulnerabilities, re-

source leakage and SQL injections.

1.5 Thesis Structure

The rest of the thesis is organised as follows.

• Chapter 2 presents a literature review. First, it surveys techniques that concen-

trate on detection of memory leaks and locations of leakage, and then discusses

approaches to dynamic detection of information leakage. The chapter concludes

by summarising techniques that enable dynamic analysis using abstract specifi-

cations.

• Chapter 3 discusses the syntax, semantics and memory model of an abstract

imperative language. Elements of this language are used to explain the seman-

tics of the monitoring analyses presented in Chapters 4 and 5. Chapter 3 also

explains the notations and conventions used throughout this document.

• Chapter 4 describes a monitoring technique for the runtime detection of mem-

ory leaks and leakage locations. First, this approach is discussed at an abstract

level, followed by a discussion of the approximations required to apply it to C

programs. Further, this chapter presents the results of the empirical evaluation

of the technique, comparing the results of the present research prototype to

the results of the Valgrind memory profiler. Finally, an extension for detecting

illegal dereferences is presented.

• Chapter 5 presents a monitoring approach to the runtime detection of leakage

of the confidential information used by a program. Similar to the monitoring

approach discussed in Chapter 4, Chapter 5 first gives an abstract description,

then discusses application of this technique to C programs. Finally, the chapter

presents the results of experimentation with the prototype implementation of

this technique for C programs.

10 INTRODUCTION

• Chapter 6 summarises the author’s experience in monitoring and presents a

generic approach to monitoring programs aimed at error detection. This chap-

ter first argues the need for such a generalisation before presenting the SFM

language, designed for concise and expressive specification of monitoring at a

high level of abstraction. The chapter goes on to demonstrate the applicability

of SFM to different problems in error detection using a case study that presents

four complete monitoring analyses for detection of stack overflows, information

flow vulnerabilities, resource leakage and SQL injections.

• Finally, Chapter 7 gives concluding remarks and discusses directions for future

work.

2
Literature Review

This chapter summarises papers that are directly relevant to problems addressed in

the body of this thesis (Chapters 4 – 6). The structure of this chapter is therefore as

follows: Section 2.1 discusses techniques for the detection of memory leaks, review-

ing papers relevant to the authors’ approach to detecting memory leaks and leakage

locations (see Chapter 4). Section 2.2 summarises the current body of work on the

dynamic detection of leakage of sensitive information, reviewing techniques that have

similarities with the author’s technique to detection of information leakage (see Chap-

ter 5). Finally, Section 2.3 focuses on approaches that enable dynamic analysis using

specifications, and discusses work relevant to the technique in monitoring of programs

using concise, yet expressive specifications (see Chapter 6).

2.1 Memory Leaks

This section reviews papers directly relevant to the approach to detecting memory

leaks and leakage locations presented in Chapter 4 of this thesis. This review con-

centrates on dynamic methods that enable detection of physical memory leaks (i.e.,

memory no longer reachable via pointers) in languages that support dynamic memory

allocation.

The structure of this section is as follows. It first discusses memory debuggers –

tools that detect errors by capturing and analysing the memory state of a running pro-

gram. It then reviews techniques for detecting memory leaks that focuses on identi-

fying the precise locations of leakage. Further, this section summarises leak detection

11

12 LITERATURE REVIEW

based on the sampling of program executions. Finally, techniques that detect leaks

using hardware features in place of program instrumentations are reviewed.

2.1.1 Memory Debuggers

One of the first tools capable of dynamic detection of memory leaks is Purify [21]. Pu-

rify inserts additional instructions directly into object files monitoring memory alloca-

tion and every read or write performed by a program under test. This instrumentation

is static (enabled at compile-time). The detection of memory leaks is performed at

runtime using a callable garbage detector based on the conventional mark-and-sweep

algorithm. Memory blocks identified as no longer referenced by a program are re-

ported as memory leaks.

Alternatively, memory operations can be tracked using dynamic binary instrumen-

tations (DBI). In DBI, an executable (a client) is analysed using extra code added

to the client at runtime. An example of such analysis for memory leak detection is

Memcheck [14] – a memory profiler based on the Valgrind [10] platform. A run

of a program under Memcheck first instruments the program with instructions that

track memory blocks allocated on the heap (by intercepting calls to memory alloca-

tion and de-allocation functions). Before a program terminates, Memcheck reports

unreachable blocks that have not been de-allocated as memory leaks. The reachabil-

ity of a block is decided based on the general purpose registers and data words in the

accessible memory of the client.

Dr. Memory [22] also uses DBI instrumentation (via DynamoRIO [41] binary

translator) to detect memory leaks. Similar to Valgrind or Purify, Dr. Memory identi-

fies memory leaks based on reachability, such that a heap memory block is considered

a memory leak if there exist no pointers to it. At runtime, Dr. Memory detects leaks

via a scan that first suspends all threads, and then applies a mark-and-sweep opera-

tion to check reachability of the allocated heap blocks. A leak scan is performed at

program termination or at a program point specified by the user.

A variety of similar memory debugging and profiling tools capable of detecting

memory leaks are available. LeakSanitizer [24] is a memory leak detector integrated

into the AddressSanitizer [16] memory error detector. leaks [42] is a memory leak

detector for Mac OS. This tool periodically scans the memory space of a process and

reports allocated but no longer referenced memory buffers as memory leaks. Intel

Inspector [23] (built on top of the Pin [43] platform) is a memory error debugger

for C, C++, C# and Fortran applications under Windows and Linux; this tool is also

capable of detecting memory leaks. Discover [44] is a memory debugger maintained

by Oracle. dmalloc [45] is a C library of memory management functions that includes

facilities for memory-leak tracking and fence-post write detection. mtrace [46] is a

GNU C library memory debugger that provides essential facilities for tracing memory

allocations and reporting non-freed blocks. D.U.M.A. (Detect Unintended Memory

2.1 MEMORY LEAKS 13

Access) [47] is an open source library for detecting issues such as buffer overflows in

C programs; it also provides functionality for reporting allocated but not freed blocks

at the end of execution.

Overall, there exist a wide variety of tools suitable for leak detection. The tech-

niques discussed in this section address the detection of memory leaks and report only

the leaks’ locations of origin (i.e., program locations where lost memory was initially

allocated). This can be contrasted with the author’s approach, which concentrates on

detecting the precise locations where memory was lost. The value of such analysis is

demonstrated in Section 4.4.3 (Chapter 4), which compares conventional (allocation

only) memory leak reports of Valgrind (via Memcheck tool) to the reports of the au-

thor’s prototype implementation which additionally contain locations of leakage. The

following section discusses techniques that concentrate on similar goals.

2.1.2 Detecting Locations of Leakage

Leakpoint

Clause and Orso [12] developed Leakpoint, a technique that detects sources of mem-

ory leaks. Leakpoint tracks memory using dynamic taint analysis. For each allocated

memory block Leakpoint creates new a taint mark. A tainted pointer identifies an ac-

cess alias to that memory block. As execution proceeds, Leakpoint updates taint marks

by observing operations on pointers. This uses a propagation policy that models each

such operation. At runtime Leakpoint keeps track of pointer count per allocated mem-

ory block (i.e., taint marks associated with pointers) and identifies leakage locations

as those where pointer count has dropped to zero.

The main weakness of Leakpoint is that its propagation policy is neither sound

nor complete. That is, while Leakpoint soundly detects leaks, the reported sources of

the leaked memory are not guaranteed to be precise. Additionally, the propagation

policy does not handle internal scopes. This also may result in reporting spurious

leakage locations. Finally, Leakpoint is a DBI approach (built on top of Valgrind)

and thus also suffers from high overheads (e.g., Clause and Orso report 300 times

runtime overheads). The author’s technique addresses similar concerns by using on-

the-fly computation rather than the reference count. Because the author uses the

points-to information of the program rather the approximation to it (i.e., taint mark

propagation) the reported results are precise.

Maebe et al.

Maebe et al. [20] presented a technique that uses machine-level dynamic instrumen-

tation to track all pointers to the allocated memory using reference count. The refer-

ence count is computed by monitoring operations that may change the pointer struc-

ture of a program. A memory block is deemed to be a memory leak if a memory

14 LITERATURE REVIEW

operation decreases to zero the reference count associated with that block. In their

paper Maebe et al. also discuss the prototype implementation of their approach using

the Dynamic Instrumentation, Optimization and Transformation of Applications [8]
framework. The empirical evaluation of this technique indicates runtime overheads

that range from 200 to 300 times the normal execution.

The downside of Maebe et al.’s approach is that it reports false alarms. This is

because this technique tracks only the start addresses of memory blocks; that is, there

is no support for handling interior pointers. Further, this approach also misses leaks

in the cases where only a part of the pointer is overwritten. This stands in contrast to

the author’s approach, where such issues are addressed by a traversal of the memory

space. This correctly identifies all pointers and their dependencies and identifies leaks

soundly. However, the reference count is not, thus requiring a program to terminate

in order to detect leaks. Maebe et al.’s technique has no such limitation.

A similar approach, capable of reporting locations of lost memory, was imple-

mented by Meredith [48] in the tool Omega. Clause and Orso [12] indicate that

Omega is an independent implementation of the approach suggested by Maebe et

al. [20].

Boehm Garbage Collector

Another approach that can potentially provide information, such as locations of leak-

age, is Boehm GC [25] – a conservative garbage collector for C and C++ languages

that uses a variation of the mark-and-sweep algorithm. Boehm GC can also detect

memory leaks, although this is not its primary focus.

If used as a leak detector, Boehm GC reports memory blocks that are no longer

accessible (i.e., de-allocated in a normal mode of operation) as memory leaks. This,

however, relies on periodic scanning of the program address space to determine lost

memory, and thus cannot determine precise locations of leakage.

Insure++

Insure++ [49] is a proprietary memory debugger developed by Parasoft. This tool con-

centrates on runtime analysis and memory error detection for programs implemented

in the C and C++ programming languages. Insure++ detects a range of memory er-

rors, including memory leaks. To enable monitoring of memory Insure++ instruments

the source code of applications. Similar to the author’s approach, Insure++ supports

detection of lost memory. However, since Insure++ is a proprietary tool whose imple-

mentation details are not publicly available, the present thesis cannot summarise its

differences to the author’s technique.

2.1 MEMORY LEAKS 15

2.1.3 Dynamic Sampling

A different approach to dynamic memory leak detection is via sampling executions of

code fragments.

Hauswirth and Chilimbi [17] presented a dynamic technique for the runtime de-

tection of memory leaks using bursty tracing [50] (a sampling methodology in con-

tinuous program monitoring) and its prototype implementation, called SWAT. SWAT

maintains a model of the heap, recording all memory allocations and constantly mon-

itoring all load and store operations sampling executions at a rate inversely propor-

tional to the execution frequency. This results in reports of stale objects (i.e., memory

areas that have not been accessed for a particular amount of time) as memory leaks.

An advantage of using sampling to detect leaks is that it results in low runtime over-

heads. From their experimentation (using SPEC benchmarks) Hauswirth and Chilimbi

report runtime overheads that are less than 5% compared to unobserved executions.

However, due to the application of sampling, which reports memory blocks that have

not been accessed for a “long” time as leaks, this technique is known to produce false

alarms.

Novark et al. [18] developed an approach to sound runtime detection of memory

leaks and bloat in C and C++ applications, called Hound. To detect memory leaks

Hound uses a data-based sampling technique. This enables sampling based on access

paths to objects. This is different to code-based sampling techniques (e.g., bursty

tracing, used by SWAT) that perform sampling based on execution frequency of code.

Data-based sampling resolves issues associated with overestimating staleness, and

reports no false positives; however it can miss memory leaks. Empirical evaluation of

Hound using SPEC CPU benchmarks indicates that its runtime overheads vary from

approximately 8% to 102% compared to unobserved executions.

A limitation of Hound is that it can miss errors in cases when a hot (i.e., frequently

accessed object) is co-located on a page with a stale object. Lim et al. [19] address

this limitation using context aware data sampling, which allocates memory objects

using callpaths of allocation sites (context information). The authors demonstrate

the benefits of their technique using empirical evaluation that detects memory leaks in

benchmarks from the SPEC CINT2000 suite. The results indicate that context aware

data sampling detects more memory leaks than conventional data sampling using

Hound. However, this does not fully resolve the issues with false negative reports.

One of the most recent approaches to memory leak detection using sampling is

Sniper [51]. Sniper concentrates on runtime leak detection via statistical analysis.

This employs instruction sampling (via performance monitoring units in commodity

processors) to detect staleness of allocated memory. The authors also discuss the re-

sults of empirical evaluation using benchmarked code demonstrating that overheads

of Sniper are low. This is reflected in an F-measure of 81%.

16 LITERATURE REVIEW

In sampling-based detection, memory leaks are identified using the notion of stale-

ness. In contrast, the author’s approach relies on locating points-to relationships. The

benefit of the sampling-based techniques is that they can also detect logical leakage

(i.e., reachable but unused memory blocks), which is not supported by the author’s

approach. Therefore, sampling is capable of detecting leaks in memory managed

languages; for example, Sleigh [52] detects memory leaks using sampling in Java

programs. The author’s technique, however, detects all leaks and does not yield false

alarms, while sampling-based techniques are known to yield false positive or false

negative results.

2.1.4 Detecting Memory Leaks at the Hardware Level

Finally, memory leaks can be detected using facilities provided by an execution en-

vironment. Qin et al. [53] presented a tool called SafeMem, which detects memory

corruption errors and memory leaks using Error-Correcting Code (an extension of

parity memory that can detect single-bit errors) in place of program instrumentation.

SafeMem concentrates on detecting continuous leaks – memory leaks that result in

continuous growth of virtual memory space. Leaks are detected by monitoring the

memory usage behaviour and evaluating the life-times of objects with respect to allo-

cations. Empirical evaluation of SafeMem shows runtime overheads of less than 15%

of the normal execution. However, due to the nature of the analysis (which makes as-

sumptions on object life-times), SafeMem can report false alarms. MemTracker [54]
represents a similar effort that enables memory monitoring and debugging via hard-

ware support.

The author’s technique operates at the source level of programs, and therefore is

platform and architecture independent.

2.2 Information Leakage

This section reviews related work in the area of dynamic detection of information

leakage. It summarises papers directly relevant to the author’s approach in detecting

of leakage of sensitive information presented in Chapter 5. This focuses on dynamic

techniques that address the question of protection of sensitive information against

disclosure at runtime.

The structure of this section is as follows. It first reviews techniques in language-

based information flow security that detect leakage implicitly, by extending program-

ming languages with security features, rather than explicitly instrumenting programs.

This section then discusses related work in the area of data-flow tracking. Similar to

the author’s approach, these techniques track values during a run of a program using

instrumentations. Further, this section summarises research on information flow and

taint analysis that track sensitive data in annotated programs. This is followed by a

2.2 INFORMATION LEAKAGE 17

discussion on techniques that detect information leakage using multiple executions

of the program under analysis. Finally, this section summarises papers that address

information leakage using testing.

2.2.1 Language-based Information Flow Security

Language-based information flow security [55, 56] enables information analysis in

security-typed languages (such as JFlow [57], JIF [58] or FlowCaml [59]) where

data types are augmented with annotations that specify security policies for the use of

the data at runtime. The specified policies are enforced during a type-checking phase

at compile-time. Adding such annotations, however, is a non-trivial task, especially

given their semantics, which require extending the target language with the security-

oriented type system. The annotations used by the author’s approach are only to

identify memory locations and values that need to be protected against disclosure.

2.2.2 Data Flow Tracking

Data flow tracking is an alternative approach to detecting information leakage. In con-

trast to information flow security, which extends the functionality of languages with

security features, data flow tracking enables detection of leakage using instrumen-

tations that capture different aspects of leakage. This section now discusses related

work in the area of dynamic data flow tracking.

Resin [34] tracks values and detects leakage using data-flow assertions checked at

runtime. This approach is similar to that of the present work. Resin targets analysis of

web systems and supports specification of policies and filters. However, because Resin

mainly supports memory safe languages, such as PhP or Python, this technique tracks

only secret values, but not safe locations and does not handle aliasing. A significant

limitation of Resin is the need to modify the interpreter to handle security policies.

The author’s approach modifies only the input program and standard tools (such as

gcc) can still be used. Further, Resin incurs high overheads (over 400% for some SQL

related operations).

LeakProber [60] also addresses information leakage by analysing the flow of data

in a program. LeakProber integrates static analysis and runtime tracking to generate a

data propagation graph that captures various aspects of the leakage of sensitive infor-

mation. This differs from the author’s approach technique which uses only dynamic

analysis. The main aim of LeakProber is to identify vulnerabilities by comparing nor-

mal and insecure data propagation graphs. LeakProber also focuses on data that

crosses the user/kernel boundary. To achieve this, the authors of LeakProber patch

and recompile the kernel to support profiling.

18 LITERATURE REVIEW

2.2.3 Information Flow Analysis

Information leakage can also be detected using information flow analysis, which

tracks the flow of data with respect to the security levels of variables that may only

point to the actual data.

Le Guernic et al. [61, 62] analyse information flow to enforce non-interference

in sequential and concurrent programs using a combination of dynamic and static

analyses. They use the results of static analysis at runtime to detect indirect flows,

which has the usual issues with static analysis, such as false positives. Further, the

technique by Le Guernic et al. does not handle pointers.

Assaf et al. [35] describe a dynamic flow-sensitive information flow monitor for

sound enforcement of the non-interference property in programs with pointers. Assaf

et al. formalise a hybrid information flow monitor for a simple imperative language

with aliasing. This approach uses the semantics of the Clight language [36] (a subset

of the C language used by the CompCert verified compiler [37]), which does not

support pointer arithmetic. The present author’s approach has no such limitation.

Magazinius et al. [13] inject monitors at the source code level. These monitors are

similar to the assertions the author’s approach inserts into the programs. Magazinius

et al.’s technique handles code evaluated on the fly (i.e., executing strings as code),

but it does not handle pointers (or aliasing) and also assumes that the functions have

no side-effects. The overheads of their approach range from 20% to 1700%.

Chandra and Franz [63] present a framework for information flow tracking in the

Java Virtual Machine. Their approach combines static and dynamic techniques. A

static analyser adds annotations, which at runtime are used to update the labels of

variables and enforce the security policy currently in place. The key feature of this

approach is that it uses completely dynamic policies that can be changed during run-

time. Their annotation mechanism relies on static analysis assigning the security level.

Chandra and Franz also present experimental results, indicating runtime overheads

that vary from 23% to 159%, however it is not clear how much data were tracked. In

contrast, program annotations in the present author’s approach only classify memory

locations as safe or unsafe. Additionally, the author’s approach does not need to track

or compute security levels of variables in order to soundly identify leakage.

Hedin and Sabelfeld [32] developed a dynamic type system for a subset of JavaScript,

incorporating objects, higher order functions, exceptions and dynamic code evalua-

tion. This enforces the property of non-interference, thus protecting programs from

leaking private inputs to public outputs. Hedin et al. [33] extend this work and de-

velop a security-enhanced interpreter, called JSFlow, for the full non-strict JavaScript

standard (ECMA-262). In contrast to the author’s approach JSFlow uses types to

detect information leakage: a vulnerability is detected only if all elements can be

typed. In the present approach the author uses memory locations and untyped val-

ues. However, this approach detects only leaks via explicit information flows. JSFlow

2.2 INFORMATION LEAKAGE 19

also identifies leakage via implicit flows.

2.2.4 Dynamic Taint Analysis

An alternative approach to information leakage detection is by means of taint analysis

in conjunction with DBI; this combination sometimes referred to as dynamic taint

analysis. The main benefit of such an approach is its ability to track every bit. This

drastically improves the precision of the analysis (since all information is available at

runtime) at a cost of runtime overheads of over 50 times [9] the normal execution.

Such techniques are described below.

LIFT [29] tracks information flow via dynamic taint analysis by tagging secret

values and propagating the tags at execution time. LIFT uses several aggressive opti-

misation strategies aimed at reducing overheads associated with DBI and information

flow tracking. The results of experimentation with LIFT (built on top of the Start-

DBT [64] DBI framework) indicate that it reduces runtime overheads by an order of

magnitude (compared to a TaintCheck [9] – a taint analysis tool for overwrite attacks

detection). The overheads incurred by LIFT average to 3.6 times the normal execu-

tion. The advantage of using LIFT is that it does not require source code, and has

the ability to track information flow across library calls. This is a limitation of the

author’s approach which is based on source code instrumentation and thus, requires

source code to be available.

TaintDroid [65] is an extension to the Android platform that dynamically tracks

the flow of data through third-party applications to identify sensitive information that

leaves the system. To solve the issue of high overhead costs associated with tracking of

data at the instruction level, this technique combines multiple granularities of track-

ing: at the variable, message, method and file levels. The authors report overheads of

14% for micro benchmarks. Extensions to TaintDroid have also been proposed [66].
To enable various levels of tracking, TaintDroid requires modification of the runtime

environment at the operating system level (i.e., Dalvik virtual machine). This is dif-

ferent to the author’s approach, which transforms only the program under analysis.

TaintEraser [30] is a similar system for preventing exposure of sensitive information

based on dynamic application-level taint analysis (using Pin [43] as its DBI platform).

TaintEraser employs object-level propagation, maintains a shadow list of tainted ker-

nel level objects (such as file handles) and monitors changes to these objects. Overall,

TaintDroid and TaintEraser lift the granularity of tracking to a higher level (e.g., object

or file level) that requires fewer instrumentations and as a consequence reduces the

overheads comparing to tracking byte-level tracking. However, this approach leads to

imprecise approximations, as byte-level operations are deliberately omitted from the

analysis. The author’s technique tracks values at memory block level.

20 LITERATURE REVIEW

2.2.5 Secure Executions

The techniques for detecting information leakage discussed in the previous sections

consider single executions of a program instrumented with security checks. This sec-

tion discusses approaches that detect information leakage via multiple executions of

programs.

Capizzi et al. [67] developed a practical approach for preventing information leaks

called shadow execution. Shadow execution replaces the original program with two

copies, such that the first (private) copy is supplied with sensitive information and

is prevented from making network connections. The second (public) copy commu-

nicates over the network using only non-confidential information, which then can be

shared with the private process without loss of confidentiality. Capizzi et al. imple-

mented their approach for the Windows platform and report runtime overheads that

range from 23% to 206%. The present author’s technique embeds checks for informa-

tion leakage into the body of a program; under this type of analysis the program never

outputs the leaked data, whereas shadow execution exposes them to the sandboxed

environment, which needs to be secured. Further, there is an additional cost associ-

ated with running a copy of the original program and inter-process communication.

Devriese and Piessens [68] proposed a similar approach for information flow con-

trol called secure multi-execution, where a program is executed multiple times – once

for each security level. This controls a program’s public output, produced only if the

output matches the appropriate security level. The authors implemented their ap-

proach in a model browser. Experimental results indicate that runtime and memory

overheads associated with secure multi-execution can be as high as 200%.

Austin and Flanagan [69] have presented a technique for preventing leakage of

confidential information and violations of data integrity. In their approach Austin

and Flanagan introduce the notion of a faceted value – a pair of two raw values that

contain both public and private information. By manipulating these values, shadow

execution is simulated using a single process. This enables strict information flow

control where multi-processing is involved.

2.2.6 Testing

This section summarises papers that combine information leakage detection with test-

ing.

Panorama [70] is an approach to detecting leakage of sensitive information that

focuses on tracking information flow under test cases. Panorama performs security

information flow analysis in three stages: testing, monitoring and analysing. First, the

code under investigation is loaded into the testing environment, where the set of au-

tomated tests are conducted and the program behaviour is monitored. The result ob-

tained from monitoring is then analysed against user-defined security requirements.

2.3 MONITORING SPECIFICATIONS 21

An alternative approach to information leakage detection is taken by Privacy Ora-

cle [71], which considers an application as a black box. To detect information leaks

Privacy Oracle uses a variation of a black box testing technique, where perturbations

in the application inputs are mapped to perturbations in the application outputs to

discover likely leaks. TightLip [72] is another system that does not require access to

the source code of applications. TightLip employs doppelgangers – sandboxed copy

processes that run in parallel to the original program – and uses divergent process

outputs to detect potential leaks.

2.3 Monitoring Specifications

This section summarises techniques that facilitate construction of dynamic analysis

using specifications. This review highlights differences between the author’s approach

to monitoring, called SFM (see Chapter 6) and similar techniques that enable dynamic

analysis at a specification level.

The structure of this section is as follows. It first discusses monitoring via instru-

mentations and then reviews techniques that enable dynamic analysis using streams

of events that represent program behaviours. This section further discusses behavioural

interface specification languages that enable monitoring using in-line annotations.

This is followed by a discussion on techniques in runtime verification that employ

high-level abstractions (e.g., formal logic) to describe properties that should hold at

execution time. Finally, this section focuses on techniques that use behavioural pat-

terns to observe traces of program events at runtime.

2.3.1 Low-Level Instrumentation

A variety of frameworks that support construction of dynamic analysis have been

developed. Early attempts include techniques such as ATOM (Analysis Tools with

OM) [73, 74], EEL (Executable Editing Library) [75] and Shade [76]. These frame-

works provide infrastructures for code instrumentations at a source code or instruc-

tion level. Some similar state-of-the-art solutions include architectures such as LLVM [77],
Valgrind [10], Pin [43], DynamoRIO [41] and StarDBT [64]. Such tools typically

analyse programs by injecting implementation-specific code at program locations iden-

tified by the user. Such an approach provides fine-grained instrumentation func-

tionality (e.g., modify instructions in the target program) for the cost of complex,

implementation-level specifications. Since it is the user’s responsibility to provide

the program points and code for instrumentations, such techniques are considered

manual. As such, they are beyond the scope of this review which concentrates on

approaches that aim to reduce the development overheads involved in specifying dy-

namic analysis by hand.

22 LITERATURE REVIEW

2.3.2 Monitoring Program Events

One way to facilitate specification of monitoring is to represent a program run as

a stream of events and provide means to observe them, for example, via callback

functions scheduled to be executed once specific events are triggered. This section

describes monitoring techniques that explore this idea.

BEE++ [78] is a C++ application framework for dynamic analysis of distributed

programs based on BEE [79], a system of templates and tools implemented in the

C programming language. BEE++ sees program execution as a stream of primitive

events. Built on the notion that primitive events should be used to compose more

complex events, BEE++ allows events to be extended by way of inheritance. Specif-

ically, an event is encapsulated as a C++ class, and a custom instance of an event

is a subclass that inherits from a built-in class provided by the platform. The event

processing model of BEE++ consists of the target program, the dynamic analysis tool

and the event configuration manager. Events generated by the target program are

sent to the dynamic analysis tool, which invokes user-specified code that observes

the execution of the events. In addition, the analysis tool generates events and sends

them to the target program. This is enabled in order to request additional information

required by the analysis.

A Lightweight Architecture for Monitoring (Alamo) [80–82] is a framework for

monitoring programs that aims to reduce the cost of writing monitors. Initially devel-

oped for Icon programs [83], Alamo has been extended to support C. Alamo instru-

ments programs using the Configurable C Instrumentation (CCI) [84, 85] tool. The

instrumented programs transmit events that represent individual units of behaviour.

Typical Alamo events include memory references, heap allocations, program control

flow and procedure calls. To reduce the number of generated events Alamo uses event

masks that specify sets of events that should be observed by the instrumentation. In

response to events generated by a program, Alamo invokes monitors specified as C

macros. These macros are expanded by the CCI tool and used to instrument target

programs.

Olsson et al. [86] suggested an approach to event-driven debugging called Dalek.

Dalek is based on the data-flow view of primitive and high level program events. Prim-

itive events (along with the supported attributes) are defined and raised by a user

(for example, via break points). A high-level event is triggered by a primitive event

and specifies the code to be executed. This uses a custom language similar to C. Dalek

does not support complex event patterns, and is only capable of invoking high-level

events on occurrences of primitive events.

Bates [87] suggested an approach to debugging and monitoring of programs

called Event Based Behavioural Abstraction (EBBA). In EBBA, events that express

behaviours of programs are defined by the programmer via source code annotations.

2.3 MONITORING SPECIFICATIONS 23

These annotations generate event instances at runtime. Behaviour models (other-

wise known as event patterns) that need to be monitored are expressed using regular

expression grammar, where events are represented using tuples of event types and

attributes.

Jahiera and Ducasse [88, 89] suggested specifying monitoring of programs in

functional and logic languages using a monitoring primitive, called foldt – a vari-

ation of the fold function used for traversal of lists in logic programs. fold is similar

to the map function over lists, bit has an additional argument called accumulator ac-

cessed at each step of the execution. foldt is designed to perform similar operations

over streams of events at runtime. Jahiera and Ducasse implemented this approach

for the Mercury programming language [90].

RoadRunner [91] is a tool that supports rapid prototyping with dynamic analyses

for concurrent Java programs. RoadRunner provides an API for communicating with

events generated by the monitored program. Construction of an analysis using Road-

Runner is limited to specifying handlers for built-in events for concurrency analysis

(e.g., non-volatile and volatile memory accesses, lock acquire, release and thread op-

erations). RoadRunner keeps track of threads and memory locations using shadow

memory. This is done in such a way that during the execution of the monitored pro-

gram for each thread there exists a shadow thread (which encapsulates information

about the program thread) and for each program variable there exists a shadow vari-

able. The values of the shadow objects are tracked by the monitored program as it

executes.

Sofya [92, 93] provides support for monitoring of events in concurrency-aware

Java environments. Analysis specifications are enabled using a declarative language

called EDL (Event Description Language) that describes events and the ways in which

they are monitored. In EDL, observed events are specified using a rule-based sys-

tem, where larger events are composed of primitive events (e.g., method invocations

or field reads or writes). Events are processed using a publish/subscribe event han-

dling system. The EDL specifications are translated to Java bytecode and the original

programs are instrumented using the Byte Code Engineering Library [94].

SFM also uses events to observe program behaviours. However, a feature that

differentiates SFM from most of the techniques described in this section (with the

exception of EBBA) is the use of behavioural patterns, allowing for observations of

events that occur in specific sequences. Additionally, the monitoring approaches dis-

cussed in this section specify monitoring using the implementation language of the

monitored programs. This is different to the present approach that specifies moni-

toring using an intermediate language that is used to generate implementation-level

code.

24 LITERATURE REVIEW

2.3.3 Behavioural Interface Specification Languages

Behavioural interface specification languages (BISLs) provide formal specifications

of intended program behaviours. Such specifications are provided via annotations

or language extensions that document the desired behaviours using pre- and post-

conditions, invariants and assertions. In dynamic analysis, such in-line specifications

are used to generate implementation-level monitors. At runtime, these monitors en-

force the specified requirements. This section summarises relevant work in this area.

Hatcliff et al. [95] reviewed techniques in formal behavioural specifications of

programs. Their survey provides an overview of the various features of different

BISLs and their use for automatic verification of programs.

