Gaze-Aware Mixed-Reality: Addressing Privacy Issues with Eye Tracking

Göbel, Fabian; Kurzhals, Kuno; Raubal, Martin; Schinazi, Victor R

DOI: 10.3929/ethz-b-000409514

Published: 01/04/2020

Document Version:
Publisher's PDF, also known as Version of record

Link to publication in Bond University research repository.

Recommended citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.
Working Paper

Gaze-Aware Mixed-Reality: Addressing Privacy Issues with Eye Tracking

Author(s):
Göbel, Fabian; Kurzhals, Kuno; Raubal, Martin; Schinazi, Victor R.

Publication Date:
2020

Permanent Link:
https://doi.org/10.3929/ethz-b-000409514

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
Gaze-Aware Mixed-Reality: Addressing Privacy Issues with Eye Tracking

Fabian Göbel
Institute of Cartography and Geoinformation
ETH Zurich
Zurich, Switzerland
goebelf@ethz.ch

Kuno Kurzhals
Institute of Cartography and Geoinformation
ETH Zurich
Zurich, Switzerland
kunok@ethz.ch

Martin Raubal
Institute of Cartography and Geoinformation
ETH Zurich
Zurich, Switzerland
mraubal@ethz.ch

Victor R. Schinazi
Institute of Cartography and Geoinformation
ETH Zurich
Zurich, Switzerland
scvictor@ethz.ch

Abstract
Current Mixed Reality (MR) systems rely on a variety of sensors (e.g., cameras, eye tracking, GPS) to create immersive experiences. Data collected by these sensors are necessary to generate detailed models of a user and the environment that allow for different interactions with the virtual and the real world. Generally, these data contain sensitive information about the user, objects, and other people that make up the interaction. This is particularly the case for MR systems with eye tracking, because these devices are capable of inferring the identity and cognitive processes related to attention and arousal of a user. The goal of this position paper is to raise awareness on privacy issues that result from aggregating user data from multiple sensors in MR. Specifically, we focus on the challenges that arise from collecting eye tracking data and outline different ways gaze data may contribute to alleviate some of the privacy concerns from aggregating sensor data.

Author Keywords
Mixed Reality; Eye Tracking; Gaze-based Interaction; Privacy.

CCS Concepts
$\text{Human-centered computing} \rightarrow \text{User interface design};$
$\text{HCI theory, concepts and models};$ $\text{Interaction techniques};$
Introduction
Mixed Reality (MR) devices are becoming an integral part of our daily lives as new interfaces continue to ubiquitously couple users to a variety of sensors that are used to maximize the quality of the MR experience. For example, the latest release of Microsoft’s MR headset (Hololens 2) includes eye tracking capabilities that allow applications to measure the user’s point of regard (POR) for gaze supported selection and manipulation of virtual content [25]. Eye tracking also allows researchers to measure changes in arousal relative to visual stimuli. Indeed, researchers have successfully utilized gaze features such as pupil dilation, fixation and saccades, or blink rate to predict differences in stress levels [2, 9, 14, 17, 22]. While these technologies will certainly enhance our interactions with the physical and virtual world, they also raise a series of ethical concerns regarding data handling and privacy.

Figure 1: Typical data processing pipeline for a MR device. It is expected, that all listed categories of sensory input will be available in future MR devices.

Issues with Multi-Sensor MR
Figure 1 illustrates a typical data processing pipeline for sensory input that is necessary to