Anna (Annotated ADA) [96, 97] is a BISL for formal specification of the intended

behaviour of ADA programs. Anna specifications are provided in the form of annota-

tions associated with ADA syntax constructs. Anna supports type annotations, which

impose constraints on the types in the program, and subprogram annotations, which

specify the intended behaviours of the program. A number of techniques for conver-

sion of the formal properties in the Anna language into runtime checks have also been

developed [98, 99].

Eiffel [100] is an object-oriented programming language developed by Bertrand

Meyer. In Eiffel, the intended behaviours are specified by means of contracts that

document the interface specifications of program components using such language

extensions as pre-conditions, post-conditions and class invariants. This design has

since become known as the design-by-contract principle.

Larch [101] is a two-tier approach to formal specification of program behaviours.

The top tier of Larch consists of a BISL; the bottom tier is called the Larch Shared

Language (LSL). The LSL, which describes mathematical vocabulary, specifies a math-

ematical model and the BISL, tailored to a specific programming language, describes

the interface and the behaviour of the program. Various BISLs for the top tier have

been considered: Larch/C++ [102], Larch/Ada [103], Larch/Smalltalk [104].

Spec# [105] is a behavioural specification language for the .NET platform. Spec#

is a superset of the C# programming language enriched with constructs that cap-

ture the programmer’s intentions. Spec# uses contracts that specify how data and

methods should be used. The Spec# compiler converts the additional constructs into

runtime checks that enforce specifications. Additionally, Spec# employs the Boogie

static verifier, which has the ability to check the program statically against the speci-

fied requirements.

Java Modelling Language (JML) [106] specifies the intended behaviours of Java

classes and interfaces as source code annotations. In JML, behaviours can be de-

scribed using pre- and post-conditions. Additionally, JML allows assertions to be

2.3 MONITORING SPECIFICATIONS 25

placed in the Java code. Burdy et al. [107] survey some of the well-known ap-

plications of JML in different areas of program analysis. Bytecode Modelling Lan-

guage [108] is a similar effort that uses bytecode-level annotations.

E-ACSL [109, 110] is one of the most recent developments in the area. E-ACSL is

a subset of ACSL [111], a formal specification language for C programs used by the

Frama-C [112] framework. ACSL is based on first-order logic that combines the use

of pure (side-effect free) C expressions and keywords that allow for reasoning about

the results of functions. Further, ACSL can express most of the functional properties

of C programs, and implements the design-by-contract principle, such that a contract

can be associated with a function in a program and specify pre- and post-conditions.

While ACSL has been designed for static analysis of C programs, E-ACSL was adopted

for dynamic analysis specifications. The annotations in E-ACSL are translated into

executable monitoring code and embedded into programs as runtime-checks via the

E-ACSL2c compiler.

In the present approach definitions of analysis and source code of monitored pro-

grams are kept separate. The key difference of SFM and a BISL approach is that a SFM

monitoring specification is independent of the monitored program, whereas a BISL

specification is embedded in the body of the monitored program. Such separation of

concerns offers the benefit of using the same analysis, once defined, for monitoring

many programs. SFM, however is less suitable for the specification of application-

specific properties. For example, SFM cannot specify pre- and post-conditions or rea-

son about the behaviours of individual variables or objects.

2.3.4 Runtime Verification

Runtime verification is an area of dynamic analysis that focuses on checking program

executions against properties provided via a requirement specification. Such speci-

fications are often given via high-level abstractions used to generate observers that

monitor the execution of a running program. Checking program runs is enabled ei-

ther on-line (during the execution of a program) or off-line (by extracting a program

trace and verifying it against the set of properties given by the specification). Jin et

al. [113] presented a comparative table for a number of well-known approaches to

runtime verification, briefly surveying properties of the systems such as target lan-

guage, scope of analysis, logic used in writing requirement specifications and modes

of execution (i.e., on-line or off-line). This section surveys some of the relevant run-

time verification techniques.

Monitoring Oriented Programming (MOP) [114] is an approach to runtime ver-

ification of programs aimed at validating formalised program requirements at run-

time. MOP automatically synthesises monitoring code from higher-level formal re-

quirements specified via source-code annotations. Formalisms that capture program

requirements are specified as plug-ins; that is, MOP is independent of any specific

26 LITERATURE REVIEW

formalism. The MOP technique is implemented in a runtime verification tool called

Java-MOP [115]. Similar to the BISL techniques (sometimes classified as runtime

verification techniques) MOP targets detection of application-specific requirements

via in-line annotations. This is different to the author’s approach, in which specifica-

tions are independent of the source code of programs.

Program Trace Query Language (PTQL) [116] is an approach to runtime verifi-

cation that specifies requirements using a SQL-like language called Partiqle. Partiqle

uses relational queries over traces of program events viewed as sets of records with

associated timestamps. PTQL enables on-line analysis via external specifications and

uses state machines to execute queries. Since PTQL is, in essence, a query language,

it has expressiveness limitations. For example, the authors of PTQL indicate that it

can express issues, such as mismatched method pairs or serialisation errors, but it

cannot support analysis for SQL injections in its full generality. Unlike PTQL, SFM is

a procedural language that associates procedural routines to be executed when the

match is achieved. This has the power to express arbitrary computations.

MaC [117–119] is a framework for monitoring programs against system require-

ments. MaC specifications are implemented using two languages: Primitive Event

Definition Language (PEDL) defines events observed by the system and Meta Event

Definition Language (MEDL) specifies formal requirements using PEDL events. Spec-

ifications in these languages are used to instrument programs with code that emit

program events at runtime and enables dynamic checking of properties given via the

specifications. MaC mainly targets application-specific requirements and reasons at

the level of specific variables or objects.

Java PathExplorer [120] (JPaX) is a runtime verification tool developed at NASA

Ames Research Center. JPaX first extracts relevant events from the executing program,

then passes the observer that enables analysis based on a specification that uses tem-

poral logic (via the Maude specification language [121]). Additionally, JPaX enables

built-in analyses to detect data race vulnerabilities and deadlocks. Similar solutions

using temporal logic to specify requirements include TemporalRover [122] (combina-

tion of Linear Temporal Logic and Metric Temporal Logic), Hawk [123] (rule-based

temporal logic called Eagle [124]), RuleR [125] (primitive conditional rule-based

system) J-LO [126] (Linear-Time Temporal Logic extended with free variables) and

jUnitRV [127] (Linear Temporal Logic on finite traces [128]).

A SFM monitor is specified using actions and patterns. This is different to runtime

verification, where both components are given in higher-order logic as a single prop-

erty. Such properties are known to be more compact, yet are not trivial to specify,

and are hard to optimise due to the gap between abstract property descriptions and

implementation-level monitors generated from the properties. SFM provides a more

intuitive way of monitoring specifications and tuning performance: the user specifies

what behaviours to observe (via patterns) and how to observe them using actions.

2.3 MONITORING SPECIFICATIONS 27

SFM specifications are also abstract, but they provide a traceable link between ab-

stract patterns and actions and the implementation-level monitors generated from

the specifications.

2.3.5 Trace Monitors

Trace monitors originate from aspect oriented programming (AOP) [129, 130] as a

generalisation of applying advice (i.e., extra code) on pointcuts (collections of well-

defined program points).

In traditional AOP, pointcuts refer only to a current state. Douence et al. [131]
extended the pointcut language and presented stateful, trace-based aspects based on

execution history. The authors argued that such aspects are more expressive because

they allow for tracking and expressing relationships between events occurring at var-

ious points of a program’s execution. This model is based on a monitor observing and

weaving execution traces, where aspects are defined over sequences of executable

states and the aspect weaving is performed on executions, rather than on program

code.

Walker and Viggers [132] developed an approach to trace monitoring based on

AOP that extends pointcuts to patterns that supporting the specification of multiple

events occurring in sequences. In their paper, Walker and Viggers introduce declara-

tive event patterns that explore the idea of defining pointcuts using features of context

free grammars. To demonstrate the benefits of their approach, Walker and Viggers

extended AspectJ [130] with declarative pattern specifications called tracecuts, and

compared their design to the standard features of AspectJ.

Another approach to trace monitoring has been presented by Allan et al. [133].
This technique also uses the idea of history-based executions, introducing a feature

called tracematches. Tracematches enable matching of events in execution traces us-

ing patterns based on regular expressions with free variables. Allan et al. also pre-

sented a prototype implementation of their approach as an extension to the abc As-

pectJ compiler [134]. This extension supports constructs that allow tracematches to

be defined. Further, Allan et al. investigate issues related to efficient implementations

and feasibility of monitors generated using tracematches [135].

Stolz and Bodden [136] presented a trace monitoring approach where patterns

can be specified using LTL properties over AspectJ pointcuts. It is noted, that this

work is closely related to the runtime verification approach discussed earlier. Hui and

Riely [137] presented semantics for temporal aspects that allow for the definition of

pointcuts in terms of events that occurred in the past.

The feature that distinguishes SFM approach from the above trace monitors is the

use of an abstract language to specify actions. Research on trace monitoring has been

focussed on pattern design, and the existing trace monitors specify actions using the

implementation language of a target program. SFM enables specifications of analyses

28 LITERATURE REVIEW

that the existing trace monitors cannot address (e.g., dependency analysis).

The following discusses trace monitors that have the most similarities with SFM.

Program Query Language (PQL)

Program Query Language (PQL) is a trace monitor for Java programs [138]. PQL

focuses on tracking method invocations and accesses of field and array elements in

related objects. In PQL, events are represented as code patterns, e.g., typed assign-

ments. In contrast, SFM uses abstract events to specify actions performed by the

program (e.g., memory allocation). The approach taken by PQL is convenient for

monitoring properties of Java objects; however, it complicates specification for more

generic analyses. For example, to encode propagation of tainted data in PQL, one

needs to specify all relevant code patterns. In SFM this behaviour is captured by a

single flow event that addresses all data transitions regardless of the code patterns

involved (see SFM specification in Listing 6.4). Also, PQL does not support tracking of

conditional jumps and cannot address problems in dependency analysis. For example,

PQL cannot encode flow-sensitive information flow analysis similar to that shown via

the SFM specification in Listing 6.2.

SFM is capable of expressing memory-related problems; (e.g., stack overflow anal-

ysis; see Listing 6.1). Since Java is a memory-safe language such issues are outside of

PQL’s purview. Encoding problems PQL focuses on, for instance mismatched method

pairs or SQL injections, is straightforward in SFM. Similar analyses are shown in List-

ings 6.3 and 6.4.

Arachne

Arachne [139] provides an aspect language for C that features constructs for quantifi-

cations over sequences of events. Events supported by this system capture load and

store operations and function calls. Arachne is also capable of expressing memory

safety problems; for instance, Douence et al. present an AOP specification for buffer

overflow detection.

Likewise, SFM supports memory safety; however, expressing such analyses in SFM

is more straightforward and compact. For example, Arachne does not have a monitor-

ing API, and thus tasks such as memory tracking need to be implemented by the user.

Additionally, memory tracking with Arachne is limited. For example, this approach

cannot track stack memory allocations, and thus analyses for stack overflows (see

Listing 6.1 for an example) cannot be specified. SFM does not have such limitations.

Arachne provides a powerful pattern language over event sequences capable of

expressing problems similar to the resource leakage shown in Listing 6.3. However,

functionality that facilitates the analysis needs to be implemented in C that is consid-

ered one of the least expressive languages [140].

2.3 MONITORING SPECIFICATIONS 29

The literature review presented in this section summarised papers relevant to

monitoring techniques presented by this thesis. This section first discussed related

work in the area of memory leak and disclosure of confidential information detection.

Further, research that concentrates on enabling monitoring using specifications was

presented.

The next section presents a memory model that is used to describe monitoring

techniques (Chapters 4 – 6) that form the contributions of the present thesis. The fol-

lowing section also presents notations and explains conventions used in the remainder

of this thesis.

3
Preliminaries

This thesis presents monitoring techniques to runtime detection of memory leaks and

leakage locations, and disclosure of confidential information. To simplify the presen-

tation, the techniqcal details of the monitoring approaches are given at the level of an

abstract imperative language.

This chapter describes the syntax and semantics of a simple abstract imperative

language similar to the While [141] or Imp [142] languages. This language and its

semantics are referred to as a standard model. To explain the monitoring techniques

presented in this thesis the standard model is extended with features that capture

required properties. For instance, to describe the problem of memory leaks the lan-

guage is extended with memory allocations, dereference operations and location la-

bels. Such features allow to track memory blocks allocated by a program, detect leaks

and report program locations at which leaking blocks were lost. Further, to prevent

disclosure of secret values during a run of a program the standard model is extended

with operations on pointers and assertions.

The following describes the abstract language in greater detail. Section 3.1 de-

scribes the syntax of the language. Its memory model and operational semantics are

discussed in Sections 3.2 and 3.3 of this thesis respectively.

3.1 Syntax

Figure 3.1 presents the syntax of an abstract imperative language using a BNF-like

notation.

30

3.2 MEMORY SEMANTICS 31

n ::= Num
v ::= Var
e ::= n | v | e⊕ e | f(e)
c ::= skip | def(v) | v := e | if e then c1 else c2 | while e do c | c1 ; c2

f ::= Ident¬ c | f1 ; f2
P ::= f ; e

Figure 3.1: Standard Abstract Language

Expressions e consist of numerals n, variables v, binary expressions e⊕ e (where ⊕
is a binary operator) and function calls f(e). Set Expr denotes the set of all program

expressions.

Commands c (given by the set of all program commands Comm) consist of atomic

commands skip, variable definitions def(v), assignment commands (v := e), condi-

tionals (if e then c1 else c2), loops (while e do c) and sequential composition of

commands (c1 ; c2).

Functions f consist of unique function names (Ident) followed by a command (c)

or a collection of definitions (f1 ; f2). Program P is a non-empty sequence of function

definitions followed by an expression.

The following section discusses the memory semantics of the abstract language

shown in Figure 3.1.

3.2 Memory Semantics

Values and memory addresses are represented using natural numbers given by the set

N. A particular state of memory, or memory mapping, is represented by the function

m : N→ N which maps memory addresses to values; that is, m(a) evaluates to a value

to which address a ∈ N is mapped in the memory mapping m. The set of all possible

memory mappings is denoted Mem=P (N→ N), where P is a powerset operator.

Notation m¹a 7→ kº is used to denote a memory mapping that is identical to m

except for the value mapped to the address a. That is, given that m ∈ Mem is a

memory mapping, k ∈ N is a value and a ∈ N is a memory address:

m¹a 7→ kº(x) =

k, if a= x

m(x), otherwise

Every variable v from the set of variables Var has a representation in the memory.

This is indicated by the semantic function ρ : Var→ N that maps variables to memory

addresses. That is, ρ(v) (where v is a variable belonging to Var) evaluates to some

memory address a ∈ N. This representation is unique; that is, for each distinct pair of

32 PRELIMINARIES

eval(n, m) = N (n)
eval(v, m) = eval(m(ρ(v)))
eval(e1⊕ e2, m) = eval(e1, m)⊕ eval(e2, m)
eval(f(e), m) = f(eval(e, m))

Figure 3.2: Evaluation of Program Expressions

variables x , y belonging to Var their addresses are also distinct (i.e., ρ(x) 6= ρ(y)).

3.3 Operational Semantics

This section describes evaluation of expressions and the operational semantics of com-

mands of the abstract language.

3.3.1 Evaluation of Expressions

The evaluation of a program expression e ∈ Expr is given by the function eval : (Expr×
Mem) → N, where Expr is the set of all program expressions, Mem is the set of all

memory mappings and N is the set of all values. That is, the value of expression

e ∈ Expr in some memory mapping m ∈Mem is given by eval(e, m).

The rules for the evaluation of expressions of the abstract language are shown via

Figure 3.3. The evaluation of numerals n (represented by the set of numerals Num) is

given by the semantic functionN : Num→ Nwhich maps numerals to values. That is,

each numeral n ∈ Num evaluates to a value given by a natural number (i.e., N (n)).

Variables v ∈ Var are direct mappings from their addresses to values in a memory

mapping. That is, the value of a variable v in the memory mapping m is given by

function application m(ρ(v)) that returns the value that the variable v is mapped to

in the memory mapping m. Function calls f(e), which potentially result in side-effects,

evaluate to applications of the function f on the evaluated expression (i.e., eval(e, m)).

Similarly, evaluation of a binary expression e1⊕e2 is eval(e1, m)⊕eval(e2, m), i.e., the

application of a binary operator ⊕ on expressions e1 and e2 evaluated using eval.

3.3.2 Operational Semantics of Program Commands

The following discusses the operational semantics of the commands of the abstract

language.

Commands of the abstract language are given by the set of program commands

Comm. The operational semantics of the commands (see Figure 3.3) is defined as

a relation �: (Comm × Mem) → (Comm × Mem) on configurations 〈c : m〉, where

c ∈ Comm is a program command and m ∈Mem is a memory mapping.

There is no rule for skip because 〈skip: m〉 is a final configuration.

3.3 OPERATIONAL SEMANTICS 33

Def:
〈def(v): m〉� 〈skip: m〉

Asgn:
〈v := e: m〉� 〈skip: m¹ρ(v) 7→ eval(e, m)º〉

Seq1:
〈c1 : m〉� 〈c′1 : m′〉

〈c1 ; c2 : m〉� 〈c′1 ; c2 : m′〉
Seq2:

〈c1 : m〉� 〈skip: m′〉

〈c1 ; c2 : m〉� 〈c2 : m′〉

If1:
〈if e then c1 else c2 : m〉� 〈c1 : m〉

(where eval(e, m) 6= 0)

If2:
〈if e then c1 else c2 : m〉� 〈c2 : m〉

(where eval(e, m) = 0)

While:
〈while e do c: m〉� 〈if e then (c ; while e do c) else skip: m〉

Figure 3.3: Operational Semantics of Program Commands

Variable definitions (given by Rule Def) do not change memory mapping. Assign-

ments v := e, where v is a variable in Var and e is an expression in Expr, replaces

the value mapped to the address of a variable v (given by ρ(v)) with the result of

evaluation of e, i.e., eval(e, m) (Rule Asgn).

Rules Seq1 and Seq2 gives the operational semantics of the sequential composition

of statements c1 ; c2. Rule Seq1 shows the case where evaluation of c1 is incomplete

and leads to a new command c′1. Rule Seq2 shows the case where c1 evaluates to skip

(i.e., evaluation of c1 is completed in a single step and the next step can proceed with

evaluation of c2).

Rules If1 and If2 describe the semantics of conditionals if e then c1 else c2.

Rule If1 shows the case where the expression e in the condition of the if statement

evaluates to a non-zero value (that executes c1), and Rule If2 describes the case where

e is zero and command c2 is executed. Finally, Rule While shows the semantics for

loops that is derived from the rules for evaluation of conditional statements. This rule

unfolds a single level of the loop and evaluates it as a conditional. That is, based on

the value expression e evaluates to, this either executes command c in the body of the

loop and unfolds another level or executes skip that terminates the execution of the

loop.

4
Detection of Memory Leaks and

Locations of Leakage

One of the key questions this thesis aims to address is the detection of memory leaks

and locations of leakage using overheads acceptable for use with testing. This chapter

addresses this question by describing a monitoring analysis and presenting a tunable

approach to the detection of memory leaks that reports the locations in the source

code where the leakages occur.

To enable detection of memory leaks and leakage locations at runtime, each tracked

memory block is associated with two types of locations: allocation and usage. The al-

location locations are assigned when blocks are allocated on the heap. The locations

of usage are updated every time a variable containing references to the allocated

block is accessed by a running program. This reflects the reachability of the block

via program variables and is achieved by computing the dereference of a block’s ad-

dress space. Unreachable blocks that have not been de-allocated and the associated

locations of leakage are reported at the end of execution. This computation is tun-

able. Runtime overheads can be reduced, with the cost of reporting less debugging

information without losing precision.

The proposed technique is evaluated in an empirical study that uses a prototype

implementation for C programs, called Skiff, to analyse real UNIX utilities and pro-

grams selected from the SPEC CPU datasets. Experimentation demonstrates that, for

the purpose of memory leak detection the overheads of the proposed approach are

considerably lower those of the state-of-the-art memory profiler Valgrind [14]. Detec-

tion of leakage locations leads to higher overheads; however, this functionality is not

34

4.1 SYNTAX AND SEMANTICS 35

supported by Valgrind.

The details of the presented technique for the detection of memory leaks and

leakage locations, and the results of the empirical evaluation previously appeared in

a conference publication [143].
This chapter also demonstrates that the set of monitoring primitives used for mem-

ory leak detection is sufficient to enable runtime detection issues related to improper

use of memory. This is demonstrated via an extension for detecting illegal memory

modifications (i.e., modifications of memory locations outside of program allocation).

To detect illegal memory modifications, memory information tracked by the memory

leak detection technique is reused to check every operation that modifies memory.

The results of experimentation with this extension indicate that the overheads of this

approach to monitoring for illegal memory modifications also compare favourably

with those of Valgrind.

This chapter presents the following contributions:

• A tunable monitoring approach to memory leak detection that identifies loca-

tions of leakage.

• An extension for detecting illegal memory modifications.

• A proof-of-concept implementation of the proposed approach, called Skiff.

• An empirical evaluation that compares the results of Skiff to the results pro-

duced by a state-of-the-art memory profiler.

The rest of this chapter is organised as follows. Section 4.1 discusses the syntax

and semantics of an imperative language used to describe the technique for the de-

tection of memory leaks and locations of leakage at the abstract level. This extends

the standard model discussed in Chapter 3, with memory allocation and operations

on pointers. Section 4.2 presents a technical description of the proposed approach

and Section 4.3 shows how to apply it on C programs. Section 4.4 discusses the em-

pirical results of a prototype implementation. Section 4.5 describes the extension to

the memory leak detection technique that aims to support checks for illegal memory

modifications. Finally, Section 4.6 offers concluding remarks.

4.1 Syntax and Semantics

The author presents a monitoring approach for the detection of memory leaks and

leakage locations using an abstract imperative language (see Chapter 3) extended

with dynamic memory allocation and operations on pointers. These extensions al-

low for definitions and therefore detection of memory leaks. The following section

describes the syntax, memory and operational semantics of the extensions used for

memory leak detection.

36 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

n ::= Num
l ::= Lab
v ::= Var
e ::= n | l | v | e⊕ e | f(e) | deref(e)
c ::= skip | def(v) | c1 ; c2 | if e then c1 else c2 | while e do c |

::= 〈l : deref(v) := e〉 | 〈l : v := e〉 | 〈l : v := malloc(e)〉 | 〈l : free(e)〉
f ::= Ident¬ c | f1 ; f2
P ::= f ; e

Figure 4.1: Abstract Language Extended with Dynamic Memory Allocation

4.1.1 Syntax

Figure 4.1 presents an abstract imperative language extended with memory allocation

and operations for manipulating pointers.

Expression e consists of numerals n, variables v, program labels l, composite ex-

pressions e⊕ e (where ⊕ is a binary operator), function calls f(e) and dereferences

deref(e).
Command c consists of atomic commands (skip), variable definitions (def(v)),

conditionals (if e then c1 else c2), loops (while e do c), sequential composition of

commands (c1 ; c2), labelled assignments 〈l : v := e〉, and 〈l : deref(v) := e〉, where

label l (belonging to the set of program labels Lab) identifies the source location of

the command (e.g., a source code line number) and built-in memory allocation and

de-allocation commands 〈l : v := malloc(e)〉 and 〈l : free(e)〉, respectively.

Functions f consist of unique function names (Ident) followed by a command (c)

or a collection of definitions (f1 ; f2). Program P is a non-empty sequence of function

definitions followed by an expression.

4.1.2 Memory Semantics

This section discusses the semantics of the memory model that acts as an extension

to the standard model discussed in Section 3.2.

Let memory blocks span across multiple memory locations. A memory block is

denoted by a pair of over the set N that represents the start and end addresses of

the block. That is, a pair (a, b) ∈ N represents a memory block such that a is its start

address and b is its end address. LetB = N×N be the set of all blocks. Then, memory

allocation is a subset of such pairs. Formally, the set of all possible allocations A is

P (B) with a typical element denoted by α. A valid allocation is defined as follows.

Definition 1 (Valid allocation) α ∈A is a valid allocation if and only if

1. For every (a, b) ∈ α, a ≤ b.

2. For every (a, b) and (c, d) ∈ α, if (a, b) 6= (c, d), then there is no address i ∈ N,

such that a ≤ i ≤ b and c ≤ i ≤ d.

4.1 SYNTAX AND SEMANTICS 37

That is, in a valid memory allocation α ∈ A start addresses of allocated memory

blocks are not greater than their end addresses and the allocated blocks are disjoint.

Memory mapping m is the set of pairs N×N, where each pair (a, k) ∈ m, where

a, k ∈ N represents a memory address a mapped to a value k. The set of all possible

memory mappings is denoted by the set Mem=P (N×N). That is m is an element of

Mem. A valid memory mapping is defined as follows.

Definition 2 (Valid memory mapping) Given a valid memory allocation α ∈A , m ∈
Mem is a valid memory mapping, if and only if for every pair (a, k) ∈ m, where a ∈ N
is a memory address mapped to a value k ∈ N, there exists a memory block (c, d) ∈ α,

such that c ≤ a ≤ d.

In other words, in a valid memory mapping m ∈ Mem every address mapped to a

value lies within an allocated block.

Store usage by the program (denoted by σ) is a set of pairs Var×N, where pair

(v, k) ∈ σ, v ∈ Var, k ∈ N represents a variable v bound to a value k. Formally, the set

of all possible store usages Store is P (Var×N), where store usage σ in a particular

state is an element of Store.

Finally, the set Lab denotes the set of all program labels. An element l ∈ Lab

denotes either a defined source location (such as a line number) or an undefined one

(denoted ⊥). Labels are used to track usage of blocks during memory allocation and

assignments. The function loc :N×N → Lab denotes usage tracking in a particular

state. For example, a label associated with a block (a, b) ∈ α, where α is a valid

allocation, is retrieved using loc(a, b). The set of all such functions is denoted Lt (for

label tracking).

4.1.3 Operational Semantics

Evaluation of Expressions

The behaviour of program expressions (given by set Expr) is defined by the function

eval(e,α, m,σ), which evaluates to a value k ∈ N, where e ∈ Expr is an expression,

α is a memory allocation, m is a memory mapping and σ is a store usage by the

program. That is, eval(e,α, m,σ) = k denotes an expression e ∈ Expr that evaluates

to a value k ∈ N, where α ∈ A is a valid allocation, m ∈ Mem is a valid memory

mapping and σ ∈ Store is a store usage by program.

The semantics of the evaluation of expressions is given in Figure 4.2. The eval-

uation of numerals is given by the semantic function N : Num → N, which maps

numerals n ∈ Num to natural numbers. The evaluation of program labels (given by

the set Lab) is defined using the semantic function L : Lab→ N that maps program

labels to values from N. That is, each label l ∈ Lab evaluates to a natural number via

L (l). Evaluation of variables is given by a store usage of a program σ ∈ Store. A

38 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

eval(n,α, m,σ) = N (n)
eval(l,α, m,σ) = L (l)
eval(v,α, m,σ) = k ∈ N : ∃(v, k) ∈ σ

eval(deref(e),α, m,σ) =

(

k ∈ N if ∃(a, k) ∈m∧ a= eval(e,α, m,σ)
0 otherwise

eval(e1⊕ e2,α, m,σ) = eval(e1,α, m,σ)⊕ eval(e2,α, m,σ)
eval(f(e),α, m,σ) = f(eval(e,α, m,σ))

Figure 4.2: Evaluation of Expressions

variable v ∈ Var evaluates to the value k ∈ N to which it is mapped in the store usage

by program, i.e., there exists a pair (v, k) in store σ. Evaluation of dereference expres-

sions deref(e) (where e is a program expression) is given by the memory mapping m.

An expression deref(e) evaluates to some value k that is mapped to an address given

by the result of the evaluation of e in the memory mapping m. For the case where the

address given by e does not exist in the memory mapping m, deref(e) evaluates to a

zero value. The evaluation of binary expressions and function calls is standard and

has been discussed in Section 3.3.1.

Operational Semantics of Commands

The operational semantics of the commands of the abstract language (shown in Fig-

ure 4.3) is defined as a relation� on configurations: 〈c:α, m,σ, loc〉 and fault, where

c is a program command, α ∈A is a memory allocation, m ∈Mem is a memory map-

ping, σ ∈ Store is a store usage by the program and loc ∈ Lt is a function that identifies

labels associated with allocated memory blocks. fault is a special configuration that

indicates an abrupt program termination due to a runtime error.

Command 〈l : v := malloc(e)〉 (see Figure 4.3 for operational semantics, in Rule Mal-

loc) allocates a new memory block (e.g., a sequence of contiguous memory cells of

size specified by expression e) and binds the address of the first cell in the allocated

segment to a variable v. The allocated block (i.e., added to the memory allocation α)

is given by the pair of memory addresses (a, a+ eval(e,α, m,σ)), where a is a newly

generated address. The new block added to the memory allocation does not violate

the validity of the memory allocation (given in Definition 1). That is, the blocks in the

updated memory allocation α∗ remain disjoint and the end address of the new mem-

ory block is greater than its start address. Additionally, the rule for 〈l : v := malloc(e)〉
updates aliasing (indicated by the change to the store usage by program σ) such that

the value of the variable v in the store usage is updated to the start address of the

newly allocated block. That is, v is set to point to the new block in memory allocation

α. Finally, Rule Malloc associates the label l with the new block (shown via updated

label tracking function loc∗).

Command 〈l : free(e)〉 de-allocates a memory block, whose first address is given

by expression e. Figure 4.3 describes two rules for command 〈l : free(e)〉 – Free1

4.1 SYNTAX AND SEMANTICS 39

Malloc:
〈〈l : v := malloc(e)〉: α, m,σ, loc〉� 〈skip: α∗, m,σ∗, loc∗〉

where:

α∗ = α∪ {(a, a+ eval(e,α, m,σ))}, where a ∈ N is such that

∀x ∈ N : a≤ x ≤ a+ eval(e,α, m,σ),

@(c, d) ∈ α : c ≤ x ≤ d

σ∗ = σ \ {(w, k) | (w, k) ∈ σ∧w = v} ∪ {(v, a)}

loc∗(c, d) =

(

l if (c, d) = (a, a+ eval(e,α, m,σ))
loc(c, d) otherwise

Free1:
〈〈l : free(e)〉: α, m,σ, loc〉� 〈skip: α∗, m∗,σ, loc∗〉

(∃(a, b) ∈ α : a = eval(e,α, m,σ))

α∗ = α \ {(a, b)}
m∗ =m \ {(i, k) | a ≤ i ≤ b}

loc∗(c, d) =

(

loc(c, d) if (c, d) 6= (a, b)
⊥ otherwise

Free2:
〈〈l : free(e)〉: α, m,σ, loc〉� fault

(@(a, b) ∈ α : a = eval(e,α, m,σ))

VarAsgn:
〈〈l : v := e〉 :α, m,σ, loc〉� 〈skip :α, m,σ∗, loc∗〉

where:

σ∗ = σ \ {(w, k) | (w, k) ∈ σ∧w = v} ∪ {(v,eval(e,α, m,σ))}

loc∗(a, b) =

(

l if (a, b) ∈ R+v (α, m,σ, v)
loc(a, b) otherwise

MemAsgn1:
〈〈l : deref(v) = e〉 :α, m,σ, loc〉� 〈skip :α, m∗,σ, loc∗〉

(∃(a, k) ∈m : a = eval(v,α, m,σ))
where:

m∗ =m \ {(a, b) | (a, b) ∈m∧ a = eval(v,α, m,σ)}
∪ {eval(v,α, m,σ),eval(e,α, m,σ)}

loc∗(a, b) =

(

l if (a, b) ∈ R+v (α, m,σ, v)
loc(a, b) otherwise

MemAsgn2:
〈〈l : deref(v) = e〉 :α, m,σ, loc〉� fault

(@(a, k) ∈m : a = eval(v,α, m,σ))

Figure 4.3: Operational Semantics of Program Commands

40 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

Def:
〈def(v) :α, m,σ, loc〉� 〈skip :α, m,σ∪ {(v, 0)}, loc〉

Seq1:
〈c1 :α, m,σ, loc〉� 〈c′1 :α′, m′,σ′, loc′〉

〈c1 ; c2 :α, m,σ, loc〉� 〈c′1 ; c2 :α′, m′,σ′, loc′〉

Seq2:
〈c1 :α, m,σ, loc〉� 〈skip :α′, m′,σ′, loc′〉

〈c1 ; c2 :α, m,σ, loc〉� 〈c2 :α′, m′,σ′, loc′〉

If1:
〈if e then c1 else c2 :α, m,σ, loc〉� 〈c1 :α, m,σ, loc〉

(where eval(e,α, m,σ, loc) 6= 0)

If2:
〈if e then c1 else c2 :α, m,σ, loc〉� 〈c2 :α, m,σ, loc〉

(where eval(e,α, m,σ, loc) = 0)

While: 〈while e do c :α, m,σ, loc〉�
〈if e then (c ; while e do c) else skip :α, m,σ, loc〉

Figure 4.3: Operational Semantics of Commands (cont.)

and Free2. Rule Free1 shows the case where an expression e supplied as an input to

function free evaluates to the start address of one of the memory blocks in allocation

(indicated by the side condition in Rule Free1). For this case function call free(e) re-

moves the block whose start address is given by the result of evaluation of expression

e from memory allocation (indicated by the updated memory allocation α∗). Addi-

tionally, this removes all memory mappings belonging to the freed block from the

memory mapping m (indicated by the updated memory mapping m∗) and removes

the label associated with the freed block from label tracking (given by the updated

function loc∗). Rule Free2 describes the case where the input to the function free is

invalid, i.e., it does not correspond to the start address of an allocated memory block

(indicated by the side condition in Rule Free2). In this case the call to free leads to

abrupt program termination (indicated by the special configuration fault).

Rules VarAsgn, MemAsgn1 and MemAsgn2 in Figure 4.3 show semantics of as-

signments that update the memory and alias map. Variable assignment (given by

Rule VarAsgn) updates store usage by program σ. That is, a variable assignment

〈l : v := e〉 updates the value associated with the variable v to the value given by

the result of evaluation of expression e. Assignments via a dereference operator

〈l : deref(v) := e〉 (given by Rules MemAsgn1 and MemAsgn2) update memory map-

ping. Rule MemAsgn1 describes the case where the variable v points to a block from

memory allocation (i.e., there exists a memory mapping from the address given by

v to a value in the memory mapping m). MemAsgn1 associates a new value (given

by evaluation of e) with a memory address which value is given by the evaluation of

4.1 SYNTAX AND SEMANTICS 41

variable v. Rule MemAsgn2 gives semantics for the case where dereference deref(v) is

invalid (i.e., v points to an address that is not in the memory mapping) which leads to

an abrupt program termination via the special configuration fault. Additionally, both

types of assignments update label tracking (via the updated function loc∗).

Rule Def shows the operational semantics for variable definitions def(v). This

updates store usage by the program by associating the variable with a zero value.

The semantics of the remaining commands (i.e., conditionals if e then c1 else c2,

loops while e do c and sequential composition of statements c1 ; c2) is standard (see

Section 3.3).

Memory Leak

This section formally defines memory leaks. These definitions help in capturing mem-

ory leaks and leakage locations at the level of the abstract language.

A variable v points to a memory block (a, b) if the value v is bound to lies within

(a, b). This is formally defined as follows.

Definition 3 (Points to via variable) Given a valid memory allocation α ∈ A , valid

memory mapping m ∈ Mem, store usage by program σ ∈ Store, variable v ∈ Var

and allocated memory block (a, b) ∈ α, v is said to point to (a, b) if and only if

a ≤ eval(v,α, m,σ)≤ b.

An allocated memory block (a, b) points to another allocated block (c, d) if and

only if a memory address within (a, b) is mapped to an address that lies within (c, d).
The relation Rb in Definition 4 defines this formally.

Definition 4 (Points to via block) Given a valid memory allocation α ∈ A , valid

memory mapping m ∈ Mem, store usage by program σ ∈ Store, and allocated mem-

ory block (a, b) ∈ α, the binary relation:

Rb(α,m,σ, (a, b)) = {(c, d) | (c, d) ∈ α∧

(∃i ∈ N : a ≤ i ≤ b ∧ c ≤ eval(deref(i),α, m,σ)≤ d}

defines the set of memory blocks in α, block (a, b) points to.

Thus, in allocation α, memory mapping m and store usage σ, block (a, b) points

to block (c, d) if and only if (c, d) ∈ Rb(α, m,σ, (a, b)).

A given block bn is accessible from another block b0 if there exists a sequence of

blocks b1, · · · , bn−1 such that for all i between 0 and n− 1, bi points to bi+1. This is

formally defined by the relation R+b given in Definition 5.

42 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

Definition 5 (Accessibility) Given a valid memory allocation α ∈ A , valid memory

mapping m ∈ Mem, store usage by program σ ∈ Store and an allocated memory block

(a, b) ∈ α, binary relation:

R+b (α, m,σ, (a, b)) = {(e, f) |

(e, f) ∈ Rb(α, m,σ, (a, b))∨ (∃(c, d) ∈ Rb(α, m,σ, (a, b)) :

(e, f) ∈ R+b (α, m,σ, (c, d))}

defines the set of blocks accessible from (a, b).

Thus, for a memory allocation α, memory mapping m and store usage σ, a

memory block (c, d) ∈ α is accessible from block (a, b) ∈ α if and only if (c, d) ∈
R+b (α, m,σ, (a, b)).

A variable v ∈ Var is said to reference a memory block ((a, b) belonging to a valid

memory allocation α) if v points to (a, b), or there exists some block (c, d) ∈ α, such

that v points to (c, d) and (a, b) is accessible via (c, d). This is formally defined by the

relation R+v in Definition 6.

Definition 6 (Reference) Given a valid memory allocation α, block (a, b) ∈ α, valid

memory mapping m, store usage σ and variable v ∈ Var, binary relation

R+v (α, m,σ, v) = {(a, b) | (a, b) ∈ α : a ≤ eval(v,α, m,σ)≤ b ∨

(∃(c, d) ∈ α : c ≤ eval(v,α, m,σ)≤ d ∧ (a, b) ∈ R+b (α, m,σ, (c, d)))}

defines the set of blocks referenced by variable v.

Thus, given a memory allocation α ∈ A , memory mapping m ∈ Mem and store

usage by program σ ∈ Store, variable v ∈ Var references an allocated memory block

(a, b) ∈ α, if (a, b) ∈ R+v (α, m,σ, v).
Given the above definitions it is indicated that a block (a, b) is a memory leak

when it is not referenced by any of the program variables. Formally, the definition of

the memory leak is as follows.

Definition 7 (Memory leak) Given a valid memory allocation α ∈ A , valid memory

mapping m ∈ Mem, store usage σ ∈ Store, a memory block (a, b) ∈ α, is a memory

leak with respect to store usage by program σ, if there exists no pair (v, k) ∈ σ, v ∈ Var,

k ∈ N, such that (a, b) ∈ R+v (α, m,σ, v).

That is, block (a, b) is not referenced by program variables from the given store

usage.

In a particular state of computation (given by memory allocation α, memory map-

ping m, store usage σ, and label tracking function loc), the set of memory leaks is

given by the set of blocks not referenced by the program variables. Additionally, each

4.2 MEMORY LEAK DETECTION 43

leaking block is associated with a program label that identifies the source location of

the leakage via a label tracking function loc. Formally, the definition of memory leaks

associated with leakage locations in a particular state of computation is provided via

the following definition.

Definition 8 (Memory leaks) Given a valid memory allocation α ∈ A , valid memory

mapping m ∈Mem, store usage σ ∈ Store, and a label tracking function loc ∈ Lt, the set

of all memory leaks is given by the set:

Leaks(α, m,σ, loc) = {(a, b, l) | (a, b) ∈ α

∧ @(v, k) ∈ σ : (a, b) ∈ R+v (α, m,σ, v)∧ l = loc(a, b)}

where each triple (a, b, l), (a, b) ∈ α, l ∈ Lab identifies an allocated block (a, b) leaking

at program location l.

4.2 Memory Leak Detection

This section presents technical details of the memory leak detection technique. This

technique instruments the program P with statements that track memory allocation

and detect memory leaks at runtime. A run of the modified program P ′ reports any

memory leaks that occurred at the end of its execution.

4.2.1 Memory Tracking State

Data structure Tα is used to keep track of the memory state during the execution

of the program. A state of Tα describes the state of memory that has been tracked

during the execution of the transformed program P ′. Tα is given by a set of 4-tuples

N×N× Lab× Lab. The set of all memory tracking states is denoted Mt (for memory

tracking) and given by P (N× N× Lab× Lab), that is Tα is an element of Mt. Each

element (a, b, la, lu) ∈ Tα, a, b ∈ N, la, lu ∈ Lab represents a memory block (a, b) (where

a and b are its start and end addresses), that was allocated at a program location

given by label la. Label lu represents the last known location at which block (a, b) was

referenced via a variable. Labels la and lu are referred to as allocation and usage labels

respectively.

A memory tracking state Tα is valid if and only if Tα tracks only allocated memory

blocks and each allocated block is tracked exactly once. The notion of validity for a

memory tracking state is formalised using the following definition.

Definition 9 (Valid memory tracking state) Given a valid memory allocation α ∈A ,

a memory tracking state Tα ∈Mt is valid if and only if:

1. ∀(a, b, la, lu) ∈ Tα : (a, b) ∈ α.

44 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

2. ∀(a, b) ∈ α,∃! (c, d, la, lu) ∈ Tα : (c, d) = (a, b).

That is, each element of a valid memory tracking state Tα tracks an allocated

memory block (given by Clause 1 of Definition 9) and Tα has a unique map for each

allocated block (given by Clause 2 of Definition 9).

4.2.2 Semantics of Monitoring Commands

This section describes the semantics of commands used to instrument an original

program (P) with functionality that enables the detection of memory leaks and their

associated leakage locations. This instrumentation yields a modified program P ′. The

monitoring commands are presented as functions that change the memory tracking

state Tα as the modified program P ′ executes. The final memory tracking state (i.e.,

the state of Tα at the point of termination of P ′) describes the detected memory leaks

and captured locations of allocation and usage.

The following discusses monitoring commands and their operational semantics.

The operational semantics of monitoring commands given by the set Commm

(Figure 4.4) is defined as a relation �m on configurations: 〈cm : Tα, m,σ〉 where

cm ∈ Commm monitoring command, Tα ∈ Mt is a memory tracking state, m ∈ Mem

is a memory mapping and σ ∈ Store is a store usage by program.

record(Tα, a, b, l)

Function record (shown via Rule Record, Figure 4.4) tracks an allocated memory

block whose start and end addresses are given by arguments a and b and the source

location of the allocation is given by label l. Given a set Tα ∈ Mt and memory ad-

dress a, b ∈ N and a label l ∈ Lab a call to record adds an element (a, b, l, l) to the

memory tracking state Tα. Note, that the usage label (which describes the last known

reference to the block) is also set to l. This is because this command is designed to

record memory blocks allocated via a program command 〈l : v := malloc(e)〉 that

aliases the newly allocated memory block using variable v. Thus, the allocated block

is referenced by variable v (see Definition 6).

delete(Tα, a)

Function delete (shown via Rule Delete, Figure 4.4) represents a de-allocation of an

allocated memory block. Given a set Tα ∈ Mt and a memory address a ∈ N delete

removes an element from Tα, whose start address is a.

updateLabel(Tα, v, l, mode).

updateLabel (shown via Rules UpdateLabel1, UpdateLabel2 and UpdateLabel3 in Fig-

ure 4.4) is the main memory tracking function. The inputs to this function are a set

4.2 MEMORY LEAK DETECTION 45

Record:
〈record(Tα, a, b, l), Tα, m,σ〉�m 〈skip, Tα

′, m,σ〉

where Tα
′ = Tα ∪ {(a, b, l, l)}

Delete:
〈delete(Tα, a), Tα, m,σ〉�m 〈skip, Tα

′, m,σ〉

where Tα
′ = Tα \ {(c, d, la, lu) | (c, d, la, lu) ∈ Tα ∧ c = a}

UpdateLabel1:
〈updateLabel(Tα, v, l, mode), Tα, m,σ〉�m 〈skip, Tα

′, m,σ〉
(mode = 0)

where A= {(a, b) | (a, b) ∈ Tα}
R= R+v (A, m,σ, v)
Tα
′ = Tα \ {(a, b, l′a, l′u) | (a, b) ∈ R}

∪ {(a, b, la, l′) | (a, b) ∈ R∧ (a, b, la, lu) ∈ Tα ∧ l′ = l}

UpdateLabel2:
〈updateLabel(Tα, v, l, mode), Tα, m,σ〉�m 〈skip, Tα

′, m,σ〉
(mode > 0)

where A= {(a, b) | (a, b) ∈ Tα}
R= R+v (A, m,σ, v)
R′ = R \ {(c, d) | ∃(e, f) ∈ R : (c, d) ∈ R+b (A, m,σ, (e, f))∧ e− f >mode}
Tα
′ = Tα \ {(a, b, l′a, l′u) | (a, b) ∈ R′}

∪ {(a, b, la, l′) | (a, b) ∈ R′ ∧ (a, b, la, lu) ∈ Tα ∧ l′ = l}

UpdateLabel3:
〈updateLabel(Tα, v, l, mode), Tα, m,σ〉�m 〈skip, Tα, m,σ〉

(mode < 0)

Report:
〈report(Tα), Tα, m,σ〉�m 〈skip, Tα, m,σ〉

Figure 4.4: Operational Semantics of Monitoring Commands

46 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

Tα ∈Mt, variable v ∈ Var, a label l ∈ Lab and a value mode ∈ N. The task of updateLa-

bel is to update the usage labels of memory blocks that participated in assignments.

For example, given an assignment command 〈l : v := e〉, where v is a variable and e

is an expression, updateLabel sets usage labels of all memory blocks referenced by v

to l. The fourth argument, mode, is used to limit the set of blocks whose usage labels

are updated. For example, update only a subset of memory blocks referenced by v.

Informally, the execution of updateLabel is as follows. Given an input variable v,

updateLabel identifies the set of memory blocks (say R) referenced by v (i.e., mem-

ory blocks that can be accessed through v). R is populated by a recursive walk that

dereferences addresses of all memory blocks in R and identifies points-to relationships

via information stored in Tα that captures memory allocation. For example, given that

v points to a memory block (a, b), which in turn points to some block (c, d), update-

Label first dereferences the value of v, then identifies block (a, b) as being pointed

to by v and then adds it to R. Further, it dereferences each value in the range [a, b]
and adds (c, d) to R (since (a, b) points to (c, d)). It then searches through the range

[c, d] and finalises the search (since block (c, d) does not point to any other blocks).

Finally, updateLabel updates usage labels of elements of the memory tracking state

Tα that correspond to blocks in R. For example, given that R contains a memory block

(a, b), then some element (a, b, l′, l′′) of Tα that tracks (a, b) is updated to (a, b, l′, l)
(where l is an input label). Note that since updateLabel recomputes usage labels

using memory allocation tracked via Tα, dangling pointers potentially introduced via

assignments or memory de-allocation do not affect the precision of label tracking.

The fourth argument of updateLabel (mode) is used to control the amount of

dereferences updateLabel function performs. This aims to reduce overheads associ-

ated with dynamically computing the points-to information. Based on the value of

mode, three different modes of computation are identified. In the full mode (where

the value of mode is 0), each block is searched for pointers by dereferencing its con-

tents. In the partial mode (where the value of mode greater than 0), the derefer-

ence is performed only for blocks of a size less than that given by the value of mode.

For instance, in the example from the previous paragraph, updateLabel dereferences

ranges [a, b] and [c, d], which correspond to memory blocks (a, b) and (c, d), regard-

less of their size. This is the behaviour of the full mode. Let some value mode ∈ N
supplied as the fourth argument to updateLabel is greater than zero (i.e., partial

mode) and is such that (b − a) < mode and (d − c) > mode. That is, the size of

block (a, b) is less than the value of mode and the size of block (c, d) is greater. Then,

updateLabel only searches through the range [a, b] but never dereferences [c, d].
Finally, in the minimal mode (where the value mode is less than zero), no derefer-

encing is performed and updateLabel immediately returns. This mode reduces the

analysis to identifying the locations of allocations generated via record.

Formally, the result of an execution of updateLabel is shown via Rules UpdateLabel1,

4.2 MEMORY LEAK DETECTION 47

UpdateLabel2 and UpdateLabel3 in Figure 4.4. Rule UpdateLabel1 shows an execution

of updateLabel in the full mode (where the value of mode is equal to zero). Set A de-

notes memory allocation (tracked via Tα) and set R denotes the set of memory blocks

referenced via a variable v (see Definition 6). Rule UpdateLabel2 shows the execu-

tion of updateLabel in the partial mode. This reduces the set R (which contains all

blocks referenced by variable v) to the set R′ such that R′ contains no memory blocks

accessible through blocks which sizes are greater than the value of mode (computed

via relation R+b given by Definition 5). Finally, Rule UpdateLabel3 shows the semantics

of an execution of updateLabel in the minimal mode. In this case, the behaviour of

this function is equivalent to skip (as no label updates, and therefore changes to the

memory tracking state are performed).

report(Tα)

Monitoring function report(Tα) (shown via Rule Report, Figure 4.4) reports memory

leaks based on the state of Tα. For each element (a, b, la, lu) belonging to Tα, the func-

tion report reports a memory block (a, b) allocated at location la and last referenced

by a variable at location lu as a memory leak. This can be shown to be consistent

with Definition 8. Note, that the invocation of report does not modify the memory

tracking state.

4.2.3 Syntactic Transformations

This section discusses transformations (see Figure 4.5) that are used to generate a

modified program P ′, such that P ′ is equipped with statements that track memory

allocations and detect memory leaks and leakage locations.

Initialisation

The first step of the transformations instruments an input program P, with a data

structure Tα to keep track of the memory state and a global variable mode (see Fig-

ure 4.5, Rule Program). mode is a user-supplied value (indicated by the statement

〈l : mode := 〈INPUT〉〉, which allows to control over the behaviour of the updateLabel

function.

Memory Allocation

Tracking of memory allocations is enabled via Rules Malloc and Free. Each statement

that allocates memory (i.e., 〈l : v := malloc(e)〉) is followed by a call to record(Tα, v, v+
e, l), where v evaluates to the start address of the allocated block, expression v+e eval-

uates to its end address and l is a block’s allocation label. record captures addresses

of allocated blocks and locations of their allocation and records them to a memory

48 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

Def:
def(v) def(v)

Skip:
skip skip

If:
c1 c′1, c2 c′2

if e then c1 else c2 if e then c′1 else c′2

While:
c c′

while e do c while e do c′

Malloc: 〈l : v := malloc(e)〉 〈l : v := malloc(e)〉;
record(Tα, v, v + e, l);

Free: free(e) delete(Tα, e);
free(e);

VarAsgn: 〈l : v := e〉 〈l : v := e〉;
updateLabel(Tα, v, l, mode);

MemAsgn: 〈l : deref(v) := e〉 〈l : deref(v) := e〉;
updateLabel(Tα, v, l, mode);

Function:
c c′

f ¬ c f ¬ c′

Program:

f̃ f̃ ′

f ; e def(Tα);
def(mode);
〈l : mode := 〈INPUT〉〉 ;
f ′; e
report(Tα)

Figure 4.5: Syntactic Transformations

4.2 MEMORY LEAK DETECTION 49

tracking structure Tα immediately after the blocks are allocated via malloc. Rule Free

inserts calls to delete(Tα, e) before calls to free(e), which de-allocates memory. This

stops the tracking of memory blocks de-allocated by the program by deleting them

from the memory tracking structure Tα.

Label Tracking

Each assignment statement is appended with a call to the function updateLabel

(see Figure 4.5, Rules MemAsgn and VarAsgn), which tracks assignments of mem-

ory blocks referenced by variables. Calls to updateLabel update usage labels. At any

given state, a usage label associated with a block indicates a source location at which

that block was last known to be accessible via a variable.

In the present approach updateLabel is the main cause of the runtime overhead.

To reduce overheads, the behaviour of updateLabel is controlled externally via the

fourth argument of updateLabel – global variable mode. Thus the present approach

results in a tunable tool where the user can determine an acceptable level of over-

heads. The present approach supports three modes of execution: minimal, partial

and full. In the minimal (where the value of mode is less than zero), updateLabel

does not track usage labels. Thus information collected is limited to the existence of

memory leaks and the locations of their allocation. In the full mode of (where the

value of mode is 0), each block (regardless of its size) is searched for pointers. This

may result in larger overheads, however it allows for the identification of all usage

labels. In the partial mode (where the value of mode is greater than zero) only blocks

of size strictly less than mode value are traversed. This allows the overheads to be

reduced due to traversal of memory blocks of particular sizes only. For example, large

memory blocks that are considered data only and do not contain any pointers are

skipped.

Memory Leak Reporting

The final stage of the instrumentation injects a call to a reporting function before the

program exits, such that report(Tα) is the last executed statement (see Figure 4.5,

Rule Program). Thus, at the point of execution of a reporting function, no other

memory operations, such as memory allocation or de-allocation are performed.

4.2.4 Execution of Instrumented Programs

A run of an instrumented program P ′ that is not interrupted via a runtime error

(i.e., by reaching fault configuration) reports memory leaks at the end of execution.

A program run in which Tα is empty does not leak any memory. Otherwise, each

element of Tα (a, b, la, lu) is reported as the memory leak of size (b− a) allocated at

program location la and last known to be accessible through a variable at lu.

50 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

4.3 Application on C Programs

The technical details of the approach as presented above are at the abstract level

and need to be mapped to a concrete level to be able to apply them on a realistic

programming language. This section discusses the extensions required in order to

apply this approach on C programs.

4.3.1 Memory Blocks

Due to the semantics of the C programming language, where memory blocks allocated

on stack are automatically freed, additionally to start and end addresses of memory

blocks, their allocation types (i.e., stack, heap or global) are recorded. This enables

distinguishing between memory that de-allocated dynamically (i.e., calls to functions

that de-allocate memory, such as free) or statically (i.e., by a compiler).

4.3.2 Labels

Unlike those of the abstract language, C statements are not labelled. To generate the

required information, a C program is instrumented with a stack of program locations

that keeps track of entered functions and associated program locations. At any given

moment of execution, the top element of the stack holds the location of the executed

function, line and file, while other elements indicate locations of entered functions

that lead to it.

4.3.3 Memory Tracking

At the concrete level Tα (which keeps track of the memory state of the program) is

represented as look-up table, such that each element of Tα holds information about

an allocated memory block and records a block’s start and end addresses, allocation

type and allocation and usage labels. While a lookup table can be implemented using

various abstract data types, its choice should be dictated by the search operation, as

it is executed most frequently (by updateLabel). Thus, it is imperative to be able to

search quickly through the ranges of integers that represent start and end addresses of

memory blocks, in order to identify whether a particular address (e.g., retrieved using

the & operator) belongs to a memory block stored in Tα. This is because C supports

interior pointers that do not necessarily point to the start address of a memory block.

The present approach implements Tα as a red-black binary tree that uses memory

addresses as keys (as memory addresses are unique integers). Due to the structure of

tracked memory blocks, represented as pairs of integers, where the first element of a

pair is always greater than the second, it is possible to search for an element using a

particular address by testing keys against address ranges stored in nodes, proceeding

to the left if the address is less than the stored start address, or to the right if it

4.4 EMPIRICAL EVALUATION 51

is less than the end address. Such a search strategy guarantees that an element of

Tα is found using at most log2(n) operations. An additional argument for choosing

red-black trees over, for example, AVL trees or sophisticated hash tables, is that red-

black trees incur sizeof(void*) memory overhead per node, while other data types

require more space. The rest of the operations (e.g., insert or delete) are standard.

4.3.4 Memory Allocation and De-allocation

To be able to track all allocated heap memory, alternative definitions of memory allo-

cation and de-allocation functions are provided. In addition to their usual function-

ality such functions insert or remove elements of the memory tracking structure Tα.

The present implementation relies on the feature of the GNU C library, where malloc

and similar functions are implemented as weak aliases. Thus, the original definitions

of functions such as malloc are replaced with user-defined ones. Such an approach

allows all heap memory to be recorded, including blocks allocated by library func-

tions for which no source code is available, such as strdup. Note that while this is

adequate for experimentation, such an approach may fail to record heap memory in

all cases (e.g., if memory is allocated using kernel-level functions, such as mmap2).

In production systems, a more sophisticated approach, which modifies allocation and

de-allocation functions at the kernel level, can be used.

Stack memory blocks are recorded to Tα explicitly, via inserting calls to record

immediately after definitions of local variables. The sizes of stack blocks are deter-

mined via the sizeof operator. Global variables are detected statically and the call to

record is inserted before each use. Stack memory blocks are removed from Tα when

the scopes of their definitions are reached.

4.3.5 Memory Leak Reporting

The memory leak reporting function report is scheduled for execution via a call to

atexit, which executes it before a program’s termination. report iterates over the

elements of Tα and reports heap memory in Tα (i.e., blocks that have not been de-

allocated). Note that report is executed before the actual end of a program’s scope,

which makes it possible to differentiate between still reachable blocks (e.g. through

global variables) and lost memory.

4.4 Empirical Evaluation

The present approach has been implemented in a prototype tool for C programs,

called Skiff. Skiff is built on top of the Clang [144] compiler architecture (LLVM

project [77]). This section reports the results of experimentation with the prototype

implementation of the present approach to memory leak detection.

52 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

4.4.1 Objectives

This evaluation focuses on the value of extended memory leak reports using the full

mode of Skiff, and on performance overheads, rather than on the number of dis-

covered defects. This is because both techniques are sound and do not report false

alarms. The reliability of Valgrind has been established by various experiments over

the years. The output from Skiff has been checked to be consistent to that of Valgrind

manually.

To evaluate the efficiency of the present approach a number of experiments were

performed. These experiments involved instrumentation and dynamic analysis of

well-known UNIX utilities, such as find, grep, gzip, diff, patch, rcs, locate

and rm, and computationally intensive programs selected from the SPEC CPU [40]
datasets. The main aim during experimentation was to determine the amount of

runtime and memory overhead that the present approach incurs and how it com-

pares to the existing techniques. This section also reports the results produced by

Valgrind [10] (a state-of-the-art system for debugging and profiling programs) on

the same test subjects and compares them to the results collected using the present

approach.

4.4.2 Experiment Setup

This experimentation involved series of runs of both instrumented and original pro-

grams, and calculated overheads relative to the execution time of the original pro-

grams. To account for variance due to external factors, such as the test automation

process or system I/O, the overheads are calculated using the mean over 100 runs of

the modified and the original executables. A single measurement accounts for a run

of a test suite (for UNIX utilities) of a single run of a program (for programs selected

from SPEC).

During the experimentation with UNIX utilities the execution of test suites asso-

ciated with the programs was monitored and the overheads were calculated per test

suite execution. Runs of programs selected from SPEC CPU sets were performed using

the test data set provided by SPEC.

The runs of Valgrind for overhead calculation were performed in a similar fashion

and using the same input data.

The platform for all results reported here was an Intel Core i5-2400 3.1 GHz ma-

chine with 4GB of RAM, running Gentoo Linux.

The following section reports the results of the experimentation. The section first

outlines differences in reporting and points out the benefits of locating sources of

memory leaks. It then compares and discuss performance overheads incurred by

different modes of Skiff and Valgrind.

4.4 EMPIRICAL EVALUATION 53

==20077== 307,200 bytes in 1 blocks are definitely lost
==20077== at 0x402B7B8: malloc (vg_replace_malloc.c:270)
==20077== by 0x804A83D: loadimage (scanner.c:715)
==20077== by 0x80489C8: main (scanner.c:1153)

Figure 4.6: art: Valgrind Report

4.4.3 Memory Leak Reports

Figures 4.6 and 4.7 show memory leak reports generated by Valgrind and Skiff in the

full mode. This is related to the memory leak in the art program from the SPEC

CPU2000 dataset. It can be seen that both tools report the same allocation site of the

leaked block using stack traces. Note Valgrind’s stack traces include function calls that

occur in libraries, while Skiff’s traces are limited to instrumented source code. The

full mode of Skiff also reports the source of leaked memory shown in Figure 4.7 as

Leak source. Skiff uses the available source code information to report details of the

leaks, including names of variables (e.g., superbuffer in Figure 4.7) that referenced

the leaked memory block prior to leakage. This removes ambiguity, as a single line

of code in C may contain multiple statements. This feature may be very helpful, as C

programmers take advantage of macro definitions, which often expand into complex

statements spanning across one line. Further, a single location may not be sufficient

to fix a defect, as the same memory block may be accessible via different variables

at runtime. Skiff addresses this issue by producing a trace of usage locations prior

to leakage. This feature is illustrated using the Skiff report for the CPU2000 twolf

program1 (see Figure 4.8), where in addition to the source of leakage Skiff reports

variables that referenced a memory block prior to leakage. This is shown as part of

the Access stack) in Figure 4.8. This information can aid in debugging as it means

that developers do not need to trace the memory blocks manually. The partial mode

of Skiff is aimed at reducing overheads, while still tracking usage locations. Thus, for

carefully chosen sizes of memory blocks omitted from traversal, reports of partial and

full modes match.

Figures 4.9 and 4.10 demonstrate the differences in reporting schemes between

Valgrind and the minimal mode of Skiff. These reports uses a memory leak found in

GNU locate (Findutils 4.4.2). Note, that apart from the differences in formatting, the

information produced by both tools is equivalent. However, as shown in Section 4.4.4

Skiff detects this leak using considerably less memory and runtime overhead than

Valgrind.

4.4.4 Performance Overheads

This section discusses the performance overheads of Skiff and Valgrind.

Figures 4.11 and 4.12 show the differences in memory and runtime overheads pro-

duced by a Valgrind run and a Skiff run in the minimal mode. The reports produced

1This memory leak is also used by Clause and Orso [12] to illustrate their approach.

54 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

* 307200 bytes
Allocation site: scanner.c:715

[59]: loadimage [scanner.c:1153]
[1]: main [scanner.c:1049]

**
Leak source: scanner.c:715 [last known alias: ’superbuffer’]

[59]: loadimage [scanner.c:1153]
[1]: main [scanner.c:1049]

Figure 4.7: art: Skiff Report (Full mode)

Allocation site: okmalloc.c:28
[3343]: safe_malloc [hash.c:50]
[3315]: addhash [parser.c:210]
[132]: parser [readcell.c:34]
[131]: readcell [main.c:71]
[1]: main [main.c:22]

**
Leak source: hash.c:25 [last known alias: ’zapptr’]

[10069]: delHtab [readnets.c:87]
[10039]: readnets [main.c:79]
[1]: main [main.c:22]

**
Access stack:

Variable: ’zapptr’ at hash.c:22
Variable: ’hptr’ at hash.c:20
Variable: ’hashtab’ at hash.c:47
Variable: ’hptr’ at hash.c:51

Figure 4.8: twolf: Skiff Report (Full mode)

==11936== 128 bytes in 1 blocks are definitely lost
==11936== at 0x402B7B8: malloc (vg_replace_malloc.c:270)
==11936== by 0x80515F9: xmalloc (xmalloc.c:49)
==11936== by 0x804AAE0: search_one_database (locate.c:1106)
==11936== by 0x804BDC3: dolocate (locate.c:1884)
==11936== by 0x804BF43: main (locate.c:1940)

Figure 4.9: locate: Valgrind Report

* 128 bytes
Allocation site: xmalloc.c:49

[35]: xmalloc [locate.c:1106]
[33]: search_one_database [locate.c:1884]
[8]: dolocate [locate.c:1940]

**
Leak source: locate.c:879 [last known alias: ’procdata’]

[349]: visit_count [locate.c:375]
[191]: visit [locate.c:385]
[33]: search_one_database [locate.c:1884]
[8]: dolocate [locate.c:1940]

Figure 4.10: locate: Skiff Report (Minimal mode)

4.4 EMPIRICAL EVALUATION 55

 0

 5

 10

 15

 20

 25

 30

 35

m
c
f

l
b
m

s
j
e
n
g

m
c
f

g
a
p

p
a
r
s
e
r

m
e
s
a

h
2
6
4
r
e
f

g
o
b
m
k

b
z
i
p
2

b
z
i
p
2

s
p
h
i
n
x
3

v
o
r
t
e
x

a
m
m
p

e
q
u
a
k
e

g
z
i
p

m
i
l
c

f
i
n
d

l
o
c
a
t
e

d
i
f
f

c
r
a
f
t
y

a
r
t

g
r
e
p

v
p
r

g
z
i
p

r
c
s

t
w
o
l
f

l
i
b
q
u
a
n
t
u
m

r
m

p
a
t
c
h

s
p
e
c
r
a
n
d
.
8

s
p
e
c
r
a
n
d
.
9

h
m
m
e
r

M
e
m
o
r
y

O
v
e
r
h
e
a
d

R
a
t
i
o

Valgrind Minimal

Figure 4.11: Valgrind vs. Minimal Mode. Memory Overhead

by both tools are similar and include detected memory leaks and their allocation sites

as stack traces. Additionally, both tools report reachability of leaked memory blocks.

The Y-axis measures overhead ratio (compared to the runtime or memory consump-

tion of unmodified programs) and each point on the X-axis stands for a series of runs

of a program.

It can be seen that the runtime and memory overheads produced by Skiff are

lower than those of Valgrind. The memory overhead produced by Skiff averages to

1.15 times compared to unobserved execution with the highest spike of approximately

3 times in equake. Memory overheads of Valgrind range from 1.6 to 34 times with

the average of approximately 15 times over both sets of test subjects. The runtime

overheads exhibited by both tools compare similarly. The overheads produced by Skiff

are on average approximately 1.8 times compared to unobserved execution, while the

average runtime overhead of Valgrind is 30.8 times, ranging from 6.8 to 116 times.

Note that high spikes (e.g., 116 times in grep or 70 times in patch) can be partially

attributed to a high number of invocations of programs during test suite execution

(e.g., over 1250 runs in grep test suite), where each invocation causes Valgrind to dy-

namically instrument a program with structures used in memory monitoring. This is

different from the present approach that uses static instrumentation. Another reason

for Skiff to compare favourably to Valgrind is that it tracks memory at the block level

and store only the delta of information, including block addresses, sizes, locations

etc., whereas Valgrind monitors each byte individually. That is, Skiff’s overheads are

proportional to the number of memory blocks allocated by a program, whereas Val-

grind’s are proportional to the overall amount of memory allocated by the program.

56 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

 0

 20

 40

 60

 80

 100

 120

m
c
f

r
c
s

b
z
i
p
2

r
m

l
b
m

g
z
i
p

a
r
t

p
a
r
s
e
r

b
z
i
p
2

m
c
f

v
p
r

h
m
m
e
r

h
2
6
4
r
e
f

s
j
e
n
g

s
p
h
i
n
x
3

g
o
b
m
k

a
m
m
p

e
q
u
a
k
e

l
i
b
q
u
a
n
t
u
m

m
e
s
a

c
r
a
f
t
y

t
w
o
l
f

g
a
p

g
z
i
p

m
i
l
c

v
o
r
t
e
x

d
i
f
f

l
o
c
a
t
e

s
p
e
c
r
a
n
d
.
9

s
p
e
c
r
a
n
d
.
8

f
i
n
d

p
a
t
c
h

g
r
e
p

R
u
n
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

Valgrind Minimal

Figure 4.12: Valgrind vs. Minimal Mode. Runtime Overhead

Note that while results indicate that on average block-level tracking yields low over-

heads, the overheads are likely to increase if many small blocks are allocated. This is

demonstrated via the overheads of equake (3 and 9 times for memory and runtime

respectively). Finally, it should be noted that the minimal mode of Skiff monitors

only allocation and de-allocation operations, which is not computationally expensive.

Of course, this does not produce useful debugging information.

The runtime overheads in the full mode varies and increases based on the sizes

of memory blocks in a program run. This is because Skiff’s main runtime overhead

is due to computation; that is iteration through address ranges of memory blocks

and identifying pointers in assignments. Thus, the main factor that influencing Skiff’s

overheads is the size of the memory blocks traversed and the frequency of their use

(i.e., the number of statements that trigger updateLabel). Consequently, larger over-

heads for programs selected from SPEC datasets can be expected. This is because

these programs are crafted to routinely perform computationally intensive tasks (such

as archiving, compilation) on large data chunks. The results of experimentation with

the full mode of Skiff are now discussed.

Figure 4.13 compares the runtime overheads of Skiff ran in the full and mini-

mal modes with those of Valgrind on the set of UNIX utilities. It can be seen that in

the full mode, Skiff’s overheads increase, ranging from 1.3 times compared to unob-

served execution (in gzip) to almost 11 times in the rcs test suite. These overheads,

however, are still lower than the overheads produced by Valgrind. Notably, the mem-

ory overhead does not increase significantly, reaching a maximum of 1.21 times in

UNIX programs. The increased overheads account for extra stack memory used in

recursive invocations of updateLabel. Figure 4.14 illustrates the increase in memory

4.4 EMPIRICAL EVALUATION 57

 0

 20

 40

 60

 80

 100

 120

rcs rm gzip diff locate find patch grep

R
u
n
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

Valgrind Minimal Full

Figure 4.13: UNIX Programs Runtime Overhead

overheads in the set of UNIX utilities between the minimal and full modes (over-

heads incurred by Valgrind are not shown). From Figure 4.11 it can be seen that the

overheads of Valgrind are approximately 15-30 times. Including the Valgrind’s results

in one graph would obscure the differences in performance between the two modes.

It is important to note that Skiff in the full mode does not always outperform

Valgrind – especially for programs chosen from the SPEC CPU datasets. In some

cases (e.g., ammp, gzip) Skiff’s runtime overheads are extremely high (over 1000

times). The main factor that contributes to such overheads is the size of the allocated

memory blocks. The larger the size of the memory allocated, the larger the overheads.

This behaviour is confirmed via experimentation in partial mode. When traversal of

memory blocks is limited by the size of the largest data structure (assuming that

larger blocks are data only blocks and do not contain any pointers) the overheads are

reduced (see Figure 4.15). For the sake of clarity Figure 4.15 does not show the data

associated with Valgrind. One can compare the performances of Valgrind and Skiff in

the full mode by combining the data from Figures 4.12 and 4.15. For example, the

overheads for the lbm program are reduced from 566 to only 5 times compared to

unobserved execution. The excessive overheads of these programs, which continue to

incur large overheads in the full mode, is due to the structure of some SPEC programs,

where a large amount of memory is allocated statically, regardless of the input size.

Such an allocation pattern is rarely used in production software.

Relations between the increased runtime overheads and the amount of memory

allocated by programs are illustrated in Figures 4.16, 4.17 and 4.18. In the set of

UNIX utilities (see Figure 4.16) the main purpose of the associated test suites is to

evaluate functional correctness of programs; thus the memory consumption does not

58 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

find locate diff grep gzip rcs rm patch

M
e
m
o
r
y

O
v
e
r
h
e
a
d

R
a
t
i
o

Minimal Full

Figure 4.14: UNIX Programs Memory Overhead

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

m
c
f

b
z
i
p
2

l
b
m

g
z
i
p

a
r
t

p
a
r
s
e
r

b
z
i
p
2

m
c
f

v
p
r

h
m
m
e
r

h
2
6
4
r
e
f

s
j
e
n
g

s
p
h
i
n
x
3

g
o
b
m
k

a
m
m
p

e
q
u
a
k
e

l
i
b
q
u
a
n
t
u
m

m
e
s
a

c
r
a
f
t
y

t
w
o
l
f

g
a
p

m
i
l
c

v
o
r
t
e
x

s
p
e
c
r
a
n
d
.
9

s
p
e
c
r
a
n
d
.
8

R
u
n
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

Partial Full

Figure 4.15: SPEC CPU Runtime Overhead

4.4 EMPIRICAL EVALUATION 59

 0

 20

 40

 60

 80

 100

 120

 2 2.5 3 3.5 4 4.5

R
u
n
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

Allocated Memory (MB)

Valgrind Minimal Full

Figure 4.16: UNIX Programs Overhead Relative to Memory Usage

 0

 10

 20

 30

 40

 50

 60

 70

0-5 6-30 >30

R
u
n
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

Allocated Memory (MB)

Valgrind Minimal

Figure 4.17: SPEC CPU Overhead Relative to Memory Usage

60 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

0-5 6-30 >30

R
u
n
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

Allocated Memory (MB)

Part Full

Figure 4.18: SPEC CPU Overhead Relative to Memory Usage

exceed 4.5 megabytes. Even in the full mode, Skiff outperforms Valgrind. In the

programs selected from the SPEC CPU datasets (see Figures 4.17 and 4.18) memory

consumption is much higher. It can be seen that for programs with low memory

consumption (which is typical during the development process), the performance of

Skiff prevails over that of Valgrind, but degrades as memory consumption grows. The

presentation of these data is split because of the differences in the runtime overhead

ratios. As shown in Figure 4.17, Skiff in the minimal mode always outperforms

Valgrind. Figure 4.18 compares the overheads incurred by Skiff in the partial and full

modes. Note that memory size alone does not affect the overheads. If each allocated

block contains pointers, these pointers need to be tracked, adding to overheads, while

if the allocated blocks contain only data, they need not be tracked, reducing the

overheads. This is shown by the variance in the overheads; importantly the overheads

are not consistently high.

It is noted that abnormal cases with extreme overhead in SPEC CPU should be at-

tributed to the design pattern of SPEC programs which are aimed at performance eval-

uation. The memory consumption, however, affect only the full and partial modes.

In the minimal mode the runtime overheads incurred by Skiff are negligible (i.e., the

ratio of Skiff instrumentation to uninstrumented code is close to 1).

The present approach implemented in Skiff is mainly useful in the domain of

functional testing, where program correctness is established through runs with small

inputs. In this scenario, in addition to memory leak detection, the present technique

can provide useful information that facilitates debugging. Note that the experimen-

tation with UNIX utilities suggests that with small inputs the overheads of this ap-

proach are lower than those of conventional monitoring using Valgrind. The author’s

4.5 DETECTING ILLEGAL MEMORY MODIFICATIONS 61

approach can also be used in performance testing, where program runs are costly in

both memory consumption and runtime. Experimentation suggests that for memory

leak detection the present technique uses considerably less resources than DBI, while

still producing the same level of output, especially in the minimal or partial modes.

4.4.5 Threats to Validity

This section discusses factors that may have affected the validity of the results of

experimentation.

The first factor is the choice of programs and the input data used in experimen-

tation. Even though, experimentation with UNIX utilities used realistic programs and

representative inputs (i.e., test suites that are associated with the utilities), which

should account for exercising most of the paths, there is no evidence that applying

the present technique on different programs or using different input values will yield

similar results. Similarly, during the experiment with programs selected from SPEC

datasets, the input values provided may not be representative for the development

process. This is because SPEC concentrates on performance evaluation, rather than

on exploring various behaviours.

The second issue refers to the comparison with Valgrind. Valgrind is a memory

debugger whose core functionality goes far beyond memory leak detection. Conse-

quently, some overheads produced by Valgrind may be attributed to performing tasks

that are not relevant to memory leak detection. However, Skiff is only a proof-of-

concept implementation, while Valgrind is more robust. Thus, a better implementa-

tion of the present technique may improve the results.

Finally, as the overheads of monitored execution depend on the size of a pointer,

the results may be affected by the architecture of the operating system. For example

in a 64-bit system, where size of a pointer is twice that the size of a pointer on a 32-bit

machine, slightly higher overheads may be expected.

4.5 Detecting Illegal Memory Modifications

The previous sections instantiated a technique for monitoring memory related defects

and described an approach to the dynamic detection of memory leaks and leakage

locations. This approach tracks elements of the memory state of a running program,

including memory allocations and associated program locations (i.e., allocation and

usage labels). The nature of the tracked information (e.g., boundaries of allocated

blocks) suggests that this technique can be adapted for the detection of different

memory-related related defects, such as illegal memory dereferencing or free opera-

tions. For example, to detect illegal free errors, it is sufficient to monitor invocations

of memory de-allocation function free and check whether its inputs correspond to the

start addresses of allocated memory blocks. Similarly, to detect illegal dereferences

62 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

errors, one can check whether dereferenced addresses lie within the boundaries of

blocks belonging to the memory allocation.

While such extensions are straightforward, it is not clear whether the performance

overheads of such an approach will continue to compare favourably to the results

of state-of-the-art techniques, such as Valgrind. This section presents an extension

aimed at detecting illegal memory modifications (i.e., modifications of memory loca-

tions outside of the memory allocation). It first describes the details of this extension

at the level of the abstract imperative language (see Figure 4.1). This section then dis-

cusses how to adapt this extension for monitoring of C programs. Finally, the section

presents the results of preliminary evaluation using computationally expensive pro-

grams selected from the SPEC CPU datasets, comparing the results of the prototype

implementation to the results of Valgrind (which implements similar checks). This

comparison shows that the present approach results in lower runtime overheads than

those of Valgrind.

4.5.1 Extension at the Abstract Level

This section describe the extension for detecting illegal memory modifications at the

level of the abstract imperative language (see Figure 4.1). Its syntax, operational

semantics and memory model are discussed in Section 4.1.

Memory Semantics

The Operational semantics of illegal memory modifications is given via Rule VarAsgn2

(see Figure 4.3), leading to a runtime error via the special configuration fault. That is,

an illegal modification of memory occurs via a memory assignment 〈l : deref(v) := e〉,
if the dereferenced address (given by the value variable v evaluates to) does not

belong to the memory allocation α.

Monitoring Commands

In order to detect memory modifications at the level of the abstract language the set of

monitoring commands Commm is extended with the command checkDereference(Tα, a, l)
to detect and report locations of such errors. Given a memory tracking state Tα ∈Mt,

address a ∈ N and a label l ∈ Lab, checkDereference performs a lookup in Tα and

returns 1 if the address a lies within one of the memory blocks tracked by Tα (which

indicates that the dereference is valid), or 0 otherwise. That is,

checkDereference(Tα, a, l) =

1 if ∃(c, d, la, lu) ∈ Tα : c ≤ a ≤ d

0 otherwise

4.5 DETECTING ILLEGAL MEMORY MODIFICATIONS 63

CheckDereference:
〈checkDereference(Tα, a, l), Tα, m,σ〉�m 〈skip, Tα

′, m,σ〉

Figure 4.19: Operational Semantics of a checkDereference

VarAsgn:
〈l : v := e〉 〈l : v := e〉

MemAsgn: 〈l : deref(v) := e〉 checkDereference(Tα, v, loc);
〈l : deref(v) := e〉;

Figure 4.20: Syntactic Transformations for Illegal Dereference Detection

Additionally, if a call to checkDereference(Tα, a, l) returns 0 (i.e., an illegal memory

modification error is detected), this function reports the location of the occurred error

using label l.

Formally, the operational semantics of checkDereference is shown in Figure 4.19.

Since this function only detects and reports invalid memory modifications, it does

not result in a change in the memory tracking state, memory allocation or memory

mapping.

Syntactic Transformations

The syntactic transformations that enable checking for illegal memory modifications

are shown in Figure 4.20. The Rule MemAsgn is used to monitor memory assign-

ments for illegal memory modifications using the checkDereference function. Every

command 〈l : deref(v) := e〉 that assigns a value (given by the result of evaluation of

expression e) to an address in the memory (given by the value bound to variable v)

is preceded by the call to checkDereference. This reports an error at location l if the

address given by the value bound to the variable v does not belong to the memory al-

location and therefore leads to an illegal memory modification. Note that since illegal

memory modifications occur only through memory assignments, no transformations

are performed for variable assignments (see Rule VarAsgn in Figure 4.20).

The rest of the transformations required to capture illegal memory modifications

are shown in Figure 4.5. Note that memory allocation tracking relies on calls insert

and delete, which update the memory tracking state Tα as the modified program

executes.

4.5.2 Application on C Programs

This section discusses issues related to capturing illegal memory modifications at the

level of the C programming language.

64 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

At the concrete level of C the monitoring function checkDereference is used to

check program dereferences via *, -> and . operators and array subscripts. This

captures all illegal memory modifications (as a memory needs to be dereferenced

before it is written to) and additionally identifies whether accesses to memory made

by a program run are valid. That is, before an address a is dereferenced by a run of

a program, it is checked that a exists in the memory allocation. If a is determined

to lie outside of any of the allocated blocks, an illegal dereference is reported. It is

noted, that this concrete level of monitoring, does not differentiate between memory

accesses or modifications and reports errors as illegal dereferences.

The implementation of checkDereference straightforward. This function receives

a memory address a as input, checks whether a belongs to the memory allocation

by performing a lookup in the global memory tracking structure implemented as a

red-black binary tree and reports an illegal dereference error at a currently executed

source location if a does not belong to a program’s memory allocation.

Since illegal memory modifications can occur in expressions in C (e.g. *p++, where

p is a variable), dereference checking is enabled by rewriting dereference expressions

to statement expressions that check the validity of dereferences before they occur. For

example, a dereference via operator * (say *p, where p is a variable), is rewritten to

expression *({checkDereference(p); p;}). This first evaluates the validity of the

dereference of the pointer variable p and then evaluates to the value of the memory

given by the address p points to. Array subscripts are rewritten similarly. For example,

expression a[i] (where a is an array, say char a[10], and i is an integer, say int

i), rewrites to *({checkDereference(a+i); (a+i);}). This is because in C arrays

and pointers are handled similarly. Dereferences via . and -> operators on structs

and unions are checked using the offsetof operator, which evaluates to the byte

offset of a given member within a struct or union. That is, structs and unions can be

handled similarly to arrays, where an index is given by the application of offsetof.

For example, expression a->b, where a is a struct that has a member b, is rewritten

to a->({checkDereference(a + offsetof(a,b)); b;}).

The remaining elements of the technique at the concrete level of C are described

in Section 4.3.

4.5.3 Experimentation Results

This section presents the results of experimentation with the prototype implementa-

tion of the technique for detecting illegal memory modifications and accesses.

To evaluate the overheads the present approach memory modifications and ac-

cesses were checked in the runs of computationally intensive programs selected from

SPEC CPU datasets. Programs selected from SPEC, inputs and experimental setup is

consistent with the experimentation with memory leaks described in Section 4.4.

The main aim of the experimentation was to determine the amount of runtime

4.5 DETECTING ILLEGAL MEMORY MODIFICATIONS 65

 0

 10

 20

 30

 40

 50

 60

 70

g
z
i
p

v
p
r

m
e
s
a

a
r
t

m
c
f

e
q
u
a
k
e

c
r
a
f
t
y

a
m
m
p

g
a
p

b
z
i
p
2

t
w
o
l
f

b
z
i
p
2

m
c
f

g
o
b
m
k

h
m
m
e
r

s
j
e
n
g

l
i
b
q
u
a
n
t
u
m

h
2
6
4
r
e
f

l
b
m

s
p
h
i
n
x
3

s
p
e
c
r
a
n
d
.
8

s
p
e
c
r
a
n
d
.
9

R
u
n
t
i
m
e

O
v
e
r
h
e
a
d

R
a
t
i
o

Valgrind Skiff

Figure 4.21: Valgrind vs. Skiff. Runtime Overhead

overhead this extension would produce and how it compares Valgrind that imple-

ments similar checks. In other words, the goal is identify whether the present ap-

proach applied to a different problem continues to result in lower overheads than

those of Valgrind. Memory overheads are not investigated; The memory overheads

of Valgrind were discussed in Section 4.4. Memory overheads of the prototype are

similar to the overheads for memory leak detection. This is because same information

as for memory leak detection in the minimal mode is tracked.

This section report the results of Skiff extended to detect illegal memory modifica-

tions and accesses using computationally intensive programs from the SPEC datasets,

and compares them to those of Valgrind using the same set of test subjects. It is noted

that the results presented in this section are preliminary and have not appeared in

published work.

The results of the experimentation are shown in Figure 4.21. The results indicate

that the present approach applied to a different problem continues to result in con-

siderably lower runtime overheads than Valgrind’s. The runtime overheads of Skiff

range from 1.05 times in specrand to approximately 17 times compared to unob-

served execution in h264ref program from SPEC CPU 2006 dataset. On average, for

the programs from SPEC datasets the Skiff overheads are approximately 8.6 times

the unobserved execution. The overheads of Valgrind are higher, averaging approxi-

mately 24.5 times, with a minimum of 3.7 times and a maximum of 61 times. Note

that same as in the experimentation with memory leaks, Skiff does not always out-

perform Valgrind. For example, on the crafty program from SPEC CPU 2000 the

overheads of Skiff are approximately 5.8 times compared to unobserved execution,

whereas Valgrind incurs the overheads of approximately 3.7 times.

66 DETECTION OF MEMORY LEAKS AND LOCATIONS OF LEAKAGE

The Skiff’s overheads can be attributed to the number of invocations of check-

Dereference executed for every dereference, array application and struct access. That

is, Skiff’s overheads are proportional to the number of dereferences in a run of a

program. Another factor that contributes to the overheads of Skiff is the number

of allocated and de-allocated memory blocks (which includes variable definitions).

This is because to detect illegal dereferences Skiff needs to track memory allocation.

That is, this extension additionally implements the minimal mode for memory leak

detection (since each allocated block is recorded along with the location of its alloca-

tion). However, the results of experimentation with the minimal mode (Figure 4.12)

indicate that the runtime overheads of Skiff for the case where only locations of al-

locations are recorded average to 1.8 times the unobserved execution. Therefore,

for this analysis, the number of invocations of checkDereference (i.e., number of

lookups performed in the data structure that captures memory allocation) is the main

contributing factor for the incurred overhead.

Threats to Validity

Threats to the validity of the results of this experimentation are similar to those fac-

tors discussed in Section 4.4.5, and include the choice of the programs and the input

data. Another important factor, is that in addition to memory leak detection and

dereference checking Valgrind implements checks for uninitialised values. However,

Skiff checks the validity of dereferences on the stack and on the heap, while Valgrind

checks read and write accesses for heap blocks only. Finally, a different implemen-

tation of checkDereference may yield different results. For example, the current

implementation uses a red-black tree to store memory allocation. An approach that

uses shadow memory is likely to result in lower overheads for lookups, but also to

require more memory to track allocation.

4.6 Concluding Remarks

This chapter presented a tunable monitoring technique for detecting memory leaks

and locations of leakage. The technique uses source-to-source transformations to in-

strument an input program with statements to monitor its memory state and report

leaks before the modified program terminates. One of the main benefits of this ap-

proach is the ability to locate the sources of where memory was lost. Additionally,

the proposed approach provides tuned monitoring via different modes of execution

enabled at runtime. In full mode extra information of leakage locations is produced

for the cost of larger overheads. Minimal mode reduces overheads using a conven-

tional reporting scheme that outputs only allocation sites, while partial mode reduces

overheads by tracking the leakage locations of memory blocks of specified sizes only.

4.6 CONCLUDING REMARKS 67

This chapter also showed that the monitoring primitives required to detect mem-

ory leaks and associated leakage locations are sufficient to enable detection of other

types of issues. This has been demonstrated by an extension designed to detect illegal

modifications of memory.

The technique discussed in this chapter has been implemented in a research pro-

totype for monitoring of C programs called Skiff. The approach was evaluated using

experimentation that monitored real UNIX utilities and computationally expensive

programs from SPEC CPU datasets, and compared the results of Skiff with those of

the memory debugger Valgrind. The results show that for the problem of memory

leak detection (where only locations of allocations of leaked memory were tracked)

Skiff outperforms Valgrind. This suggests that Skiff may be used as a replacement

for binary instrumentation tools, producing similar results with considerably fewer

system resources.

Experimentation with full mode (which enables detection of locations of leakage)

show that the overheads of Skiff directly depend on the amount of memory allocated

by programs, and they increase as memory consumption grows. For monitoring of

UNIX utilities Skiff performed better than Valgrind mainly due to relatively small al-

located blocks. However, Skiff performed considerably worse on programs selected

from the SPEC datasets, which focus on performance evaluation and thus use large

inputs. Further, the experimentation demonstrated the applicability of overhead tun-

ing using partial mode, where in some cases large overheads of SPEC programs were

reduced by not tracking large data blocks for leakage. At present, it can be suggested

that for the detection of leakage, the proposed approach is mainly useful in the do-

main of functional testing, where correctness is determined using runs with small

inputs.

This chapter also presented preliminary results of evaluation with the extension

that enables detection of illegal memory modifications. For this experimentation runs

of computationally expensive programs selected from the C SPEC CPU datasets were

used and the Skiff’s results were compared to the results of Valgrind, which imple-

ments similar checks. This experimentation indicates that the runtime overheads of

Skiff are considerably lower than those of Valgrind. The results for memory overheads

are consistent with those for memory leak detection.

5
A Value Tracking Approach to

Information Flow Security

This chapter investigates the runtime detection of issues related to leakage of con-

fidential information used by a program. Similarly to the previous chapter, which

focuses on the detection of memory leaks, the aim of this investigation is to develop

precise monitoring techniques with overheads acceptable for use with testing.

This chapter describes a monitoring approach to the detection of information leak-

age via assignment of secret values to unsafe program locations (e.g., publicly visible

variables). It is shown that this approach detects such issues as password disclosure

and a number CWE [145] vulnerabilities related to handling of sensitive data. The

results of the empirical evaluation with the prototype implementation for C programs

indicate that the overheads for detecting of password disclosure in real software does

not exceed 1%. The overheads associated with the detection of CWE vulnerabilities

are still acceptable for use with testing, but incur higher overheads.

Some of the elements of the approach to information leakage and the initial results

of the empirical evaluation of password flow presented in this chapter previously

appeared in a conference publication [146]. An extended version of this paper, which

includes the results of the experiments with CWE vulnerabilities, is currently being

considered for publication in the Information and Software Technology Journal.

The suggested technique analyses program values and has the ability to identify

whether a disclosed value represents an information leak with respect to the values

considered secret at runtime. This differs from the majority of the existing techniques,

68

69

which analyse programs with respect to its variables and track security labels or prop-

agate taint marks. Tracking only a handful of values whose disclosure constitutes

information leakage reduces the overheads associated with tracking.

This approach assumes that statements that generate secret data are identified us-

ing manual annotations to the program; that is, the program locations of assignments

that transfer secret values to program variables are marked. An input program P is

instrumented (via a series of source-to-source transformations) with statements that

track secret values and safe locations, and assertions that check the safety of assign-

ments with respect to the tracked values. This generates a modified program P ′. A

run of P ′ observes the execution of the original program P by detecting information

leakage via assignment of secret values to unsafe locations. A program run that has

no detected assertion failures does not leak the secret values captured at runtime via

the annotated assignments.

The proposed approach is supported by a prototype implementation for C pro-

grams that is used to conduct various experiments. The results of initial experimen-

tation show that this approach can be used to address narrow yet practical problems,

such as preventing leakage of passwords. Monitoring the safety of password flow in

a number of security-oriented UNIX utilities indicates that this dynamic analysis of

secret values results in low overhead of 1%, while still soundly identifying informa-

tion leakage in real security software. Further experimentation demonstrates that this

technique is a good fit for analysing programs for security vulnerabilities related to in-

formation leakage stressed by security-oriented communities, such as the Community

Developed Dictionary of Software Weakness Types [145].

This chapter also reports on experiments using a number of computationally ex-

pensive programs from the SPEC datasets. This addresses issues related to informa-

tion leaks via the de-allocated but not cleared out memory, improper handling of sen-

sitive data (e.g., plain-text storage or hard-coding of passwords), exposure of sensitive

information through standard output channels and information leaks via temporary

files and file handles. The results show that the author’s approach handles complex

programs, such as gcc, while still yielding acceptable overheads. Finally, the same

properties are used to analyse popular security-oriented software such as openssh

and ccrypt; this analysis shows that overheads incurred by the author’s approach

remain low.

This chapter offers the following contributions:

• A value-tracking approach to detecting information leakage due to disclosure of

secret values used by a run of a program.

• A proof-of-concept implementation of the present approach for C programs.

• An empirical evaluation that concentrates on overheads incurred by the moni-

tored execution.

70 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

v ::= x | ptr v
e ::= n | v | e⊕ e | f(e) | addressof(v)
c ::= skip | def(v) | v := e | 〈v := e〉 | assert(e) |

::= if e then c1 else c2 | while e do c | c1 ; c2

f ::= Ident¬ c | f1 ; f2
P ::= f ; e

Figure 5.1: Abstract Language

The remainder of this chapter is organised as follows. Section 5.1 presents exten-

sions to the standard model, first presented in Chapter 3. These extensions capture

the semantics of information leaks and are further used to describe the present ap-

proach at an abstract level in Section 5.2. Section 5.3 discusses how to apply the pro-

posed approach on C programs and Section 5.4 presents the results of the empirical

evaluation using the prototype implementation for C programs. Finally, Section 5.5

offers concluding remarks.

5.1 Syntax and Semantics

This chapter present a monitoring approach to the detection of information leakage

using an abstract imperative language (Chapter 3) extended with operations on point-

ers, assertions and source code annotations. These extensions allow for the definition

and therefore detection of the disclosure of sensitive information at runtime. This sec-

tion describes the syntax, memory and operational semantics of the extensions used

for information leak detection.

5.1.1 Syntax

Figure 5.1 presents an abstract imperative language extended with operations on

pointers, assertions and source code annotations. The following outlines the syntactic

extensions to the standard model (see Figure 3.1) that help to capture information

leaks.

Variables v (given by the set Var) are partitioned into variables that hold primitive

values (indicated by x) and variable references (ptr v), where ptr is a syntactic type

annotation. The set of program expressions Expr is extended with the addressof

operator on program variables. The set of program commands (Comm) is extended

with annotated assignments (〈v := e〉) and assertions assert(e). The rest of the

elements of the language are standard and have been discussed in detail in Chapter 3.

Before discussing these extensions, it is useful to describe elements of the memory

model for information leak detection.

5.1 SYNTAX AND SEMANTICS 71

5.1.2 Memory Semantics

The memory semantics of the extension is consistent with that of the standard model.

Accordingly, values and memory addresses are given by the set of natural numbers N.

Memory mapping in a particular state is represented by the function m : N→ N, which

maps memory addresses to values, and function ρ : Var→ N represents variables in

the memory. Discussion on the memory semantics of the standard model is given in

Section 3.2.

The following discusses extensions to the memory semantics of the standard model

that allow for the representation of information leaks.

In a particular state of computation, a set of secret values (i.e., values that need

to be protected against disclosure) is given by the set of values Sv, such that Sv is an

element of P (N). The set of values Sa ∈ P (N) is used to represent the set of safe

memory addresses in a particular state. A safe memory address represents a memory

location that cannot be observed by an adversary; that is, during a run of a program,

a value mapped to a safe address is never disclosed to a third party. Unsafe addresses,

therefore, represent publicly observable memory locations. It is assumed that in a

program run any location is publicly observable, unless it is given by a safe address.

Accordingly, any value mapped to an unsafe address (i.e., that does not to Sa) can be

viewed by an attacker. Further, it is said that a memory location is safe if it cannot

be observed by a third party (i.e., it is represented by a safe address) and unsafe

otherwise.

5.1.3 Operational Semantics

This section describes evaluation of expressions and the operational semantics of the

commands of the imperative language used to describe the present approach (see

Figure 5.1).

Evaluation of Expressions

Similar to the standard model, the evaluation of a program expression e ∈ Expr is

given by function eval : (Expr×Mem) → N where m ∈ Mem is a memory mapping.

The evaluation of core expressions is shown in Figure 5.2.

The functions l-value and r-value are used to distinguish between l-values and

r-values of variables respectively. Given some variable v ∈ Var, function l-value =
Var×Mem → N returns a memory location (i.e., an address) associated with v and

function r-value = Var × Mem → N returns the value to which variable v evalu-

ates in the memory. For a primitive variable x, l-value returns its memory address:

that is, l-value(x, m) = ρ(x), where m is a memory mapping. For a variable refer-

ence ptr v, l-value returns the address of the memory location that v references, i.e.,

l-value(ptr v, m) = r-value(v, m). Evaluation of variables in the memory is given via

72 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

l-value(x, m) = ρ(x)
l-value(ptr v, m) = r-value(v, m)
r-value(v, m) = m(l-value(v, m))

eval(v, m) = r-value(v, m)
eval(addressof(v), m) = l-value(v, m)

Figure 5.2: Evaluation of Program Expressions

r-value, such that r-value(v, m) =m(l-value(v, m)). That is, a primitive variable x eval-

uates to the value to which its address is mapped in the memory: m(ρ(x)). A variable

reference ptr v evaluates to the value mapped to the address of the memory block

it references: m(m(ρ(v))). The evaluation of variables in a program is thus defined

via r-value, and the evaluation of expression addressof(v), where addressof is an

operator that identifies memory locations and v is a variable, is given by l-value.

Evaluation of numerals, binary expressions and function calls is standard (see

Section 3.3.1).

Operational Semantics of Commands

The operational semantics of commands of the abstract language is shown in Fig-

ure 5.3 and defined as a relation� on configurations: 〈c: m, Sa, Sv〉 and abort, where

c ∈ Comm is a program command, m ∈ Mem is a memory mapping, Sa ∈ P (N) is a

set of safe addresses and Sv ∈ P (N) is a set of secret values. abort is a special config-

uration that leads to an abrupt program termination. Configuration 〈skip : m, Sa, Sv〉
is final.

The operational semantics of assignments (given via Rule Asgn, Figure 5.1.4) is

similar to the standard model (see Section 3.3.2, Chapter 3). That is, assignments

v := e, where v is a variable in Var and e is an expression in Expr replace the value

mapped to the address of a variable v (given via l-value(v, m) where m is a memory

mapping) with the result of evaluation of expression e (i.e., eval(e, m)).

Annotated assignments 〈v := e〉 (see Figure 5.1.4, Rule Annotated) represent the

assignment of secret values to safe locations. That is, an annotated assignment 〈v := e〉
transfers a secret value (given via the expression e) to a safe location given by the

address of variable v (shown via the updated sets of secret values and safe locations

Sa
∗ and Sv

∗). Further, since construct 〈c〉 (where c is a command) is only a syntactic

annotation, command 〈v := e〉 executes assignment v := e.

The operational semantics of assertions is given via Rules Assert1 and Assert2.

assert(e) (where e is an expression that evaluates to a zero value) results in an abrupt

program termination (i.e., executes the special configuration abort, Rule Assert1).

For the case when e evaluates to a non-zero value (indicated via the side condition

eval(e, m) 6= 0 in Rule Assert2) assert(e) is equivalent to skip.

Operational semantics of the remaining commands, variable definitions def(v)

5.1 SYNTAX AND SEMANTICS 73

Def:
〈def(v): m, Sa, Sv〉� 〈skip: m, Sa, Sv〉

Asgn:
〈v := e: m, Sa, Sv〉� 〈skip: m¹l-value(v, m) 7→ eval(e, m)º, Sa, Sv〉

Annotated:
〈〈v := e〉: m, Sa, Sv〉� 〈v := e: m, Sa

∗, Sv
∗〉

where:

Sa
∗ = Sa ∪ l-value(v, m)

Sv
∗ = Sv ∪ eval(e, m)

Assert1:
〈assert(e): m, Sa, Sv〉� abort

(eval(e, m) = 0)

Assert2:
〈assert(e): m, Sa, Sv〉� 〈skip: m, Sa, Sv〉

(eval(e, m) 6= 0)

Seq1:
〈c1 : m, Sa, Sv〉� 〈c′1 : m′, Sa

′, Sv
′〉

〈c1 ; c2 : m, Sa, Sv〉� 〈c′1 ; c2 : m′, Sa
′, Sv

′〉

Seq2:
〈c1 : m, Sa, Sv〉� 〈skip: m′, Sa

′, Sv
′〉

〈c1 ; c2 : m, Sa, Sv〉� 〈c2 : m′, Sa
′, Sv

′〉

If1:
〈if e then c1 else c2 : m, Sa, Sv〉� 〈c1 : m, Sa, Sv〉

(where eval(e, m) 6= 0)

If2:
〈if e then c1 else c2 : m, Sa, Sv〉� 〈c2 : m, Sa, Sv〉

(where eval(e, m) = 0)

While:
〈while e do c: m, Sa, Sv〉� 〈if e then (c ; while e do c) else skip: m, Sa, Sv〉

Figure 5.3: Operational Semantics of Program Commands

74 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

(Rule Def), conditionals if e then c1 else c2 (Rules If1 and If2), loops while e do c

(Rule While) and sequential compositions of commands c1 ; c2 (Rules Seq1 and Seq2)

are standard and have been discussed in detail in Section 3.3.2.

5.1.4 Information Leak

The following provides a definition of an information leak.

Informally, an information leak occurs when a secret value or a value that is ‘close

enough’ to one of the secret values in a program run is assigned to an unsafe location.

For instance, a value k that needs to be protected against disclosure, or values that

are similar, but not identical to k, become publicly observable. The exact definition

of ‘close enough’, which denotes similar but not identical values, can be customised,

but for any given implementation it is fixed. For the purpose of this abstract presenta-

tion it is assumed that this measure of similarity between values is given by function

isSimilar : N×N→ N that takes two values and returns a non-zero value if the input

values are ‘close enough’ and zero otherwise.

The following provides a formal definition an information leak occurring at run-

time.

Definition 10 (Information leak) Let Sa ∈ P (N) be the set of values that represent

addresses of safe locations, Sv ∈ P (N) be the set of secret values, c, c′ ∈ Comm be program

commands, m ∈ Mem is a memory mapping and k, a ∈ N be values. The following

property defines an information leak that occurs as a result of the execution of the

command c in the memory mapping m with respect to the set of addresses of safe locations

Sa and the set of secret values Sv:

Leak(c, m, Sa, Sv) ⇐⇒ 〈c, m〉�m 〈c′, m¹a 7→ kº〉∧a /∈ Sa∧∃x ∈ Sv : isSimilar(k, x) 6= 0

That is, there exists a transition 〈c, m〉�m 〈c′, m¹a 7→ kº〉 in the program that as-

sociates a memory address given by the value a to the value k in the memory mapping

m¹a 7→ kº. Since assignment is the only command that modifies the memory map-

ping of the program, this transition is the result of the execution of some assignment

v := e, such that the address of the variable v is given by the value a and k is the result

of evaluation of expression e in the memory mapping m. That is, the execution of the

assignment v := e results in an information leak (denoted as Leak(c, m, Sa, Sv)) if and

only if a represents an unsafe location (i.e., does not belong to the set of addresses

of safe locations given by Sa) and the value k is ‘close enough’ to one of the secret

values from Sv. The latter is determined by the function isSimilar, which compares

two input values and returns a non-zero value if the input values are determined to

be ‘close enough’.

Using this formal definition of an information leak, the following section describe

details of the present monitoring approach to information leak detection.

5.2 INFORMATION LEAK DETECTION 75

5.2 Information Leak Detection

The present analysis makes source-to-source transformations on an input program

P containing annotated assignments that mark the assignment of secret values (i.e.,

values that need to be protected against disclosure) to safe memory locations that are

not publicly observable. These transformations yield a modified program P ′. A run of

P ′ tracks the secret values and addresses of safe locations and prevents disclosure of

secret values by aborting the execution if an information leak is detected.

This section describes the details of runtime information leak detection. It first

describes the elements of a monitoring state (i.e., data that needs to be tracked to

detect information leaks). This section then discusses the semantics of monitoring

commands and presents the set of transformation rules used to derive the instru-

mented programs. Finally, it describes how the execution of the modified programs

prevents information leaks at runtime.

5.2.1 Monitoring State

To keep track of the data required to capture information leaks during the execution

of a modified program P ′, collections of values Hval and Hvar are used. Hvar represents

a collection that tracks addresses of safe locations and Hval represents a collection

of secret values that should be protected against disclosure. Formally, Hvar and Hval

are given by sets of values, that is Hvar, Hval ∈ P (N). Further, a monitoring state

of a modified program is represented by a pair of sets (Hvar, Hval), where Hvar tracks

addresses of safe locations and Hval captures secret values.

5.2.2 Semantics of Monitoring Commands

This section describes semantics of commands used to instrument an original program

(say P) with functionality that enables information leak detection.

The operational semantics of monitoring commands (shown via Figure 5.4) is de-

fined as a relation �m: (Commm ×P (N)×P (N)) → (Commm ×P (N)×P (N)) on

configurations 〈cm : Hvar, Hval〉 and abort, where cm is a monitoring command belong-

ing to the set of monitoring commands Commm, Hvar ∈ P (N) represents the set of

tracked safe addresses and Hval ∈ P (N) represents the set of tracked secret values.

Configuration 〈skip : Hvar, Hval〉 is final. abort denotes a special configuration that

leads to an immediate program termination.

In the following, the operational semantics of monitoring commands are dis-

cussed.

76 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

HvarDef:
〈def(Hvar): Hvar, Hval〉�m 〈skip: ;, Hval〉

HvalDef:
〈def(Hval): Hvar, Hval〉�m 〈skip: Hvar,;〉

HvarAdd:
〈insert(Hvar, a): Hvar, Hval〉�m 〈skip: Hvar ∪ {a}, Hval〉

HvalAdd:
〈insert(Hval, k): Hvar, Hval〉�m 〈skip: Hvar, Hval ∪ {k}〉

SecAssert1: 〈assert(exists(a, Hvar) ‖ foundIn(e, Hval) = 0): Hvar, Hval〉
�m 〈skip: Hvar, Hval〉

(a ∈ Hvar)

SecAssert2: 〈assert(exists(a, Hvar) ‖ foundIn(k, Hval) = 0): Hvar, Hval〉
�m 〈skip: Hvar, Hval〉

(a /∈ Hvar ∧∀t ∈ Hval : isSimilar(t, k) = 0)

SecAssert3: 〈assert(exists(a, Hvar) ‖ foundIn(k, Hval) = 0): Hvar, Hval〉�m abort
(a /∈ Hvar ∧ ∃t ∈ Hval : isSimilar(t, k) 6= 0)

Figure 5.4: Operational Semantics of Monitoring Commands

Initialisation

Command def(Hvar) (see Figure 5.4, Rule HvarDef) initialises the set of tracked ad-

dresses of safe locations to an empty set indicated by the configuration 〈skip: ;, Hval〉.
The set Hval, which tracks secret values is similarly initialised via command def(Hval)
(Rule HvalDef).

Safe Locations and Secret Values

Rule HvarAdd (Figure 5.4) shows semantics for monitoring command insert(Hvar, a),
used to record an address of a secret location (a) to the collection Hvar that tracks

addresses of safe locations. The update of the monitoring state is given by (Hvar ∪
{a}, Hval). Secret values are similarly recorded to Hval (Rule HvalAdd).

Security Assertions

To detect information leakage at runtime, assignments in the original program are

instrumented with security assertions. Security assertions abort the execution of a

5.2 INFORMATION LEAK DETECTION 77

program if leakage via assignment of a secret value to an unsafe memory location

is detected. This prevents information leaks before they occur. Operational seman-

tics of a security assertion is shown in Rules SecAssert1, SecAssert2 and SecAssert3

(Figure 5.4). The following discusses how security assertions capture and prevent

information leaks at runtime.

By Definition 10 assignment v := e (where v is a variable and e is an expression)

leaks sensitive information if a secret value (or a value that is ‘close enough’ to a secret

value) is assigned to an unsafe location. Let set Hvar store addresses of safe locations

and set Hval represent the set of secret values. Let a and k be values, such that a

represents the address of a variable v and k is the result of evaluation of expression e.

Then, assignment v := e leaks secret information if a is not captured by Hvar and there

exists a secret value in Hval (say t) that is ‘close enough’ to k. That is, if isSimilar(t, k)
(where value k denotes the result of evaluation of e) returns a non-zero value.

Syntactically, a security assertion is given by command

assert(exists(a, Hvar) ‖ foundIn(k, Hval) = 0) (5.1)

Let symbol ‖ denotes logical disjunction. Function call exists(a, Hvar) evaluates to

a non-zero value if value a is stored in the set Hvar of addresses of safe locations and to

a zero value otherwise. Monitoring expression foundIn(k, Hval) determines whether

the value k is ‘close enough’ to one of the secret values tracked by the collection of

secret values Hval. A call to foundIn(k, Hval) returns 0 if no values ‘close enough’ to

k exist in Hval and a non-zero value otherwise. The similarity between two values is

given by the function isSimilar, which returns 1 if input values are ‘close enough’ and

0 otherwise. That is, an expression foundIn(k, Hval) = 0 that evaluates to a non-zero

value indicates that there exist no secret values in Hval that are ‘close enough’ to the

input value k and to zero otherwise.

The execution of a security assertion (see Figure 5.4, Rules SecAssert1, SecAssert2

and SecAssert3) that evaluates the safety of some assignment v := e (where v is a

variable which address is given by value a, and e is an expression that evaluates to

value k) is as follows. The security assertion first checks whether the address of a

variable v (given by value a) belongs to the set of safe locations tracked in Hvar (in-

dicated by exists(a, Hvar)). exists(a, Hvar) that evaluates to a zero value (i.e., a is an

element of Hvar) indicates that v represents a safe location and thus the assignment is

safe (by Definition 10). In this case the behaviour of the security assertion is equiv-

alent to skip (Rule SecAssert1), which allows the program to continue execution. If

exists(a, Hvar) evaluates to zero (which indicates that a memory location given by v is

not a safe location), expression foundIn(k, Hval) = 0 is evaluated. This checks whether

the value k given by expression e is ‘close enough’ to one of the secret values tracked via

Hvar. foundIn(k, Hval) that evaluates to a non-zero value indicates that the application

foundIn returned 0, thus no similarities between the input value and the set of secret

78 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

Def:
def(v) def(v)

Skip:
skip skip

Annotated: 〈v := e〉 v := e;
insert(Hvar,addressof(v))
insert(Hval,v)

Asgn:
v := e def(temp);

temp := e;
assert(exists(addressof(v), Hvar) ‖ foundIn(temp, Hval) = 0);
v := temp

If:
c1 c′1, c2 c′2

if e then c1 else c2 if e then c′1 else c′2

Seq:
c1 c′1, c2 c′2

c1 ; c2 c′1 ; c′2
While:

c c′

while e do c while e do c′

Function:
c c′

f ¬ c f ¬ c′
Program:

f̃ f̃ ′

f ; e def(Hvar);
def(Hval);
f ′; e

Figure 5.5: Transformation Rules

values were identified and therefore the assignment is safe (see Rule SecAssert2). Oth-

erwise, (i.e., foundIn(k, Hval) evaluates to a non-zero value) the information leak is

detected (because value that is ‘close enough’ to one of the secret values is transferred

to an unsafe location) and the program aborts (see Rule SecAssert3).

5.2.3 Transformation Rules

This section describes the set of compositional transformation rules that instrument an

original program with statements that capture secret values at runtime and assertions

that verify the safety of the program’s assignments with respect to the captured sets

of addresses of safe locations and secret values. Figure 5.5 shows the full set of

transformation rules applied on an input program P. This yields a modified program

P ′ equipped with statements that prevent information leakage by assignment of secret

values to unsafe locations. The transformation steps are now discussed in greater

detail.

5.2 INFORMATION LEAK DETECTION 79

Initialisation

The first step instruments an original program with collections of values Hvar and Hval

(see Figure 5.5, Rule Program). At runtime, Hvar will hold memory addresses of safe

locations and Hval will hold the secret values for a particular run.

Capturing Safe Locations and Secret Values

The second step in instrumentation inserts commands that record secret values and

safe locations to Hval and Hvar respectively. This is done for every annotated assign-

ment in the input program (see Figure 5.5, Rule Annotated).

To record safe addresses, commands that retrieve addresses of memory locations

(via the application of the addressof operator on a variable assigned a secret value)

are inserted immediately after the annotated assignments. These addresses are then

added to the collection Hvar that tracks safe memory locations. This action indicated

by the monitoring command insert(Hvar,addressof(v)) in Rule Annotated, where v is

a variable assigned a secret value. This is followed by the command that records the

secret value (assigned to the safe location) to the collection Hval. This is given by the

command insert(Hval, v), which appends the collection of secret values Hval with the

value bound to variable v (Rule Annotated).

Enforcing Safety of Assignments

Finally, the program is instrumented with security assertions that enforce safety of

non-annotated assignments (Rule Asgn). Each such assignment is considered po-

tentially unsafe, as it may transfer a secret value to an unsafe location, resulting in

leakage. For each non-annotated assignment v := e (where v is a variable and e is an

expression), first a temporary variable temp is introduced. The result of evaluation

of e is stored in temp; this is to avoid evaluating e twice (since program expressions

include function calls execution of e can result in a side effect). A security assertion

that verifies the safety of the assignment with respect to Hvar and Hval is then inserted.

The assignment is safe if the location being assigned a value (i.e., addressof(v)) is

recorded in Hvar, or if the value assigned to an unsafe location (stored in temp) is

not found in the collection Hval of secret values recorded for a program run. A de-

tailed discussion on how security assertions verify the safety of assignments is given

in Section 5.2.2.

Note that since the aim is to prevent information leakage, the assignment is

checked for leakage before it is allowed to proceed with transferring the result of

evaluation of e (stored in the temporary variable temp) to v. In this way, the fail-

ing assertion prevents leakage by aborting the run of a program before the unsafe

assignment is executed.

80 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

5.2.4 Execution of Instrumented Programs

At runtime, security assertions added to the original program P check the safety of its

assignments. A failure of a security assertion is indicative of a prevented information

leak. On execution, Hvar and Hval are initialised to empty collections. As execution

proceeds, values and addresses for annotated assignments are added to Hvar and Hval

respectively. Non-annotated assignments are evaluated with respect to data stored

in Hvar and Hval. If an unsafe location is being assigned a value, P ′ invokes a security

assertion that aborts the execution if a secret value is transferred to an unsafe location.

A program run that has no detected failures does not leak any secret information via

assignments.

5.3 Application to C Programs

The transformation rules in Figure 5.5 are defined for the abstract language, and

need to be mapped to a concrete level to apply to a real programming language.

Further, implementations need to be provided of the isSimilar and foundIn functions,

operators addressof and collections Hvar and Hval. Note that this means that isSimilar

and foundIn can be tailored to suit specific safety requirements. This section discusses

how to adapt the present approach for C programs.

Program Annotation

To record secret values for a program run, assignments that transfer secret values

to safe locations are annotated at the source level of the C programming language.

These annotations are merely serve to instruct the instrumentation engine on the

locations of secret values. The programs are annotated by a developer or an ana-

lyst, who manually marks assignments that transfer secret data to safe locations. An

alternative way of introducing annotations is by marking functions. For example,

the C standard library provides functionality to fetch passwords (e.g., getpass), en-

crypt data (e.g., crypt), read data from password databases (e.g., /etc/shadow via

getspnam or getspent) or read data from standard input or files (e.g., gets, fgets,

scanf). Here it is assumed that the values these functions retrieve are secret, and au-

tomatically annotate assignments that transfer values retrieved using these functions

to program variables. For example, for an assignment char *pwd = getpass(), the

instrumentation engine generates code to record a secret value pointed to by pwd.

Value Containers

To store safe locations and secret values, red-black trees are used. Hvar stores ad-

dresses of safe locations as the start addresses of memory blocks. That is, the elements

5.3 APPLICATION TO C PROGRAMS 81

of Hvar are integers wide enough to store memory addresses (e.g., intptr_t). Hval,

which represents a collection of secret values, stores untyped (i.e., void*) pointers to

copies of secret values and their sizes. Since C is a weakly typed language, these can

be typecasted as needed at comparison time.

Secret Values

Variables identified at the source level as ones that hold or point to secret data are

used to record addresses of safe locations and secret values to collections Hvar and

Hval respectively. The values and locations are recorded in the context of the syntactic

types of variables that hold secret data. For example, for a character pointer char

*s that points to a secret value, its value is given by the application of strdup(s),

which creates a copy of the C string pointed to by s, and its safe location is &*s,

which is the start address of a memory block that holds actual data. Note that in

C, &*s, which explicitly extracts the address of the memory block pointed to by s,

evaluates to same address as s. Composite types (i.e., structs) are processed with

respect to their elements. For example, struct stt { char *p1, char *p2 } st

has memory locations &*st.p1 and &*st.p2.

In a more complex but typical scenario, one needs to take into account dynamic

memory allocation in order to calculate secret values. This is because it is not always

possible to determine the size of a memory block statically. For example, given a

double-pointer int ∗∗p, which points to some set of secret values, one needs to know

the size of *p in order to retrieve all the values to which it points to. This type of

information can be determined by tracking memory allocation.

Library or External Functions

Functions for which source code is available are instrumented as described above.

However, approximations are required for the library, or external functions, for which

the source code is not available. Calls to external functions are potential sources

of information leakage because function calls may leak their arguments. For exam-

ple, printf("%s",ptr) is a security violation if &ptr[0] is a safe location. Such

functions are annotated before the analysis as either safe or unsafe. Every call to

an unsafe external function is instrumented with an assertion that evaluates that

function’s arguments and fails if any of the arguments leak secret values. For ex-

ample, a call to the unsafe standard function printf("%s",ptr) is transformed to if

(addressof(ptr) ∈ Hvar) assert(0); printf("%s",ptr);.

In C external function calls can make assignments to their pointer arguments. For

example, library function strcpy(char *dest, const char *src) copies the value

of src to dest. For safety reasons, it is over-approximated that any parameter of an

external function that is a pointer is assigned a value within the body of that function.

82 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

The program is analysed as if there were an assignment of that parameter’s value

to itself immediately after the execution of the function. For example, for a function

call strcpy(dest,src) it is assumed that dest is assigned in the body of strcpy, and

treat the call as if it were strcpy(dest,src); dest = dest;. These transformations

need to be performed before the instrumentation to track the values.

Value Comparison

The present studies primarily target discovering information leakage via disclosed or

partially disclosed strings. Thus, rather than using a direct look-up based on equal-

ity foundIn is implemented as the function that uses the Levenshtein distance [147]
as the measure of similarity (encapsulated in the isSimilar function) between values

as strings. The Levenshtein distance is frequently used to evaluate the strength of

passwords against dictionaries [148]; it is computed by counting the number of edits

required to transform one string into another. foundIn detects that strings are ‘close

enough’ if the Levenshtein distance between strings is less than a pre-defined thresh-

old, and identifies strings as different otherwise. The benefit of using this measure is

that detects similar, but not identical strings. For example, this can detect the leakage

of a password secret string, via a partially exposed string ‘secret trunk’, which can be

converted to ‘secret string’ using three edits. Failures due to comparison of strings

of less than a threshold length are solved using an identity function as a measure of

string similarity.

Safe Termination

C memory de-allocation procedures (e.g., free) do not guarantee the destruction of

the values stored in de-allocated memory regions. This may result in disclosure of

secret values left in memory after a program terminates. The present analysis checks

that a program correctly cleans up its secret values by first disabling memory de-

allocation functions, and then, before program termination, checking that no location

in Hvar points to a value from Hval. This check is triggered using standard C library

functions atexit and signal. Note that while this approach is adequate for the ex-

perimentation purposes, a more sophisticated approach could be used in production

monitoring systems; for example, one that remembers designated safe memory ad-

dresses and scans possibly freed memory on termination.

5.4 Experimental Results

The present approach for the detection of information leakage has been implemented

in a prototype tool for C programs. The research prototype is built on top of the

Clang [144] compiler infrastructure. To evaluate the applicability of the present

5.4 EXPERIMENTAL RESULTS 83

approach the prototype was used to monitor safety of assignments in real security-

oriented software and benchmarked code. This section reports the results of the

experimentation that focuses on the trade-offs of using the present approach with

respect to the runtime overheads incurred by the monitoring for information leakage.

5.4.1 Objectives

This section discusses the two main objectives of this experimentation.

The first objective is to investigate the runtime overheads of the present approach

for an application-specific problem in real software. This aims to address a scenario

where a security property requires checking of only a limited number of assignments,

for example, only assignments that belong to specific functions or modules, where the

rest of the assignments in the program are known to not leak.

To evaluate the approach for an application-specific property, the prototype was

used to check the safety of password flow in six well-known security UNIX utilities:

su, sudo, passwd, dropbear, ftp and vlock. During this experiment, assignments

that transfer password values to program variables are annotated manually. Further,

the safety of assignments in functions involved in password authentication is checked.

Since applications often use relatively few values and assignments to authenticate a

user, the prototype is expected to have near negligible runtime overheads. However,

as this analysis checks all assignments involved in the handling of password values, it

is also expected to soundly identify password leakage. This experiment is described

in greater detail in Section 5.4.3.

The second objective is to investigate the runtime overheads of the present ap-

proach for a class of security properties in large and computationally intensive pro-

grams. This involves application of the present approach to a scenario where security

properties require tracking large sets of secret values and safe locations and also re-

quire checking the majority of program assignments for leakage.

Section 5.4.4 discusses the investigation of the application of the proposed tech-

nique in information leakage detection to multiple security properties and large pro-

grams. Since various security requirements exist, the author chooses to check pro-

grams against the security properties from the CWE repository. This is because the

CWE repository provides realistic security properties applicable to a wide range of

programs, where the attacker model is known and well understood. The present ex-

periments involve monitoring programs for a number of CWE properties related to

information leakage, including information leaks via the de-allocated but not cleared

out memory; improper handling of sensitive data; exposure of sensitive information

through standard output channels; and information leaks via temporary files and file

handles. This experiment is divided in two parts. In the first part computationally

intensive programs selected from the SPEC CPU [40] datasets are monitored. This

aims to evaluate overheads of the present approach for large programs with heavy

84 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

workload. The second part of this experiment monitors executions of test suites of

security-oriented applications, such as openssh or ccrypt, for leakage. These runs

are used to evaluate the overheads incurred by the present approach in a realistic

setting.

For the experimentation with CWE security properties, overheads higher than the

overheads of the experimentation with the flow of passwords are expected. This

is because CWE properties require tracking of a larger number of safe locations and

secret values. However, the overheads can still be expected to be within an acceptable

range use for detection of information leaks during testing.

The following sections describe the experimentation in greater detail.

5.4.2 Experimental Setup

This experimentation involved performing series of runs of instrumented and original

programs and calculated overheads relative to the execution time of the original pro-

grams. To account for variance due to external factors, such as the test automation

process or system I/O, the overheads are calculated using the mean over 50 runs of

the modified and original executables. In the experiment with password flow a single

measurement is taken by executing a program 1000 times. This is because the execu-

tion time of a single run of a program from the set of UNIX utilities used is too small

to measure accurately. During the experimentation with the CWE properties, where

program runs are substantially longer, a single measurement accounts for a single run

of a program or a run of a test suite (if available).

To correctly calculate overheads incurred by the prototype implementation, abort

statements in the instrumented assertions are disabled. The assertions are evaluated

and the violations are reported, but program runs are not terminated. The purpose of

this is to evaluate the total runtime overheads of applications that trigger failures of

the security assertions.

The number of added annotations and instrumented assertions are also reported.

This is to determine the extent to which the instrumentation influences overheads

incurred by the monitored execution.

The platform for all results reported here was dual-processor 2.4GHz Intel Xenon

machine with 16GB of RAM, running Gentoo Linux.

Since different experiments use different annotations, security properties, pro-

grams and input values, these details are discussed in separate sections for each ex-

periment.

5.4 EXPERIMENTAL RESULTS 85

 631

 632

 633

 634

 635

 636

 637

 638

 639

S
e
c
o
n
d
s

Dropbear 0.30%)
 69

 69.5

 70

 70.5

 71

 71.5

 72

 72.5

 73

S
e
c
o
n
d
s

Passwd (0.17%)
 12.96

 12.965

 12.97

 12.975

 12.98

 12.985

 12.99

 12.995

 13

 13.005

S
e
c
o
n
d
s

Vlock (0.10%)

 201.85

 201.9

 201.95

 202

 202.05

 202.1

 202.15

S
e
c
o
n
d
s

Ftp (0.05%)
 12.84

 12.85

 12.86

 12.87

 12.88

 12.89

 12.9

 12.91

 12.92

 12.93

 12.94

S
e
c
o
n
d
s

Sudo (0.35%)
 13.74

 13.76

 13.78

 13.8

 13.82

 13.84

 13.86

 13.88

 13.9

 13.92

S
e
c
o
n
d
s

Su (0.86%)

Figure 5.6: Runtime Overheads of UNIX Utilities

5.4.3 Password Flow

This section investigates the application of the author’s technique to a problem that

requires checking only a limited number of potentially unsafe assignments. The ap-

proach is evaluated by checking the flow of passwords in six UNIX utilities: su, sudo,

passwd, ftp, vlock, and dropbear. Programs were chosen for this experimentation

based on availability of password-authenticating functionality at a system level – tools

for which securing password values is important. These tools are mature and have

been extensively tested, yet leaks were found in su and ftp: su does not safely de-

stroy the hash sum of the plain-text password, and ftp does not overwrite a pointer

where the plain-text password value received from the user is stored. For this ex-

periment program locations that transfer password values to program variables were

determined manually and the programs used were annotated by hand.

Figure 5.6 shows the running times of the original and instrumented programs.

The figure adjacent to the name of the program is the percentage overhead. The bars

indicate standard deviation.

In continuous runs of the modified and original versions of the tools correct pass-

word values of 10 characters in length were used. The purpose of this is to avoid

failures due to short strings comparison, and ensure that the run of a modified pro-

gram invokes the majority of the instrumented assertions.

It can be seen that the overheads produced by the application of the author’s

technique do not exceed 1%, and range from 0.05% for ftp to 0.86% for su. For

dropbear and ftp, however, the standard deviation is considerably greater for the

instrumented program than for the original. This is because of variable response

times of the network, since during the experimentation both tools were configured to

connect to real servers.

Table 5.1 shows the number of source code annotations and injected assertions per

86 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

Program Version Annotations Assertions

su (coreutils 8.13) 3 3

sudo (1.8.2) 1 14

passwd (shadow 4.1.4) 3 64

vlock (2.2) 1 12

ftp (inetutils 1.8) 2 99

dropbear (2011.54) 1 5

Table 5.1: Instrumentation Statistics of UNIX Utilities

program. It can be seen that the number of generated assertions does not impact the

overhead produced by the instrumentation. For example, the overhead of monitoring

execution of ftp (0.05%) is the lowest, despite having the largest number of injected

assertions (99). This is because the main factors affecting overhead are the length of

the strings that need to be compared and the number of secret values tracked.

The results of this experiment suggest that when applied to narrow and well-

defined problems such as ensuring the safety of password flow, the proposed tech-

nique scales well for real software. The low overhead of the technique is mainly due

to instrumentation that checks only assignments directly involved in handling pass-

word values. Such an approach results in a lightweight, but sound analysis. This is

demonstrated by reporting information leakage discovered in ftp and sudo, where

issues were detected using only a few assertions (e.g., 14 assertions for sudo).

It can be noted that low overheads of the prototype for password analysis are

attributed to security assertions that evaluate only authentication functionality, where

an injected assertion is run once per an input password value. Thus, monitoring in the

presence of different properties, where assertions are invoked multiple times (e.g., if

placed into the bodies of loops), is likely to result in greater overheads.

The next section reports the results of experimentation with a class of well-known

security properties in computationally intensive runs of large software.

5.4.4 CWE-based Security Properties

This section describes the experiment that investigates information leakage using sev-

eral CWE security properties and large, computationally expensive programs. This

experimentation uses the following CWE properties:

• Use of hardcoded or storage of plain-text passwords (CWE-256, CWE-259).

• Exposure of sensitive information via shell messages (CWE-497, CWE-535).

• Software failure to fully clear previously used information in a data structure,

file, or other resource (CWE-226).

5.4 EXPERIMENTAL RESULTS 87

Program Dataset Annotations Assertions

164.gzip CPU2000 258 377

175.vpr CPU2000 1270 1872

176.gcc CPU2000 3976 5516

177.mesa CPU2000 1312 1645

179.art CPU2000 65 104

181.mcf CPU2000 47 84

183.equake CPU2000 92 162

186.crafty CPU2000 1999 2835

188.ammp CPU2000 1289 1431

197.parser CPU2000 986 1299

255.vortex CPU2000 2185 2278

256.bzip2 CPU2000 123 222

Program Dataset Annotations Assertions

300.twolf CPU2000 2375 2986

401.bzip2 CPU2006 127 229

429.mcf CPU2006 46 83

433.milc CPU2006 642 1001

456.hmmer CPU2006 3620 4077

458.sjeng CPU2006 1175 1418

462.libquantum CPU2006 62 120

464.h264ref CPU2006 884 1155

470.lbm CPU2006 28 40

482.sphinx3 CPU2006 2814 3057

998.specrand CPU2006 7 14

999.specrand CPU2006 7 14

Table 5.2: Instrumentation Statistics of Programs from SPEC CPU Datasets

• Failure to properly clean up and remove temporary or supporting resources after

they have been used (CWE-459).

For this experiment, in addition to manual annotations that capture flow of pass-

word values into safe locations, the author automatically added annotations that

marked memory blocks assigned data received via standard input channels (i.e., using

stdio.h functions) as safe locations.

The experimentation with the above CWE properties first investigates the over-

heads of the present approach in computationally expensive runs of large software

using programs chosen from the SPEC CPU datasets. Then, the execution of test

suites of real security software: openssh and ccrypt are monitored.

The following section discusses the results of the experiment with CWE properties.

It first discusses the experimentation with programs taken from the SPEC benchmarks,

and further reports on the results of monitoring of test suites of real software.

Programs from SPEC CPU Datasets

To evaluate runtime characteristics of the present approach on large software C pro-

grams selected from the SPEC CPU2000 and CPU2006 were instrumented and mon-

itored. Even though the SPEC benchmarks are not security related, they are used to

calculate the overheads on large programs that have a heavy workload. This serves

purely to estimate the overheads in extreme situations. Results are reported for all C

programs from these sets, except for 253.perlbmk, 400.perlbench, 445.gobmk and

403.gcc, which were omitted due to compile issues with the original versions of the

programs. The sizes of the analysed software ranges from 49 to 140,000 of lines of

code (excluding commented and white space lines). Note that these programs have

no concern for information security. Thus, information leaks, discovered during the

88 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

 0

 2

 4

 6

 8

 10

g
z
i
p

g
c
c

a
r
t

e
q
u
a
k
e

a
m
m
p

b
z
i
p
2

v
p
r

m
e
s
a

m
c
f

c
r
a
f
t
y

p
a
r
s
e
r

v
o
r
t
e
x

t
w
o
l
f

b
z
i
p
2

m
c
f

m
i
l
c

h
m
m
e
r

s
j
e
n
g

l
i
b
q
u
a
n
t
u
m

h
2
6
4
r
e
f

l
b
m

s
p
h
i
n
x
3

s
p
e
c
r
a
n
d

s
p
e
c
r
a
n
d

N
o
r
m
a
l
i
s
e
d

R
u
n
t
i
m
e

Spec CPU 2000 Spec CPU 2006

18.9 44.4 39.8

Original Modified

Figure 5.7: Runtime Overheads of Programs from SPEC CPU Datasets

experimentation are unlikely to be of interest to SPEC. However, analysis of such

programs is likely to result in many instrumentations and multiple invocations of se-

curity assertions. Below are reported the results of the experiments with programs

chosen from the SPEC CPU datasets focussing on the runtime overheads caused by

the monitored execution.

Figure 5.8 shows the runtime overheads of the prototype relative to the nor-

malised execution time of unobserved runs for the test dataset provided by SPEC. For

reasons of scale of the figure the exact average times of runs and standard deviation

are not presented. This is to better summarise the overhead results for multiple pro-

grams, for which runtime varies. The exact runtimes for each program are available

from the author on request.

On average, the runtime overheads of the prototype are approximately 7.4 times

compared to the normal execution time, with the highest overhead 44.38 times in

429.mcf and the lowest result of approximately 1.11 times in the 470.lbm program.

The high average time is mainly due to spikes, such as, 39.83 times compared to

unobserved execution in 482.sphinx or 44.38 times in 470.lbm. In the majority of

the programs overheads do not exceed 4 times compared to unobserved execution.

The experimentation suggests that the main causes of the runtime overhead are op-

erations on strings in executions of instrumented assertions. That is, the overheads

mainly depend on the lengths of the strings checked for leakage, the complexity of the

string comparison function (only the Levenshtein distance was used) and the number

of assertions executed by the instrumented program.

Further, the experimentation suggests that the runtime overheads of the moni-

tored execution do not depend on the number of annotations or instrumentations

5.4 EXPERIMENTAL RESULTS 89

Program Version Annotations Assertions

openssh (6.2p1) 5421 5839

ccrypt (1.10) 496 635

Table 5.3: Instrumentation Statistics of Security Programs

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

S
e
c
o
n
d
s

Ccrypt (39%)
 1158

 1160

 1162

 1164

 1166

 1168

 1170

 1172

 1174

S
e
c
o
n
d
s

Openssh (2%)

Figure 5.8: Runtime Overheads of Security Programs

(see Table 5.2 for instrumentation statistics for programs selected from the SPEC CPU

datasets). This is shown in the differences in runtime overheads between the 176.gcc

and 429.mcf programs. While 176.gcc has a high number of assertions (5516), it in-

curs less than 4 times overhead, whereas 429.mcf, which uses only 83 assertions,

incurs the highest overhead of over 40 times. Such abnormal overhead is due to the

security assertions executed multiple times on large value sets, which is directly linked

to the number of string comparisons executed by programs. For example, during its

execution, 429.mcf performs over 25 million string comparison operations, whereas

176.gcc invokes the comparison function less than 200,000 times. Since input to

programs for this experimentation is considered secret information, large inputs re-

sult in large numbers of values that need to be checked every time a security assertion

is invoked. Thus, abnormal cases with high overhead (such as 429.mcf) should be

attributed to the large input to programs requiring checking for leakage.

Experimentation with programs taken from the SPEC benchmarks investigated the

overheads incurred by the prototype for the case using large programs and inputs. The

next section reports the results of experimentation on security related applications for

the same set of CWE-based security properties.

Security Software

This section discusses the results of experimentation with the prototype implementa-

tion of the present approach to information leakage detection run on openssh, the

popular SSH client in UNIX environment, and ccrypt, an encryption utility similar to

the UNIX crypt program. Since overhead introduced by the monitoring techniques

depends on input values, security programs that have test suites are chosen. Thus,

the number of paths followed for overhead calculation depends on the inputs used by

the published test suites.

90 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

Figure 5.8 shows the runtime overheads incurred by the monitored execution of

test suites of openssh and ccrypt – 2% and 39% respectively (vertical bars indicate

standard deviation). The low overheads of the security tools used are due to relatively

low number of input and output operations, compared to the programs selected from

the SPEC CPU datasets. For example, the overheads of openssh are mainly caused by

a number of constants used by the program (i.e., check for CWE-259). Additionally,

as data read from configuration files are interpreted as secret, they also contribute to

the overhead incurred by the monitored version of the program. Note that, due to a

large number of invocations of the monitored executable in the test suite (1090 times

for openssh), the overhead in standalone invocations will vary slightly and depend,

for example, on the size of the configuration files read by the application during a

run. Runtime overheads of ccrypt are higher (39%); however are still substantially

lower than the overheads of the programs taken from the SPEC CPU benchmarks. In

ccrypt the main cause of overheads is the size of input data interpreted as secret.

Table 5.3 shows instrumentation statistics for openssh and ccrypt. This is similar

to the results of programs selected from the SPEC CPU datasets, where the num-

ber of instrumentations was not directly linked to the overhead incurred. It can be

seen that monitoring of openssh (instrumented with 5839 assertions) results in lower

overheads than monitoring of ccrypt (instrumented with only 635 assertions).

In summary, the results of the experimentation with CWE vulnerabilities suggest

that the overheads of the prototype do not depend on the number of instrumenta-

tions; rather, they mainly depend on the size of the input and the number of string

comparisons.

5.4.5 Threats to Validity

This section discusses factors that may have affected the validity of the present results.

The first factor is the choice of input data used in the experimentation. For ex-

ample, insignificant runtime overheads in the experiment with password flow are

partially attributed to the number and size of input values. While typical values of

passwords were chosen, there is no guarantee that these passwords exercised all paths

within programs. No coverage metric have been implemented; thus there could be

paths that lead to higher overheads. Small runtime overheads in openssh and ccrypt

are partially attributed to a large number of invocations of monitored executables

(1090 and 403 times respectively), where overhead incurred by the program is amor-

tised by operations that are not relevant for information leakage monitoring (e.g.,

establishing a network connection). Larger overheads may be expected during sin-

gle executions. Additionally, even though during experimentation with openssh and

ccrypt the author used test suites associated with the utilities, there is no evidence

that applying this technique on different programs or using different input values will

yield similar results. Finally, during the experiment with programs selected from the

5.5 CONCLUDING REMARKS 91

SPEC CPU datasets, the input values provided by SPEC may not be representative

for evaluating overheads associated with the detection of information leakage. This

is because SPEC concentrates on performance evaluation, rather than on exploring

various behaviours.

The second factor involves the choice of programs. The experimentation with

password flow used real security tools; however it cannot be claimed these tools are

representative of all programs in the security domain. Further, when monitoring for

CWE properties, programs from the SPEC benchmarks were taken. These programs

focus on performance evaluation, rather than on information security. Finally, the

experimentation with CWE properties uses only two real security programs. This is

because the aim was to monitor security software with test functionality, which is

rare, since releasing such a test suite may be a security issue.

Another factor that may have skewed the results of the empirical evaluation is the

annotation process. During the experiment with password flow programs were an-

notated manually. The author believes all locations and values relevant to password

security are tracked; however, some values or locations may have been overlooked.

This could result in different overheads. The experimentation with CWE properties

relies on automatically derived annotations, where any kind of input data is inter-

preted as secret. While this is adequate for experimentation, it is not certain that all

input information should in practice be tagged secret. Similarly, such automatic an-

notation may have missed some of the values or locations that need to be protected

against disclosure. Thus, a better annotation process may improve the accuracy of the

results.

The final factor is the string comparison. Although Levenshtein distance is a re-

liable criterion, it may not be optimal in all cases. Further, as string comparison is

the main source of the incurred overheads, a different string comparison function

may yield different results. For example, the Hamming distance is likely to result in

smaller overheads, than the more expensive Levenshtein distance criteria used in this

experimentation.

5.5 Concluding Remarks

This chapter presented a value-driven approach to the detection of leakage of sensi-

tive information at runtime. The proposed approach works on source programs that

have annotations marking the secret values that need to protected against disclosure,

and the memory locations assumed to store such data safely. This technique first

instruments an input program with statements that capture secret values and safe

locations, indicated via annotations. Each potentially unsafe assignment is then in-

strumented with a security assertion that fails if an information leak is detected. The

execution of the modified program monitors assignments in the original program for

92 A VALUE TRACKING APPROACH TO INFORMATION FLOW SECURITY

information leakage. A program execution that has no assertion failures does not leak

the nominated secret values.

The proposed approach has been implemented for C programs. The prototype

implementation targets the detection leaks of passwords and also supports the detec-

tion of well-defined problems inspired by the CWE vulnerabilities, such as, exposure

of sensitive information through standard output channels and information leaks via

temporary files and file handles.

Experiments with a number of security-oriented UNIX utilities show that the over-

head incurred in detecting leakage of passwords is less than 1%. The prototype imple-

mentation of the proposed approach detects vulnerabilities in ftp and su programs.

This result suggests that for specific information security problems (e.g., integrity of

password values at runtime), the instrumentation introduced by the proposed ap-

proach can be used with release versions of software. Further, the experimentation

with chosen programs from the SPEC CPU datasets investigates the overheads of the

prototype implementation in the case where large programs perform heavy compu-

tations and therefore many security assertions are used. Monitoring programs from

the SPEC datasets incur higher overheads, as the costs of monitoring increase propor-

tionally to the number of executed assertions that use expensive string comparison

operations. However, when the technique is applied to testing, where correctness of

programs is established through inexpensive runs (i.e., experimentation with moni-

toring openssh and ccrypt test suites), the overheads of the prototype remain low –

39% and 2% for openssh and ccrypt respectively.

6
Concise Specification Language for

Monitoring

Chapters 4 and 5 described monitoring analyses for specific issues, presenting tech-

niques for runtime detection of memory leaks and disclosure of confidential informa-

tion. This chapter focuses on a generic approach to monitoring programs aimed at

error detection. Before this approach is discussed, an argument is advanced for the

usefulness of such a generalisation, explaining and how it addresses the limitations

of the existing techniques.

6.1 Need for Generalisation

Implementing monitoring from scratch is a daunting task that involves high develop-

ment costs. In the author’s experience, most of the time used for prototype develop-

ment is spent on addressing technical details and debugging. This motivated a search

for a solution, where a prototype is specified concisely at a high level and the con-

crete implementation is then generated from such specifications; that is, in which the

main effort is directed towards developing the elements of the analysis, rather than

on handling technical details or re-implementation of standard features.

Early attempts to support the construction of dynamic analyses [73, 75, 76, 78, 79,

86, 149] implemented interfaces for monitoring programs at the source or instruction

level. These tools inspired the development of state-of-the-art analysis architectures,

93

94 CONCISE SPECIFICATION LANGUAGE FOR MONITORING

such as Pin [43], Valgrind [10], Frama-C [112] and LLVM [77]. Typically, specifi-

cation of a monitoring approach using these frameworks requires instrumentation of

implementation-specific code at program locations identified by the user. This affords

the power to express a wide variety of dynamic analyses; however, the development

overhead is also large. It is noted that the prototype implementations of the monitor-

ing techniques discussed in this thesis were created using the Clang [144] compiler

architecture belonging to the LLVM project [77] and comprise over 15 KLOC of C and

C++ code.

Other solutions make use of BISL [96, 105, 106, 109], which formalise intended

behaviours of program components via annotations of source programs. The rich

features of such languages support monitoring for a wide class of properties, but

require manual annotation of each analysed program. This means that this approach

does not separate the monitoring specifications from the program under analysis. As

a result, BISL specifications cannot be reused. An additional issue is the size of the

analysed programs. Consider, for example, the test subjects used in the experiments

reported in this thesis (i.e., UNIX utilities and programs from the SPEC CPU datasets).

These programs often consist of tens or even hundreds of thousands of lines of code.

This factor is likely to contribute to the complexity of specifying monitoring.

This issue of concise and reusable specifications is addressed via runtime verifica-

tion [114, 120, 122–124, 150], where implementation-level monitors are generated

from specifications commonly given by properties in higher-order logic. The gener-

ated code is used to check whether a given property holds during the execution of the

instrumented program. Such specifications are known to be compact; however, they

are not trivial to specify and are hard to optimise due to the gap between the high-

level property specifications and implementation-level monitors generated from the

properties. In other words, runtime verification techniques are missing the trackable

link between abstract descriptions and implementation details.

Finally, monitoring can be enabled through traces of events generated by a run-

ning program. Trace monitors originate from AOP [129, 130] as a generalisation of

applying advice (i.e., extra code) on pointcuts (collections of well-defined program

points, such as function calls of variable definitions). A trace monitor captures a his-

tory of program events at runtime, and observes them by executing extra code if the

captured trace matches a partial trace given by the specification. A typical trace mon-

itor specification consists of a pattern that describes a partial trace, and an action –

code executed on a pattern match.

State-of-the-art trace monitors [116, 132, 133, 138, 151] mainly focus on the ex-

pressiveness of patterns, and specify actions using the implementation language of a

monitored program. Such an approach is adequate for problems that can be captured

by patterns, such as checking whether a particular sequence of events is executed. In

this case, most of the monitoring code is generated from pattern specifications and

6.1 NEED FOR GENERALISATION 95

actions are used for simple tasks, such as aborting an execution. However, even ex-

pressive pattern languages often require non-trivial actions to be implemented. For

example, SQL injection analysis using PQL [138], which claims the expressiveness

of a context-free grammar, requires Java implementations of functions that sanitise

input and execute SQL. Similarly, a transfer protocol analysis in Arachne [139] uses

C networking functions. Such specifications are inherently implementation specific

and verbose, contributing to the development overhead and complicating the specifi-

cation of the analysis. Consider, for example implementing the author’s memory leak

analysis as a trace monitor. This does not require sophisticated patterns, as all assign-

ments and memory allocations are being observed; the implementation complexity

arises from the definitions of actions that compute points-to relationships on-the-fly.

In summary, despite the large body of work in the area, techniques that aim to ad-

dress specification monitoring at a generic level have limitations. This mainly refers to

issues such as lack of separation concerns (in specifications via behavioural interface

languages), verbosity and implementation specificity of actions (in trace monitors)

and absence of trackable link between monitoring specifications and generated mon-

itors (in runtime verification).

This chapter addresses such limitations and present an approach that aims to re-

duce the effort associated with developing monitoring code manually. The author

proposes the SFM mechanism for specifying monitoring at a higher level of abstrac-

tion. An abstract API showing how to implement the monitor is also proposed.

SFM is designed to be concise and has the ability to express various monitoring

analyses, focussing on error detection. Further, although SFM specifications are ab-

stract, they are not “too” abstract, allowing its implementation to be efficient. Finally,

SFM specifications are kept distinct from the source code of monitoring applications,

thus allowing to monitor different programs using a single specification.

SFM is presented as a trace monitor with a key focus on abstract specifications of

actions. This enables users to specify actions at a high level and provides a powerful

pattern language over sequences of events. Also described is the monitoring API:

a collection of functions that encapsulate monitoring tasks (e.g., tracking of source

locations).

In support this approach a case study in error detection is presented. This case

study demonstrates the expressive power of SFM by example and presents SFM spec-

ifications that address monitoring for well-known problems, including of stack over-

flows, information flow vulnerabilities, resource leakage, and SQL injections. This

case study aims to demonstrate SFM’s capability of addressing runtime defect detec-

tion at different levels of abstraction.

This chapter focuses on issues related to concise and expressive specifications

for fault detection in memory safety and information flow security. The key ideas

96 CONCISE SPECIFICATION LANGUAGE FOR MONITORING

on how to enable instrumentation and implement monitoring components were dis-

cussed previously (see Chapters 4 and 5 for details). The contributions made by this

chapter are as follows.

• The design of the SFM language, which describes monitoring at a high level of

abstraction.

• A case study in the expressiveness of SFM for fault detection, showing shows

the power of SFM by example and presenting four complete monitoring specifi-

cations that address well known problems in error detection at a high level.

Contributions presented in this chapter have been accepted for a publication in

proceedings of the forthcoming ACM/SIGAPP Symposium on Applied Computing

(SAC’15) [152].
The reminder of this chapter is organised as follows. Section 6.2 presents the de-

tails of the SFM language, discussing how program events, behaviour patterns and

actions are represented in SFM. Section 6.3 describes the monitoring API, a collec-

tion of functions that encapsulate monitoring tasks for fault detections. Section 6.4

presents monitoring specifications implemented in SFM. Finally, Section 6.5 offers

concluding remarks.

6.2 The SFM Language

This section presents the details of the SFM specification language. First, it informally

outlines the abstract model and then goes on to discuss SFM syntax.

6.2.1 Informal Model

A run of a program is modelled as a trace (or sequence) of events. An event represents

a behaviour of a program, such as a function call. Events can also represent points

during program execution, such as the start or termination of the program. Events

consist of types and attributes, where type denotes the kind of the behaviour the event

represents (e.g., the function call) and attributes describe its details (e.g., the name

and arguments of the called function). For the purpose of this thesis, the discussion

focuses on function calls, program inputs and outputs and memory operations.

Events are grouped using patterns. A pattern is a template that defines partial

orders of events using their types and attributes. It is said that a pattern matches a

program trace if at runtime the semantics of the pattern satisfies the order of events in

the program trace. Patterns can be thought of as regular expressions over the alphabet

of program events.

A monitoring specification consists of trace monitors that associate actions (exe-

cutable code fragments) with patterns. At runtime, a trace monitor observes an event

6.2 THE SFM LANGUAGE 97

by executing an action if the pattern associated with that action matches a program

trace. The trace monitors are specified via a syntactic construct match Pat using Stmt,

where Pat is a pattern, Stmt represents code executed when Pat matches the program

trace, and match and using are keywords.

The following sections discuss how actions, events and patterns are represented

in SFM.

6.2.2 Actions

To represent executable code of actions (specified via using clause of trace monitors),

the subset of the Perl6 language specification [153] is used. Since such elements are

standard, only an overview of the supported features is given here. The full EBNF

grammar of the SFM language is presented in Appendix A.

The type system of SFM consists of scalars, lists and hashes. Scalars represent

integers, floating point numbers and strings, which are augmented with static types

Int, Rat, and Str respectively. Lists (denoted by List) represent lists of scalars,

and hashes (denoted by Hash) represent associative arrays. The types of elements in

lists and types of keys and values in hashes are inferred from the context. Variable

names are prefixed with syntactic type identifiers ($ for scalars, @ for lists and % for

hashes). Access to and modification of elements of lists and hashes is accomplished

using standard Perl notation: that is, list elements are retrieved using [] subscript

and hash elements using {}. For example, $lst[5] (where variable @lst is of List

type) accesses an element at position 5 and $hsh{"k"} retrieves the value bound to

key "k" in the hash named %hsh.

Variables need to be declared before use. A variable is declared using the my

keyword followed by the type, and variable name, and potentially an initialiser. For

example, the statement my Int $i = 1; declares an integer variable named $i. Vari-

able declarations are either local (to actions) or global.

Expressions are limited to variable names, composite expressions using unary and

binary operators, and function calls. Supported operators include exists and delete

unary operators on lists and hashes. exists checks whether a given element exists

within a list or a hash and delete removes an input element from the structure. SFM

also implements a number of standard Perl functions such as print or length.

Statements consist of variable declarations, if-then-else conditional statements,

while loops and sequential composition of statements. SFM also supports map state-

ments over hashes. For example, given a hash %hsh, statement map { print $_; }

%hsh outputs all keys of this hash.

98 CONCISE SPECIFICATION LANGUAGE FOR MONITORING

6.2.3 Events

Events supported by SFM are shown in Table 6.1. The Type column shows types of

events (as symbolic identifiers); the Attributes column lists event attributes and their

syntactic types and the column Description offers textual description.

SFM events are designed to support fault detection. Memory events (read, write,

malloc, free, def, undef) enable detection of memory-related errors such as buffer

overruns or illegal dereferences. Note that the author uses a C-like memory model

and differentiate between stack and heap allocations. Such a distinction enables the

detection of issues such as stack overflows, where only one type of allocation is in-

volved. Events in and out describe interactions with the external environment by

capturing inputs a program receives and outputs it produces. These events are rele-

vant for detection of information-flow related vulnerabilities, where one is interested

in calculating dependencies between private inputs a program receives and public

outputs it produces. Structural events (begin, end, init, final) allow code to be

placed at various program points (e.g., to perform initialisation before the program

begins). Finally, internal events call, ret, and flow give SFM the ability to observe

executions of program modules, thus allowing detection of issues such as API viola-

tions, and to track the flow of data within a program (e.g., for taint analysis). It is

noted that the set of events supported by the author’s approach can be extended to

support monitoring for other issues.

6.2.4 Patterns

Patterns are specified via the match clause of trace monitors and can be basic or

composite. Basic patterns are similar to events and consist of types and attributes.

A basic pattern matches a program trace if it describes the type and attributes of

the most recently generated event in the trace. Following Perl conventions, basic

patterns are specified as hash initialisers using the big arrow notation, which maps

names of attributes to concrete values. For example, a basic pattern that matches a

heap memory allocation event malloc if the size of the allocated block is 10 bytes is

written as { type => malloc, size => 10 }. The value mapped to type specifies

the type of the event the pattern should match, while attribute size initialised to 10

constrains the match to those malloc events that allocate blocks of 10 bytes. Attribute

names that can be used in the construction of basic patterns are shown via Attributes

column of Table 6.1. Additionally, the keys type and ref can be used. The type key,

initialised to one of the keywords given by the Type column of Table 6.1, specifies

an event type to match (also shown in the example above). The ref key specifies

the name of the reference to the event. This can be used to retrieve values of event

attributes. For example, in the body of an action attached to pattern { type =>

malloc, ref => pat }, the start address of the allocated block is accessed using

6.2 THE SFM LANGUAGE 99

Type Attributes Description

Memory Operations

read Int addr Memory access at address addr.

write Int addr Memory modification at address addr.

malloc Int addr,

Int size

Heap memory allocation of size bytes starting at address addr.

free Int addr,

Int size

De-allocation of a heap memory block of size bytes starting at
address addr.

def Int addr,

Int size

Stack memory allocation of size bytes starting at address addr.

undef Int addr,

Int size

De-allocation of a stack memory block of size bytes starting at
address addr.

Interactions with Environment

out Int addr Data stored in the memory block starting at address addr is
output to a stream or a file.

in Int addr Program input is stored to a memory block starting at address
addr.

Structural Events

begin Str name Initial event of function name.

end Str name Final event of function name.

init Initial program event.

final Final program event.

Internal Events

call Str name,

Int posn,

Int addr

Memory block starting at address addr is used as pos argument
in function call name.

ret Str name,

Int addr

Memory block starting at address addr is returned by a function
call name.

flow Int src,

Int dest

Value stored in the memory block starting at address src flows
to a location in the memory block which start address is dest.

Table 6.1: Program Events

100 CONCISE SPECIFICATION LANGUAGE FOR MONITORING

$pat->addr and its size is retrieved via $pat->size.

Composite patterns are constructed from smaller patterns using operators, and

match multiple events. Operators for pattern composition have been described in

the literature [154]; only a subset supported by SFM is reviewed here. Program

trace T matches a disjunction of patterns x|y , if T matches either x or y . The

sequencing operator > specifies non-strict matching for chains of events, such that

pattern x>y results in a match if events from x occurred at any stage before y . The

immediate sequence operator ∼ is similar to >; however it specifies a strict sequence

relationship, such that in pattern x∼y events from x should immediately be followed

by y events. Additionally, patterns are negated using the ! operator, and grouped

with parentheses.

6.3 Monitoring API

SFM events address the types of issues SFM can address. For instance, tracking mem-

ory allocations enables analyses for memory safety properties: for example, to detect

a stack overflow error, it is sufficient to track stack memory via events def and undef

and report an error if the size of the stack allocation exceeds some limit (e.g., 8MB,

the size of stack allocations used by the gcc compiler). Such an analysis, however, has

some issues. First, a program, can increase or decrease the size of its stack dynami-

cally. That is, a stack limit other than 8MB is likely to result in false alarms or missed

errors. Additionally, the language presented in the Section 6.2 cannot track program

locations. That is, the analysis is capable of detecting stack overflows; however it

cannot report the program locations where such errors originate. This makes it hard

to track the detected errors, and consequently diminishes the value of the analysis.

Such issues can be solved by introducing additional events or attributes that cap-

ture desired behaviours. For example, events can be extended to support the location

attribute that holds program locations. However, capturing locations per event re-

quires that every tracked event stores an additional attribute, which is likely to in-

crease overheads. Note that reporting stack overflow errors requires only a single lo-

cation that corresponds to the “current” program point during a program’s execution.

Introducing new events (for example for the purpose of tracking locations), increases

the number of events that need to be tracked. This is also likely to contribute to the

overheads.

From the implementation perspective, a more feasible solution is an API that en-

capsulates monitoring components. This is because, instead of unconditional genera-

tion of events or attributes, the appropriate functionality is triggered by a function call

and invoked only where requested by the specification. Further, monitoring API pro-

vides a way to reuse common monitoring tasks (e.g., track memory allocation) across

multiple specifications. This results in more compact specifications and allows for

6.3 MONITORING API 101

Name Description

Int isAllocated(Int $addr) Return the start address of the memory block address
$addr belongs to or 0 if $addr does not belong to the
memory allocation.

Int blockSize(Int $addr) Return the size of a memory block address $addr be-
longs to or 0 if addr does not belong to the memory
allocation.

Int stackSize() Stack memory allocation size.

Int heapSize() Heap memory allocation size.

Int stackLimit() The maximal size of the process stack.

Int getTag(Int $addr) Return an integer value associated with a memory block
identified by address $addr.

Void setTag(Int $addr, Int

$val)

Associate integer $val with a memory block given by
its start address $addr.

Void abort(Str $fmt,...) Output a message to the standard error stream using a
printf-like format string and terminate the execution.

List depends() Return a list memory addresses of blocks used in condi-
tions that lead to the current program point.

Str location() Return a symbolic representation of a currently exe-
cuted program location.

Table 6.2: SFM API

specifying tracking internally, which is likely to be more efficient. For example, in the

author’s experience, tracking memory allocations at the SFM level (for example, via

associative arrays) has higher runtime overheads than internal memory shadowing.

The core functions of the SFM monitoring API are shown in Table 6.2, where the

Name column shows the function names and arguments they accept, and the column

Description offers textual description.

The API functions shown in Table 6.2 facilitate detection of a range of runtime

faults. This is demonstrated in Section 6.4, which presents complete specifications

for runtime detection of problems such as stack overflows, resource leakage, SQL in-

jections and information flow vulnerabilities. It is noted that an analysis may require

functionality that is not provided by the API presented here. For example, detecting

locations of leakage (as presented in Chapter 4) requires extracting integer values

bound to addresses (i.e., dereferencing). In order to handle such extensions interfac-

ing with the target language is allowed, such that a specification in SFM can call a

function implemented in the target language. This is similar to the XS interface that

allows a Perl script to call functions implemented in C. For the purposes of this thesis,

however, the focus is on the expressiveness of the monitoring API (see Table 6.2).

102 CONCISE SPECIFICATION LANGUAGE FOR MONITORING

1 match { type => def }

2 using {

3 my Int $MaxStackSize = stackLimit();

4 my Int $StackSize = stackSize();

5 if ($MaxStackSize < $StackSize) {

6 abort("Stack Overflow at %s",location());

7 }

8 }

Listing 6.1: Stack Overflow Detection

6.4 SFM Examples

This section present four complete specifications that demonstrate how SFM addresses

monitoring problems in fault detection at different levels of abstraction. The first

example, presented in Section 6.4.1, involves runtime detection of stack overflows,

a memory safety issue. The specification in Section 6.4.2 shows how a higher-level

problem of information flow vulnerability detection is expressed in SFM. Section 6.4.3

discusses monitoring for a CWE-based vulnerability of resource leakage. Finally, Sec-

tion 6.4.4 presents a SFM specification aimed at detection of SQL injections.

6.4.1 Stack Overflow Detection

Consider a SFM specification (see Listing 6.1) that consists of a monitor executed

on events of type def that allocate memory on the program’s stack (see Listing 6.1,

Line 1). The maximal size of the process stack is saved to variable $MaxStackSize

(Line 3) and is retrieved using an API function stackLimit. This ensures that $MaxStackSize

captures the actual stack size of the running program (which reflects possible compile

or runtime changes). Variable $StackSize (Line 4) captures the actual stack size of

the running program that is retrieved using function stackSize which returns the size

of the program’s stack allocation. The check for a stack overflow error is enabled via

the conditional statement (Line 5) that compares the stack limit to the actual stack

size and aborts the execution (Line 6) if the size of the program’s stack allocation

(captured via variable $StackSize) exceeds the maximal stack size given via variable

$MaxStackSize. Note that a call to abort at Line 6 also reports the location of the

detected error via an invocation of function location.

The monitoring specification presented in this section provides an example of an

application of SFM for detection of a memory-related issue. Overall, in the presence of

the monitoring API, detection of memory-related errors is straightforward. For exam-

ple, illegal accesses or modifications of memory are detected using the isAllocated

function, which identifies a memory address as belonging (or not) to a program’s

memory allocation. To detect heap memory leaks (i.e., analysis similar to one imple-

mented by Memcheck), one tracks memory allocations and associated locations via

6.4 SFM EXAMPLES 103

events malloc and free, and then uses the final event to report the details (e.g., the

sizes and locations) of the leaked memory blocks (allocated using malloc but never

de-allocated by free).

6.4.2 Explicit Information Flow

This section presents a SFM specification for the detection of information flow vulner-

abilities based on the analysis developed by Denning [155]. Here it is assumed that

the reader is familiar with information flow concepts; the discussion is limited to how

such an analysis is represented in SFM.

This specification considers only high and low security levels given by integer

values 1 and 0 respectively. The security levels are attached to all variables, repre-

sented as start addresses of memory blocks, via the built-in tagging mechanism (i.e.,

functions getTag and setTag that retrieve and associate integer values with memory

blocks).

An information flow security violation via an explicit flow is represented by the

flow of data from a memory block tagged 1 to a memory block tagged 0 (i.e., high

to low). For an event of type flow, which transfers data from a memory block whose

start address is given by the attribute src to a memory block whose start address

is given by the attribute dest, the information flow vulnerability is detected if the

security level associated with src is greater than the security level of dest.

Security vulnerabilities via implicit flows are detected using the global security

context. At a given program point, the global security context is computed as the

greatest security level of blocks used in conditions. For example, in the program

fragment if (p && q) { s; }, at the point given by statement s, the global security

context is the maximum of security levels associated with memory blocks represented

by variables p and q. Then, given that variable Pc holds the global security context,

the flow of data from one memory block to another (given by their addresses src

and dest) constitutes an information flow security violation via an implicit flow if the

security level captured by Pc is greater than the security level of dest. That is, a low

location is assigned a value that depends (via a condition) on a high value.

The SFM specification shown in Listing 6.2 implements a Denning-style informa-

tion flow analysis. To simplify the presentation, it is assumed that memory blocks do

not change their security levels at runtime and that some of the memory blocks are

already tagged with 1, indicating high security.

This SFM specification consists of a single monitor invoked on events of type

flow. The specification first computes the global security context via a map statement

(Line 4). This iterates over all addresses used in conditions (retrieved via function

depends) and stores the highest (i.e., most private) security level in the local variable

$Pc declared at Line 3. Two conditional statements (Lines 7 and 10) detect infor-

mation flow security violations via explicit and implicit flows by comparing values

104 CONCISE SPECIFICATION LANGUAGE FOR MONITORING

1 match { type => flow, ref => e }

2 using {

3 Int $Pc = 0;

4 map depends() {

5 $Pc = max(Pc,getTag($_));

6 }

7 if (getTag($e->dest) < getTag($e->src)) {

8 abort("Flow Violation at %s\n",location());

9 }

10 if (Pc < getTag($e->dest)) {

11 abort("Flow Violation at %s\n",location());

12 }

13 }

Listing 6.2: Information Flow Analysis

1 my %FH;

2 match { type => ret, name => "fopen", ref => e }

3 using {

4 $FH{$e->addr} = location();

5 }

6

7 match { type => call, name => "fclose", pos => 1, ref => e }

8 using {

9 delete $FH{$e->addr};

10 }

11

12 match { type => final, ref => e }

13 using {

14 map %FH {

15 printf("Stream opened at %s leaks\n",$FH{$_});

16 }

17 }

Listing 6.3: Resource Leakage Detection

of security levels associated with the addresses of memory blocks that participate in

the flow ($e->src and $e->dest) and the global security context stored in $Pc. A

discovered violation results in the termination of a program run via abort statements

(Lines 8 and 11).

6.4.3 Resource Leakage

This section details a SFM specification (Listing 6.3) that implements a dynamic anal-

ysis for a CWE property of resource leakage (CWE-404: Improper Resource Shutdown

or Release). This specification checks whether file streams allocated by a C program

via invocations of fopen are properly released via calls to fclose.

The global associative array %FH (defined at Line 1) tracks streams allocated via

fopen and maps addresses of allocated streams to the program locations (as strings)

6.4 SFM EXAMPLES 105

at which they were opened. The monitor defined at Line 2 tracks the return values

of calls to fopen. This records addresses of streams returned by fopen and associates

program locations (retrieved using function location) in %FH via the statement at

Line 4. The monitor (defined at Line 7) tracks the first argument of fclose calls (i.e.,

the addresses of released streams). This removes addresses of streams de-allocated by

calls to fclose from %FH (via delete statement at Line 9). Finally, the map statement

(Line 14) is executed at program termination (via the pattern at Line 12). This iterates

over addresses and locations in %FH and reports locations stored via printf statement

(Line 15). Since the map statement (Line 14) is executed immediately before the

program’s termination, a location in %FH (i.e., $FH{$_}) represents a location of a

leaked stream (i.e., a stream never released using fclose).

6.4.4 Detection of SQL Injections

The final example demonstrates an SFM specification for detecting SQL injections

using an instance of taint analysis.

Consider a C function sqlexec (struct DB* db, char *buf) that is used to

execute SQL code in a database. Its first argument DB *db holds the database con-

nection, whereas string char *buf captures the executed SQL code. To prevent a

SQL injection, one needs to ensure that a C string supplied as the second argument to

sqlexec is either sanitised or not affected by user input (e.g., an internal query).

To detect SQL injections, taint analysis is used. This tags buffers that store data

received at input as tainted. The tainted tag associated with the buffer is removed if

that buffer is used as an argument of a call to the sqlcheck function, which sanitises

the inputs. A SQL injection is detected if the second argument of a call to sqlexec

is tainted; that is, the code to be executed in the database comes from input and has

not been sanitised by sqlcheck.

An SFM specification for detecting SQL injections is shown in Listing 6.4. Monitor-

ing API functions getTag and setTag are used to associate and retrieve taint tags (as

integers) with memory blocks represented by their start addresses, such that tainted

blocks are tagged 1 and untainted are tagged 0.

The monitoring specification shown in Listing 6.4 consists of three trace monitors.

The first monitor (Lines 1-4) is executed for events of type in that capture data sup-

plied as program input (e.g., via a standard input stream). This monitor taints each

memory block containing input data using the statement (Line 3) that associates tag

1 with start addresses of memory blocks (i.e., $e->addr) using the setTag function.

The second monitor (Lines 6-11) tracks the flow of data and propagates taint tags

(via Line 8). This tags a memory block as tainted (i.e., assigns tag 1) if it is assigned

data from another tainted block. That is, the destination of the flow is tainted if the

source of the flow is tainted.

Finally, the monitor (Lines 13-21) is executed for function calls. This first untaints

106 CONCISE SPECIFICATION LANGUAGE FOR MONITORING

1 match { type => in, ref => e }

2 using {

3 setTag($e->addr,1);

4 }

5

6 match { type => flow, ref => e }

7 using {

8 if (getTag($e->src) eq 1) {

9 setTag($e->addr,1);

10 }

11 }

12

13 match { type => call, ref => e }

14 using {

15 if ($e->name == "santise" && pos == 1) {

16 setTag($e->addr,0);

17 }

18 if ($e->name eq "sqlexec" && $e->pos == 2 && getTag($e->addr) == 1) {

19 abort("SQL injection at %s\n",location()); }

20 }

21 }

Listing 6.4: SQL Injection Detection

memory blocks sanitised by calls to sqlcheck (via Line 15). This is enabled by track-

ing the first argument of calls to sqlcheck. Further, the monitor checks invocations

of sqlexec and terminates the execution (via the abort statement at Line 19) if the

second argument of sqlexec (which holds SQL code) is tainted (i.e., tagged with 1).

This represents a detected SQL injection.

6.5 Concluding Remarks

This chapter presented a language called SFM for concise and expressive specification

of monitoring at a high level of abstraction. The design of SFM aims to reduce effort

associated with the manual development of monitoring code.

The design of SFM follows the design of a trace monitor that represents elements

that observe programs at runtime using actions and patterns. A key feature of SFM is

that it specifies actions at an abstract level. Additionally SFM includes the Monitoring

API – a collection of functions that encapsulate various monitoring tasks. Such a de-

sign allows for creation of concise, reusable and expressive monitoring specifications.

SFM concentrates on issues related to the dynamic detection of program errors.

This accomplished via the SFM monitoring primitives (such as events or API func-

tions), which identify the range of problems that SFM can address. The primitives

used in designing the SFM language were developed using monitoring analyses de-

scribed in Chapters 4 and 5.

6.5 CONCLUDING REMARKS 107

The expressive power of SFM has been shown by example; four complete moni-

toring analyses in defect detection have been presented. The issues addressed include

stack overflows errors, resource leakage, SQL injections and information flow security

vulnerabilities.

This chapter has not discussed issues related to generating implementation-level

monitors from the abstract specifications. This is because parts of the SFM specifi-

cations presented in this chapter and the resulting C instrumentations were used in

implementations of dynamic analyses in memory safety and information flow secu-

rity reported in Chapters 4 and 5 respectively. The approximations required to adapt

abstract SFM descriptions to the concrete level of the C programming language were

discussed in the respective chapters.

Overall, SFM summarises the work in monitoring conducted for this thesis and

presents a generalisation of the monitoring techniques presented earlier in Chapters 4

and 5.

7
Summary and Future Work

This thesis investigated aspects of the monitoring of C programs, focussing on de-

veloping techniques that lead to acceptable overheads. This thesis first presented

monitoring techniques to the detection of memory leaks and leakage of confidential

information. The proposed techniques were supported by prototype implementations

for C programs. The applicability of the suggested techniques was demonstrated us-

ing experimentation with real programs and benchmarked code. Further, this thesis

explored the idea of specifying monitoring analyses using abstract specifications and

presented the language (called SFM) capable of expressing monitoring for a range of

problems in bug detection using concise specifications. SFM was supported by a case

study that demonstrated how several well-known problems in bug detection (such as

stack overflows of SQL injections) are expressed using compact SFM specifications.

This chapter provides a summary of the contributions made by this thesis, offers

concluding remarks and discusses directions for future work.

7.1 Summary of Contributions

7.1.1 Detection of Memory Leaks and Leakage Locations

This thesis first presented a technique for detecting memory leaks (Chapter 4). The

key issue addressed by this approach is the detection of program locations where the

leaked memory was lost, and thus where it potentially can be eliminated. To detect

memory leaks programs are instrumented with statements that track memory allo-

cations and operations that potentially update memory structure (e.g., assignments).

108

7.1 SUMMARY OF CONTRIBUTIONS 109

The technique associates each tracked memory block with two types of locations –

allocation and usage. An allocation location represents a point in a program at which

a memory block associated with the location was allocated on the heap. A location of

usage represents a program point at which a given memory block was last reachable

via program variables. The allocation locations are assigned only once, when blocks

are created on the heap. The usage locations are updated based on the execution of

the program. Every time a block containing references is updated, its usage location

is also updated to reflect the reachability of the block via program variables. The

reachability of the block is determined by dynamically computing the dereference of

the block’s address space.

The presented approach is tunable. Monitoring can be adapted based on the size

of the data blocks. This results in a technique where runtime overheads can be re-

duced, at the cost of reporting less debugging information without losing precision in

memory leak detection.

The proposed technique is supported by a prototype implementation for C pro-

grams that was used to monitor test suites of several well-known UNIX utilities (e.g.,

find, grep, diff, rcs) and C SPEC CPU benchmarks. Further, the results of the

prototype were compared to the results of state of the art memory debugger Val-

grind [14]. The results of the experiments show that when only locations of alloca-

tions are detected, the prototype implementation significantly outperforms Valgrind.

For example, compared to runs of uninstrumented programs, the memory and run-

time overheads of the prototype were on an average 1.15 and 1.8 times, while Val-

grind incurred approximately 15 times memory and 30.8 times runtime overheads.

To detect locations of leakage, which requires computing dereference of the address

space of the memory blocks used by a program, the overheads of the prototype in-

crease proportionally to the sizes of the memory blocks. For monitoring UNIX pro-

grams the prototype performed better than Valgrind, which could be attributed to

relatively small allocated blocks. However, for SPEC benchmarks, which focus on

performance evaluation and thus use large inputs and allocate large amounts mem-

ory, Valgrind’s performance was significantly better. In some cases the large runtime

overheads of the prototype for SPEC benchmarks were reduced via overhead tuning,

which excluded large memory blocks from tracking. However, the present form of the

prototype does not perform any program analysis; this feature relies on a programmer

setting the sizes of data blocks manually.

The superior performance of the prototype implementation of the proposed tech-

nique is based on the two features. First, memory blocks are tracked using only

their start and end addresses. This significantly reduces the memory footprint com-

pared to Valgrind (whose monitor uses 9 bits of memory to track 8 bits in the original

program). Second, the proposed technique determines a block’s reachability by dy-

namically computing the dereference of a block’s address space. This does not require

110 SUMMARY AND FUTURE WORK

capturing and updating pointer structure as the monitor executes; however, at present

such an approach is mainly useful where small inputs are used. This is because deref-

erencing large memory blocks can lead to high overheads, as indicated by the results

of the experimentation.

In summary, the results of the experimentation suggest that for memory leak de-

tection where only locations of allocations are reported, the proposed technique may

be used as a replacement for binary instrumentation tools, producing similar results

with considerably less system resources. However, for tracking leakage locations, the

present technique is mainly useful in the domain of functional testing, where program

correctness is established using runs with relatively small inputs.

7.1.2 A Value Tracking Approach to Information Flow Security

Chapter 5 of this thesis presented a monitoring technique for runtime discovery of

disclosure, or leakage, of private information used by a program.

Unlike similar techniques, such as information flow or taint analysis, that focus on

tracking security levels or taint marks attached to program variables, this approach

analyses program values and has the ability to determine whether a value disclosed

to a third party leads to an information leak with respect to values considered secret

at runtime.

The proposed technique analyses programs with annotations that identify secret

data. These annotations are used to instrument an input program with statements

that capture secret values. Additionally, each potentially unsafe assignment (i.e., one

that discloses a value by storing it in a publicly observable location) is instrumented

with a security assertion that verifies the safety of the assignments with respect to

captured secrets. A run of an instrumented program records secret data, and for every

potentially unsafe assignment, executes an assertion that checks if the assignment has

leaked a secret value. A failure of the security assertion is indicative of a prevented

information leak.

The proposed approach is supported by a prototype implementation for C pro-

grams. To evaluate the approach, the prototype was used to check real UNIX security-

oriented utilities (such as openssh, sudo, su) and programs selected from the C SPEC

CPU datasets for information leakage.

The results of the initial experimentation indicated that runtime overheads to

soundly detect application-specific issues; for example leakage of password values

in runs of security-oriented UNIX utilities (e.g., ftp, sudo, su, passwd) was less than

1%. Even with such small overheads the prototype implementation found real leaks

in ftp and su programs. The next step of the experimentation monitored large pro-

grams from the SPEC datasets and real security programs (openssh and ccrypt) for

information leakage using several CWE security properties related to disclosure of

confidential information. The results of experiments with the SPEC programs shown

7.1 SUMMARY OF CONTRIBUTIONS 111

that the prototype implementation can handle large and computationally expensive

programs, but the overheads to detect leaks increase significantly averaging to ap-

proximately 7.4 times those of the normal execution (640%). However, when using

test suites of real security programs, the runtime overheads remain low. This is shown

via 39% overhead for the openssh test suite and 2% overhead for the ccrypt test

suite.

The results of the experimentation suggest that the feature of tracking only a lim-

ited number of values whose disclosure constitutes information leakage leads to low

runtime overheads and detects leaks soundly. This was demonstrated by the results

of experimentation with leakage of passwords, where tracking only password values

and relevant assignments resulted in extremely low overheads of under 1%, while

also leading to discovery of real leaks in ftp and sudo. This result is explained by the

basis of the approach in dynamically tracking values, meaning that there is no need

for it to solve aliasing. Monitoring large and computationally expensive programs

from SPEC datasets for CWE vulnerabilities resulted in larger overheads, as monitor-

ing SPEC programs requires a large number of values to be tracked. However, such

overheads are still within an acceptable range for use with testing. Finally, when the

proposed technique is applied to the domain of functional testing (where relatively

small inputs are used), its runtime overheads for same CWE properties decrease sig-

nificantly (as shown via results of openssh and ccrypt).

Overall, the results suggest that for specific problems (e.g., integrity of password

values at runtime), the instrumentation introduced by the proposed approach may

be used with release versions of software. For a broader set of properties, requiring

tracking of a large number of values, this technique is a good fit for use with testing.

7.1.3 Common Specification Language

The final contribution made by this thesis was presented in Chapter 6 and consti-

tutes a language for abstract and concise specification of monitoring analysis called

Specification for Monitoring (SFM).

While detection of different defects typically requires different implementation

techniques, there exist a number of monitoring components that can be reused to en-

able efficient monitoring analysis. The SFM language represents an effort to reduce

the development overheads often associated with the implementation of a monitor-

ing analysis from scratch. In SFM, monitoring components are expressed concisely

at a high level of abstraction. The actual implementation-level monitoring code is

generated from such descriptions. SFM also addresses issues associated with similar

approaches that are either “too” abstract or, on the contrary, use implementation-level

details.

The main strength of SFM is employment of a separation of concerns principle,

112 SUMMARY AND FUTURE WORK

where semantic issues related to monitoring are kept distinct from the implementation-

level details. This approach yields compact specifications, as the implementation de-

tails are delegated to the implementation of SFM. Also, even though SFM uses ab-

straction, it is not as abstract as many specification techniques, and thus retains a

measure of efficiency for the implementation of the API. The design of SFM follows

that of a trace monitor that defines monitoring using patterns, which select program

events that need to be observed, and actions, which encapsulate the functionality that

observes executions of events selected by patterns. In this design, the key focus is on

the abstract specifications of actions. This represents a departure from existing trace

monitors that focus only on the expressiveness of patterns.

In addition to the details of abstract representation, SFM also describes a mon-

itoring API: a collection of functions that encapsulate monitoring tasks (e.g., track-

ing source locations or capturing memory allocations). This feature relieves users of

the need to deal with minor implementation details, or to re-implement well-known

paradigms.

In its present form, the focus of SFM is on the design of the specification language

and its expressiveness. This question of expressiveness is important, as it describes the

types of issues SFM can potentially address. At this stage, SFM focuses on tracking

monitoring memory allocations, function calls and flow of data within a program

(e.g., data assignments or programs inputs and outputs). Implementations of these

components for the C programming language were discussed in detail in Chapters 4

and 5; the aim is to make further use of the efficient implementations developed

during the work on monitoring for memory leaks and leakage of sensitive information.

To demonstrate the expressiveness of SFM, several examples were presented.

These examples show how well-defined problems in error detection, including such

issues as stack overflows, information flow vulnerabilities, resource leakage and SQL

injections are encoded using the SFM language.

7.2 Future Work

This section describes potential extensions of the work presented in this thesis.

7.2.1 Improving Overhead Results

The results of the experimentation with the technique for the detection of memory

leaks and locations of leakage show that, for large inputs this approach produces

overheads of up to 1000 times compared to unobserved execution (which cannot

be considered acceptable). Therefore, one potential direction for future work is to

improve on those results, adapting this technique for monitoring large and compu-

tationally expensive programs. A potential solution to this problem is to reduce the

number of tracked assignments by using a light-weight, but sound static analysis to

7.2 FUTURE WORK 113

filter out the assignment statements that cannot leak. Further, the results of overhead

tuning indicate that in some cases the overheads can be reduced by excluding large

blocks assumed to be “data only” (i.e., that do not contain pointers). At the present

stage, this is enabled manually, with a programmer setting the size of the blocks that

are not to be tracked. Excluding large blocks automatically, for example, by tracking

addresses of program pointers and dereferencing only memory blocks that are known

to have references, may improve overhead results.

The question of reducing overheads for cases where large values are used is also

of interest in extending the technique for detecting information leakage. One possi-

ble way is to improve the annotation process and track only a selected set of values,

rather than capturing all program inputs and outputs (as done in the experimenta-

tion with SPEC programs). Further, overheads may be reduced by using a different

string comparison criterion that is relevant for security, but not as expensive as the

Levenshtein distance, which was used to determine if leakage occurs.

7.2.2 Using Different Properties

Another potential direction for future work is monitoring for different defect types.

The work with memory leaks has shown that the instrumentation used to detect leaks

can also be used to detect different defect types (such as illegal dereferences) with

overheads similar to memory leak detection. Illegal dereferences is only one defect

of potential interest. This approach could also be adapted to address other memory

issues, such dangling pointers or accesses of uninitialised memory.

The approach to information leakage detection presented in this thesis is limited

to the analysis of values that leak in their entirety via implicit flows. It would be

interesting to extend this approach to handling leakage of parts of values (e.g., bit-

by-bit) or detecting information disclosure through explicit flows.

7.2.3 Generating Monitoring Analysis

This thesis considered an approach to expressing monitoring analysis using concise

and abstract monitoring specifications. Currently, this work concentrates only on

the expressiveness of specifications. A logical extension of this work is a complete

implementation of the driver to translate SFM to implementation-level code, program

instrumentations, and optimisations to reduce the runtime overhead of monitoring.

A
Grammar of the SFM language

Constant = ? Integer, floating point or string literal ? ;

Type = ’Int’ | ’Float’ | ’Str’ | ’List’ | ’Hash’ ;

Identifier = ? An identifier : [A-Za-z][A-Za-z0-9_]+ ? ;

UnaryOp = ’!’ | ’-’ ;

BinaryOp = ’+’ | ’-’ | ’>’ | ’<’ | ’>=’ | ’<=’ | ’==’ | ’&&’ | ’||’;

Event = ’read’ | ’write’ | ’malloc’ | ’free’ | ’def’ | ’undef’

| ’out’ | ’in’

| ’begin’ | ’end’ | ’init’ | ’final’

| ’ret’ | ’call’ | ’flow’

| ’ref’ | ’type’

;

Attribute = ’addr’ | ’size’ | ’name’ | ’posn’ | ’src’ | ’dest’ ;

Specification = { Monitor } ;

Monitor = ’match’, Pattern, ’using’, Stmt ;

Pattern = ’{’, Event, ’=>’, (Constant, Identifier), ’}’ ;

114

115

Declaration = ’my’, Type, Identifier, [’=’ Expression] ;

Reference = ’$’, Identifier, ’->’, Attribute ;

Variable = ’$_’

| Reference

| (’$’, ’@’, ’%’) , Identifier

| ’$’ , Identifier , ’{’ Expression ’}’

| ’$’ , Identifier , ’[’ Expression ’]’

;

Expression = Variable

| Constant

| Expression, BinaryOp, Expression

| UnaryOp, Expression

| (’delete’, ’exists’), Variable

| ’(’ Expression ’)’

| Identifier, ’(’, [Expression, { ’,’, Expression }] ’)’

;

Statement = Declaration

| ’map’, Statement, (’%’ , ’@’), Identifier

| ’if’, ’(’, Expression, ’)’, Statement, [’else’, Statement]

| ’while’, ’(’, Expression, ’)’, Statement

| Variable, ’=’, Expression, ’;’

| (’return’ | ’next’ | ’last’), ’;’

| ’{’ Statement ’}’

;

Listing A.1: SFM Grammar (EBNF ISO/IEC 14977)

B
Acronyms

AOP Aspect Oriented Programming

API Application Programming Interface

AVL Adelson-Velsky and Landis

ATOM Analysis Tools with OM

BNF Backus-Naur Form

BISL Behavioural Interface Specification Language

CCI Configurable C Instrumentation

CFG Control Flow Graph

CPU Central Processing Unit

CWE Common Weakness Enumeration

DBI Dynamic Binary Instrumentation

EBBA Event Based Behavioural Abstraction

EBNF Extended Backus-Naur Form Form

EDL Event Description Language

EEL Executable Editing Library

ECC Error-Correcting Code

GB Gigabyte

GC Garbage Collector

GHz Gigahertz

IFIP International Federation for Information Processing

ISO International Organization for Standardization

JPaX Java PathExplorer

116

117

JML Java Modelling Language

KLOC Thousand Lines of Code

LLVM Low-level Virtual Machine

LOC Lines of Code

LSL Larch Shared Language

MB Megabyte

MEDL Meta Event Definition Language

MOP Monitoring Oriented Programming

OS Operating System

PEDL Primitive Event Definition Language

PQL Program Query Language

PTQL Program Trace Query Language

RAM Random-Access Memory

SFM Specification For Monitoring

SPEC Standard Performance Evaluation Corporation

SQL Structured Query Language

SSH Secure Shell

Bibliography

[1] V. T. Chakaravarthy. New results on the computability and complexity of points-

to analysis. In Proceedings of the SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pp. 115–125 (ACM, 2003).

[2] K. Vorobyov and P. Krishnan. Comparing model checking and static program

analysis: A case study in error detection approaches. In Proceedings of the Inter-

national Workshop on Systems Software Verification, SSV’10 (USENIX Associa-

tion, 2010).

[3] E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

K. Jensen and A. Podelski, eds., Proceedings of the International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, vol. 2988 of

Lecture Notes in Computer Science, pp. 168–176 (Springer, 2004).

[4] C. Cifuentes. Parfait - a scalable bug checker for C code. In Proceedings of the IEEE

International Working Conference on Source Code Analysis and Manipulation,

pp. 263–264 (Beijing, China, 2008).

[5] G. R. Luecke, J. Coyle, J. Hoekstra, M. Kraeva, Y. Xu, M. Park, E. Kleiman,

O. Weiss, A. Wehe, and M. Yahya. The importance of run-time error detection

(2009). http://rted.public.iastate.edu.

[6] D. Engler. Static analysis versus model checking for bug finding. Concurrency

Theory pp. 1–1 (2005).

[7] K. Vorobyov and P. Krishnan. Combining static analysis and constraint solving

for automatic test case generation. In Proceedings of the International Academic

and Industrial Conference on Testing – Practice and Research Techniques, pp.

909–914 (IEEE, 2012).

[8] J. Maebe, M. Ronsse, and K. De Bosschere. Diota: Dynamic instrumentation,

optimization and transformation of applications. In Proceedings of the Workshop

on Binary Translation (2002).

118

http://rted.public.iastate.edu

BIBLIOGRAPHY 119

[9] J. Newsome and D. X. Song. Dynamic taint analysis for automatic detection,

analysis, and signaturegeneration of exploits on commodity software. In Proceed-

ings of the Network and Distributed System Security Symposium (The Internet

Society, 2005).

[10] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dy-

namic Binary Instrumentation. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation, vol. 42 of PLDI ’07, pp.

89–100 (ACM, New York, NY, USA, 2007).

[11] J. A. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis frame-

work. In Proceedings of the ACM/SIGSOFT International Symposium on Software

Testing and Analysis, pp. 196–206 (ACM, 2007).

[12] J. A. Clause and A. Orso. LEAKPOINT: Pinpointing the causes of memory leaks.

In Proceedings of the ACM/IEEE International Conference on Software Engineer-

ing, pp. 515–524 (ACM, 2010).

[13] J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic secu-

rity monitors. Computers & Security 31(7), 827 (2012).

[14] J. Seward and N. Nethercote. Using valgrind to detect undefined value errors

with bit-precision. In Proceedings of the USENIX Annual Technical Conference,

pp. 17–30 (USENIX, 2005).

[15] Projects using Valgrind. http://valgrind.org/gallery/users.html.

[16] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer:

A fast address sanity checker. In Proceedings of the USENIX Annual Technical

Conference, pp. 309–319 (USENIX Association, 2012).

[17] T. M. Chilimbi and M. Hauswirth. Low-overhead memory leak detection us-

ing adaptive statistical profiling. In Proceedings of the International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS-XI, pp. 156–164 (ACM, New York, NY, USA, 2004).

[18] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and precisely locating mem-

ory leaks and bloat. In Proceedings of the ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, pp. 397–407 (ACM, New York, NY,

USA, 2009).

[19] W. Lim, S. Park, and H. Han. Memory leak detection with context awareness.

In Proceedings of the Research in Applied Computation Symposium, pp. 276–281

(ACM, 2012).

http://valgrind.org/gallery/users.html

120 BIBLIOGRAPHY

[20] J. Maebe, M. Ronsse, and K. D. Bosschere. Precise detection of memory leaks.

In Proceedings of the International Workshop on Dynamic Analysis, pp. 25–31

(2004).

[21] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access

errors. In Proceedings of the Winter USENIX Conference, pp. 125–136 (1992).

[22] D. Bruening and Q. Zhao. Practical memory checking with Dr. Memory. In Pro-

ceedings of the Annual IEEE/ACM International Symposium on Code Generation

and Optimization, CGO ’11, pp. 213–223 (IEEE Computer Society, Washington,

DC, USA, 2011).

[23] Intel Inspector. Memory and thread debugger. https://software.intel.com/

en-us/intel-inspector-xe.

[24] LeakSanutizer. http://code.google.com/p/address-sanitizer/wiki/

LeakSanitizer.

[25] H. Boehm. Dynamic memory allocation and garbage collection. Computers in

Physics 9(3), 297 (1995).

[26] A garbage collector for C and C++: Current users. http://www.hboehm.info/

gc.

[27] T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analy-

sis. In Proceedings of the ACM SIGPLAN Workshop on Programming Languages

and Analysis for Security, PLAS ’09, pp. 113–124 (ACM, 2009).

[28] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,

G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: An architectural frame-

work for user-centric information-flow security. In Proceedings of the Interna-

tional Symposium on Microarchitecture, pp. 243–254 (IEEE Computer Society,

2004).

[29] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A low-overhead

practical information flow tracking system for detecting security attacks. In Pro-

ceedings of the IEEE/ACM International Symposium on Microarchitecture, pp.

135–148 (2006).

[30] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser: Protecting

sensitive data leaks using application-level taint tracking. SIGOPS Operating

Systems Review 45(1), 142 (2011).

[31] T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis.

In Proceedings of the ACM SIGPLAN Workshop on Programming Languages and

Analysis for Security, PLAS ’10, pp. 3:1–3:12 (ACM, 2010).

https://software.intel.com/en-us/intel-inspector-xe
https://software.intel.com/en-us/intel-inspector-xe
http://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
http://code.google.com/p/address-sanitizer/wiki/LeakSanitizer
http://www.hboehm.info/gc
http://www.hboehm.info/gc

BIBLIOGRAPHY 121

[32] D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript.

In Proceedings of the IEEE Computer Security Foundations Symposium, pp. 3–18

(IEEE, 2012).

[33] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. Jsflow: tracking information

flow in JavaScript and its APIs. In Proceedings of the Symposium on Applied

Computing, pp. 1663–1671 (ACM, 2014).

[34] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application

security with data flow assertions. In Proceedings of the ACM SIGOPS Symposium

on Operating Systems Principles, SOSP ’09, pp. 291–304 (ACM, 2009).

[35] M. Assaf, J. Signoles, F. Tronel, and E. Totel. Program transformation for non-

interference verification on programs with pointers. In Proceedings of the Inter-

national Conference on Security and Privacy Protection in Information Processing

Systems, vol. 405 of IFIP Advances in Information and Communication Technol-

ogy, pp. 231–244 (Springer, 2013).

[36] S. Blazy and X. Leroy. Mechanized semantics for the Clight subset of the C lan-

guage. Journal of Automated Reasoning 43(3), 263 (2009).

[37] X. Leroy. Formal verification of a realistic compiler. Communications of ACM

52(7), 107 (2009).

[38] M. D. Bond and K. S. McKinley. Tolerating memory leaks. SIGPLAN Notices

43(10), 109 (2008).

[39] G. Novark, E. D. Berger, and B. G. Zorn. Plug: Automatically tolerating memory

leaks in C and C++ applications. Tech. Rep. UM-CS-2008-009, University of

Massachusetts, Department of Computer Science, University of Massachusetts,

Amherst, MA 01003 (2008).

[40] Standard Performance Evaluation Corporation. SPEC CPU (2006). http://

www.spec.org/benchmarks.html.

[41] D. L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code Manip-

ulation. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA,

USA (2004).

[42] Mac OS developer tool manual for leaks. https://developer.apple.com/

library/mac/documentation/Darwin/Reference/ManPages/man1/leaks.

1.html.

[43] C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney, S. Wallace,

V. J. Reddi, and K. M. Hazelwood. Pin: Building customized program anal-

ysis tools with dynamic instrumentation. In Proceedings of the ACM SIGPLAN

http://www.spec.org/benchmarks.html
http://www.spec.org/benchmarks.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/leaks.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/leaks.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/leaks.1.html

122 BIBLIOGRAPHY

Conference on Programming Language Design and Implementation, pp. 190–200

(ACM, 2005).

[44] Discover. Oracle solaris studio 12.2 discover and uncover user’s guide. https:

//docs.oracle.com/cd/E18659_01/html/821-1784/toc.html.

[45] G. Watson. Dmalloc – debug malloc library. http://dmalloc.com.

[46] mtrace. Allocation debugging. http://www.gnu.org/software/libc/

manual/html_node/Allocation-Debugging.html.

[47] H. Ayguen and M. Eddington. D.U.M.A. - Detect Unintended Memory Access - A

Red-Zone memory allocator. http://duma.sourceforge.net.

[48] B. Meredith. Omega: An instant leak detector tool for valgrind (2006). http:

//www.brainmurders.eclipse.co.uk/omega.html.

[49] Parasoft Insure++. Runtime analysis and memory error detection for C and

C++. http://www.parasoft.com/insure.

[50] M. Hirzel and A. Diwan. On the type accuracy of garbage collection. In Proceed-

ings of the International Symposium on Memory Management, pp. 1–11 (ACM,

2000).

[51] C. Jung, S. Lee, E. Raman, and S. Pande. Automated memory leak detection

for production use. In Proceedings of the International Conference on Software

Engineering, pp. 825–836 (ACM, 2014).

[52] M. D. Bond and K. S. McKinley. Bell: Bit-encoding online memory leak detec-

tion. In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS-XII, pp. 61–72 (ACM,

New York, NY, USA, 2006).

[53] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ECC-memory for detecting

memory leaks and memory corruption during production runs. In Proceedings

of the International Conference on High-Performance Computer Architecture, pp.

291–302 (IEEE Computer Society, 2005).

[54] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic. Memtracker: Effi-

cient and programmable support for memory access monitoring and debugging.

In Proceedings of the International Conference on High-Performance Computer

Architecture, pp. 273–284 (IEEE Computer Society, 2007).

[55] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications 21(1), 5 (2003).

https://docs.oracle.com/cd/E18659_01/html/821-1784/toc.html
https://docs.oracle.com/cd/E18659_01/html/821-1784/toc.html
http://dmalloc.com
http://www.gnu.org/software/libc/manual/html_node/Allocation-Debugging.html
http://www.gnu.org/software/libc/manual/html_node/Allocation-Debugging.html
http://duma.sourceforge.net
http://www.brainmurders.eclipse.co.uk/omega.html
http://www.brainmurders.eclipse.co.uk/omega.html
http://www.parasoft.com/insure

BIBLIOGRAPHY 123

[56] L. Zheng and A. C. Myers. Dynamic security labels and static information flow

control. International Journal of Information Security 6(2-3), 67 (2007).

[57] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proceed-

ings of the Symposium on Principles of Programming Languages, pp. 228–241

(1999).

[58] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model.

ACM Transactions Software Engineering Methodology 9(4), 410 (2000).

[59] V. Simonet. Flow Caml in a nutshell. In G. Hutton, ed., Proceedings of the

APPSEM-II Workshop, pp. 152–165 (Nottingham, United Kingdom, 2003).

[60] J. Yu, S. Zhang, P. Liu, and Z. Li. LeakProber: a framework for profiling sen-

sitive data leakage paths. In Proceedings of the ACM Conference on Data and

Application Security and Privacy, CODASPY ’11, pp. 75–84 (ACM, 2011).

[61] G. Le Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt. Automata-based

confidentiality monitoring. In Proceedings of the Asian Computing Science Con-

ference on Advances in Computer Science, vol. 4435 of ASIAN’06, pp. 75–89

(Springer-Verlag, 2006).

[62] G. Le Guernic. Automaton-based confidentiality monitoring of concurrent pro-

grams. In Proceedings of the Computer Security Foundations Symposium, pp.

218–232 (IEEE, 2007).

[63] D. Chandra and M. Franz. Fine-grained information flow analysis and enforce-

ment in a Java virtual machine. In Proceedings of the Computer Security Appli-

cations Conference, pp. 463–475 (IEEE Computer Society, 2007).

[64] C. Wang, S. Hu, H. Kim, S. R. Nair, M. Breternitz, Z. Ying, and Y. Wu. StarDBT:

An efficient multi-platform dynamic binary translation system. In Proceedings

of the Asia-Pacific Conference on Advances in Computer Systems Architecture,

ACSAC’07, pp. 4–15 (Springer-Verlag, Berlin, Heidelberg, 2007).

[65] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth.

TaintDroid: An information-flow tracking system for realtime privacy monitoring

on smartphones. In Proceedings of the USENIX Symposium on Operating Systems

Design and Implementation, pp. 393–407 (USENIX Association, 2010).

[66] P. Hornyack, S. Han, J. Jung, S. E. Schechter, and D. Wetherall. These aren’t

the droids you’re looking for: retrofitting android to protect data from imperious

applications. In Proceedings of the ACM Conference on Computer and Communi-

cations Security, pp. 639–652 (ACM, 2011).

124 BIBLIOGRAPHY

[67] R. Capizzi, A. Longo, V. N. Venkatakrishnan, and A. P. Sistla. Preventing infor-

mation leaks through shadow executions. In Proceedings of the Computer Security

Applications Conference, pp. 322–331 (IEEE Computer Society, 2008).

[68] D. Devriese and F. Piessens. Noninterference through secure multi-execution. In

Proceedings of the IEEE Symposium on Security and Privacy, pp. 109–124 (IEEE

Computer Society, 2010).

[69] T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In

Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pp. 165–178 (ACM, 2012).

[70] H. Yin, D. X. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing

system-wide information flow for malware detection and analysis. In Proceedings

of the ACM Conference on Computer and Communications Security, pp. 116–127

(ACM, 2007).

[71] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and T. Kohno.

Privacy Oracle: a system for finding application leaks with black box differential

testing. In Proceedings of the ACM Conference on Computer and Communications

Security, pp. 279–288 (ACM, 2008).

[72] A. R. Yumerefendi, B. Mickle, and L. P. Cox. Tightlip: Keeping applications from

spilling the beans. In Proceedings of the Symposium on Networked Systems Design

and Implementation (USENIX, 2007).

[73] A. Srivastava and A. Eustace. ATOM - a system for building customized program

analysis tools. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pp. 196–205 (ACM, 1994).

[74] A. Eustace and A. Srivastava. ATOM: A flexible interface for building high perfor-

mance program analysis tools. In Proceedings of the USENIX Technical Conference

on UNIX and Advanced Computing Systems, pp. 303–314 (USENIX Association,

1995).

[75] J. R. Larus and E. Schnarr. EEL: Machine-independent executable editing. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation, pp. 291–300 (ACM, 1995).

[76] R. F. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution

profiling. In Proceedings of the Conference on Measurement and Modeling of

Computer Systems, pp. 128–137 (ACM, 1994).

[77] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the International Symposium on

BIBLIOGRAPHY 125

Code Generation and Optimization, CGO ’04 (IEEE Computer Society, Washing-

ton, DC, USA, 2004).

[78] B. Bruegge, T. Gottschalk, and B. Luo. A framework for dynamic program an-

alyzers. In Proceedings of the Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications, pp. 65–82 (ACM, 1993).

[79] B. Bruegge. BEE: A basis for distributed event environments: Reference manual.

Tech. Rep. CMU-CS-90-180, Carnegie Mellon University, Pittsburgh, PA 15213

(1990).

[80] C. L. Jeffery and R. E. Griswold. A framework for execution monitoring in Icon.

Software: Practice and Experience 24(11), 1025 (1994).

[81] C. Jeffery, W. Zhou, K. Templer, and M. Brazell. A lightweight architecture for

program execution monitoring. SIGPLAN Notices 33(7), 67 (1998).

[82] C. J. Jeffery. The alamo execution monitor architecture. Electronic Notes Theo-

retical Computer Science 30(4), 198 (2000).

[83] R. E. Griswold, D. R. Hanson, and J. T. Korb. The icon programming language:

An overview. SIGPLAN Notices 14(4), 18 (1979).

[84] K. Templer and C. L. Jeffery. A configurable automatic instrumentation tool

for ANSI C. In Proceedings of the IEEE International Conference on Automated

Software Engineering, pp. 249– (IEEE Computer Society, 1998).

[85] K. S. Templer. Implementation of a Configurable C Instrumentation Tool. Mas-

ter’s thesis, The University of Texas, San Auntonio, Texas, USA (1998).

[86] R. A. Olsson, R. H. Crawford, and W. W. Ho. A dataflow approach to event-based

debugging. Software: Practice and Experience 21(2), 209 (1991).

[87] P. C. Bates. Debugging heterogeneous distributed systems using event-based mod-

els of behavior. ACM Transactions Computer Systems 13(1), 1 (1995).

[88] E. Jahier and M. Ducassé. Generic program monitoring by trace analysis. Theory

and Practice of Logic Programming 2(4-5), 611 (2002).

[89] E. Jahier and M. Ducassé. Generic and efficient program monitoring by trace

analysis. Computing Research Repository cs.PL/0311016 (2003).

[90] Z. Somogyi, F. Henderson, and T. C. Conway. The execution algorithm of mer-

cury, an efficient purely declarative logic programming language. Journal of

Logic Programming 29(1-3), 17 (1996).

126 BIBLIOGRAPHY

[91] C. Flanagan and S. N. Freund. The RoadRunner dynamic analysis framework for

concurrent programs. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering, pp. 1–8 (ACM, 2010).

[92] A. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya: Supporting rapid develop-

ment of dynamic program analyses for java. In Companion to the Proceedings of

the International Conference on Software Engineering, ICSE COMPANION ’07,

pp. 51–52 (IEEE Computer Society, Washington, DC, USA, 2007).

[93] A. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya: A flexible framework for

development of dynamic program analyses for java software. Tech. Rep. TR-UNL-

CSE-2006-0006, Department of Computer Science and Engineering, University

of Nebraska–Lincoln, Lincoln, Nebraska, USA (2006).

[94] Apache Commons. The byte code engineering library (2001). http://commons.

apache.org/bcel.

[95] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller, and M. J. Parkinson. Be-

havioral interface specification languages. ACM Computing Surveys 44(3), 16

(2012).

[96] D. C. Luckham. Programming with Specifications: An Introduction to Anna, a

Language for Specifying ADA Programs (Springer-Verlag New York, Inc., Secau-

cus, NJ, USA, 1990).

[97] S. Sankar, D. Rosenblum, and R. Neff. An implementation of anna. In Pro-

ceedings of the ACM SIGAda International Conference on Ada, SIGAda ’85, pp.

285–296 (Cambridge University Press, New York, NY, USA, 1985).

[98] S. Sankar and M. Mandal. Concurrent runtime monitoring of formally specified

programs. Computer 26(3), 32 (1993).

[99] D. C. Luckham, S. Sankar, and S. Takahashi. Two-dimensional pinpointing:

Debugging with formal specifications. IEEE Software 8(1), 74 (1991).

[100] B. Meyer. Object-Oriented Software Construction (Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1988), 1st ed.

[101] J. V. Guttag and J. J. Horning, eds. Larch: Languages and Tools for Formal Spec-

ification. Texts and Monographs in Computer Science (Springer-Verlag, 1993).

With Stephen J. Garland, Kevin D. Jones, Andrés Modet, and Jeannette M.

Wing.

[102] G. T. Leavens. An overview of Larch/C++: Behavioral specifications for C++
modules. Tech. Rep. TR #96-01e, Iowa State University, Department of Com-

puter Science, 226 Atanasoff Hall, Iowa State University, Ames, Iowa 50011-

1040, USA (1996).

http://commons.apache.org/bcel
http://commons.apache.org/bcel

BIBLIOGRAPHY 127

[103] D. Guaspari, C. Marceau, and W. Polak. Formal verification of Ada programs.

IEEE Transactions on Software Engineering 16(9), 1058 (1990).

[104] Y. Cheon and G. T. Leavens. The Larch/Smalltalk interface specification lan-

guage. ACM Transactions on Software Engineering Methodology 3(3), 221

(1994).

[105] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An

overview. In Proceedings of the COnference on Construction and Analysis of Safe,

Secure, and Interoperable Smart Devices, vol. 3362 of Lecture Notes in Computer

Science, pp. 49–69 (Springer Berlin Heidelberg, 2005).

[106] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral

interface specification language for Java. SIGSOFT Software Engineering Notes

31(3), 1 (2006).

[107] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M.

Leino, and E. Poll. An overview of JML tools and applications. Intenational

Journal on Software tools for Technology Transfer 7(3), 212 (2005).

[108] L. Burdy, M. Huisman, and M. Pavlova. Preliminary design of BML: A behavioral

interface specification language for java bytecode. In Proceedings of the Interna-

tional Conference Fundamental Approaches to Software Engineering, vol. 4422

of Lecture Notes in Computer Science, pp. 215–229 (Springer, 2007).

[109] M. Delahaye, N. Kosmatov, and J. Signoles. Common specification language for

static and dynamic analysis of C programs. In Proceedings of the ACM Symposium

on Applied Computing, pp. 1230–1235 (ACM, 2013).

[110] N. Kosmatov, G. Petiot, and J. Signoles. An optimized memory monitoring for

runtime assertion checking of C programs. In Proceedings of the International

Conference on Runtime Verification, vol. 8174 of Lecture Notes in Computer Sci-

ence, pp. 167–182 (Springer, 2013).

[111] P. Baudin, P. Cuoq, J. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto.

ACSL: ANSI/ISO C Specification Language Version 1.7 (2013).

[112] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.

Frama-C - a software analysis perspective. In Proceedings of the Software Engi-

neering and Formal Methods International Conference, vol. 7504 of Lecture Notes

in Computer Science, pp. 233–247 (Springer, 2012).

[113] D. Jin, P. O. Meredith, C. Lee, and G. Roşu. Java-MOP: Efficient parametric

runtime monitoring framework. In Proceedings of the International Conference

on Software Engineering, ICSE ’12, pp. 1427–1430 (IEEE Press, Piscataway, NJ,

USA, 2012).

128 BIBLIOGRAPHY

[114] F. Chen, M. d’Amorim, and G. Rosu. A formal monitoring-based framework for

software development and analysis. In Proceedings of the International Confer-

ence on Formal Engineering Methods, vol. 3308 of Lecture Notes in Computer

Science, pp. 357–372 (Springer, 2004).

[115] F. Chen and G. Rosu. Java-MOP: A monitoring oriented programming envi-

ronment for Java. In Proceedings of the International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, vol. 3440 of Lecture

Notes in Computer Science, pp. 546–550 (Springer, 2005).

[116] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over program

traces. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications, pp. 385–402 (ACM, 2005).

[117] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance

based on formal specifications. In Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications, pp. 279–287

(CSREA Press, 1999).

[118] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a run-

time assurance tool for Java programs. Electronic Notes in Theoretical Com-

puter Science 55(2), 218 (2001).

[119] M. Kim. Information Extraction for Run-time Formal Analysis. Ph.D. thesis,

University of Pennsylvania (2001).

[120] K. Havelund and G. Rosu. Monitoring Java programs with Java PathExplorer.

Electrical Notes in Theoretical Computer Science 55(2), 200 (2001).

[121] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F.

Quesada. The maude system. In Proceedings of the International Conference

Rewriting Techniques and Applications, vol. 1631 of Lecture Notes in Computer

Science, pp. 240–243 (Springer, 1999).

[122] D. Drusinsky. The Temporal Rover and the ATG Rover. In Proceedings of the

International SPIN Workshop on SPIN Model Checking and Software Verification,

pp. 323–330 (Springer, 2000).

[123] M. d’Amorim and K. Havelund. Event-based runtime verification of Java pro-

grams. ACM SIGSOFT Software Engineering Notes 30(4), 1 (2005).

[124] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime ver-

ification. In Proceedings of the International Conference on Verification, Model

Checking, and Abstract Interpretation, vol. 2937 of Lecture Notes in Computer

Science, pp. 44–57 (Springer, 2004).

BIBLIOGRAPHY 129

[125] H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time

monitoring: from Eagle to RuleR. Journal of Logic and Computation 20(3),

675 (2010).

[126] E. Bodden. J-Lo: A Tool for Runtime-checking Temporal Assertions. Master’s

thesis, RWTH Aachen University, Aachen, NRW, Germany (2005).

[127] N. Decker, M. Leucker, and D. Thoma. jUnitRV-adding runtime verification to

jUnit. In Proceedings of the International Symposium on NASA Formal Methods,

vol. 7871 of Lecture Notes in Computer Science, pp. 459–464 (Springer, 2013).

[128] M. Leucker. Teaching runtime verification. In Procedings of the International

Conference Runtime Verification, vol. 7186 of Lecture Notes in Computer Science,

pp. 34–48 (Springer, 2011).

[129] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and

J. Irwin. Aspect-oriented programming. In Proceedings of the European Confer-

ence on Object-Oriented Programming, pp. 220–242 (Springer-Verlag, 1997).

[130] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An overview of AspectJ. In Proceedings of the European Conference on Object-

Oriented Programming, vol. 2072 of Lecture Notes in Computer Science, pp. 327–

353 (Springer, 2001).

[131] R. Douence, D. L. Botlan, J. Noyé, and M. Südholt. Trace-based aspects. In

R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, eds., Aspect-oriented Software

Development (Addison-Wesley, Boston, 2005).

[132] R. J. Walker and K. Viggers. Implementing protocols via declarative event pat-

terns. In Proceedings of the ACM SIGSOFT International Symposium on Founda-

tions of Software Engineering, pp. 159–169 (ACM, 2004).

[133] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching

with free variables to AspectJ. In Proceedings of the ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, pp. 345–

364 (ACM, 2005).

[134] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,

O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc : An extensible AspectJ

compiler. Transactions on Aspect-Oriented Software Development I 3880, 293

(2006).

[135] P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitors feasible. SIG-

PLAN Notices 42(10), 589 (2007).

130 BIBLIOGRAPHY

[136] V. Stolz and E. Bodden. Temporal assertions using AspectJ. Electronic Notes in

Theoretical Computer Science 144(4), 109 (2006).

[137] P. Hui and J. Riely. Temporal aspects as security automata. In Proceedings of the

Workshop on Foundations of Aspect-Oriented Languages, p. 19–28 (ACM, 2006).

[138] M. C. Martin, V. B. Livshits, and M. S. Lam. Finding application errors and

security flaws using PQL: a program query language. In Proceedings of the ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, pp. 365–383 (ACM, 2005).

[139] R. Douence, T. Fritz, N. Loriant, J. Menaud, M. Ségura-Devillechaise, and

M. Südholt. An expressive aspect language for system applications with arachne.

In Transactions on Aspect-Oriented Software Development I, vol. 3880 of Lecture

Notes in Computer Science, pp. 174–213 (Springer Berlin Heidelberg, 2006).

[140] S. McConnell. Code Complete. DV-Professional (Microsoft Press, 2009).

[141] H. R. Nielson and F. Nielson. Semantics with applications - a formal introduction.

Wiley Professional Computing (Wiley, 1992).

[142] G. Winskel. The formal semantics of programming languages - an introduction.

Foundation of computing series (MIT Press, 1993).

[143] K. Vorobyov, P. Krishnan, and P. Stocks. A dynamic approach to locating memory

leaks. In Proceedings of the IFIP International Conference on Testing Software and

Systems, vol. 8254 of Lecture Notes in Computer Science, pp. 255–270 (Springer,

2013).

[144] Clang. A C language family frontend for LLVM. http://clang.llvm.org.

[145] Common Weakness Enumeration. A community developed dictionary of software

weakness types. http://cwe.mitre.org.

[146] K. Vorobyov, P. Krishnan, and P. Stocks. A low-overhead, value-tracking approach

to information flow security. In Proceedings of the International Conference on

Software Engineering and Formal Methods, vol. 7504 of Lecture Notes in Com-

puter Science, pp. 367–381 (Springer, 2012).

[147] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Doklady 10(8), 707 (1966).

[148] W. Ma, J. Campbell, D. Tran, and D. Kleeman. Password entropy and password

quality. Network and System Security, International Conference on 0, 583

(2010).

http://clang.llvm.org
http://cwe.mitre.org

BIBLIOGRAPHY 131

[149] A. Srivastava and D. W. Wall. A practical system for intermodule code optimiza-

tion at link-time. Tech. Rep. WRL Research Report 92/6, Western Research

Laboratory, 250 University Avenue Palo Alto, California 94301 USA (1992).

[150] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass - Java with asser-

tions. Electrical Notes Theoretical Computer Science 55(2), 103 (2001).

[151] P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitors feasible. In

Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pp. 589–608 (ACM, 2007).

[152] K. Vorobyov, P. Krishnan, and P. Stocks. A concise specification language for

trace monitoring. In Proceedings of the ACM/SIGAPP Symposium on Applied

Computing (ACM, 2015).

[153] Perl 6 specification. http://perl6.org/specification.

[154] D. C. Luckham. The Power of Events: An Introduction to Complex Event Process-

ing in Distributed Enterprise Systems (Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2001).

[155] D. E. Denning and P. J. Denning. Certification of programs for secure information

flow. Communications of the ACM 20(7), 504 (1977).

http://perl6.org/specification

	Introduction
	Motivation and Problem Statement
	Monitoring for Bug Detection
	Memory Leaks
	Information Leakage

	Aims and Scope
	Research Questions
	Contributions
	Thesis Structure

	Literature Review
	Memory Leaks
	Memory Debuggers
	Detecting Locations of Leakage
	Dynamic Sampling
	Detecting Memory Leaks at the Hardware Level

	Information Leakage
	Language-based Information Flow Security
	Data Flow Tracking
	Information Flow Analysis
	Dynamic Taint Analysis
	Secure Executions
	Testing

	Monitoring Specifications
	Low-Level Instrumentation
	Monitoring Program Events
	Behavioural Interface Specification Languages
	Runtime Verification
	Trace Monitors

	Preliminaries
	Syntax
	Memory Semantics
	Operational Semantics
	Evaluation of Expressions
	Operational Semantics of Program Commands

	Detection of Memory Leaks and Locations of Leakage
	Syntax and Semantics
	Syntax
	Memory Semantics
	Operational Semantics

	Memory Leak Detection
	Memory Tracking State
	Semantics of Monitoring Commands
	Syntactic Transformations
	Execution of Instrumented Programs

	Application on C Programs
	Memory Blocks
	Labels
	Memory Tracking
	Memory Allocation and De-allocation
	Memory Leak Reporting

	Empirical Evaluation
	Objectives
	Experiment Setup
	Memory Leak Reports
	Performance Overheads
	Threats to Validity

	Detecting Illegal Memory Modifications
	Extension at the Abstract Level
	Application on C Programs
	Experimentation Results

	Concluding Remarks

	A Value Tracking Approach to Information Flow Security
	Syntax and Semantics
	Syntax
	Memory Semantics
	Operational Semantics
	Information Leak

	Information Leak Detection
	Monitoring State
	Semantics of Monitoring Commands
	Transformation Rules
	Execution of Instrumented Programs

	Application to C Programs
	Experimental Results
	Objectives
	Experimental Setup
	Password Flow
	CWE-based Security Properties
	Threats to Validity

	Concluding Remarks

	Concise Specification Language for Monitoring
	Need for Generalisation
	The SFM Language
	Informal Model
	Actions
	Events
	Patterns

	Monitoring API
	SFM Examples
	Stack Overflow Detection
	Explicit Information Flow
	Resource Leakage
	Detection of SQL Injections

	Concluding Remarks

	Summary and Future Work
	Summary of Contributions
	Detection of Memory Leaks and Leakage Locations
	A Value Tracking Approach to Information Flow Security
	Common Specification Language

	Future Work
	Improving Overhead Results
	Using Different Properties
	Generating Monitoring Analysis

	Grammar of the SFM language
	Acronyms

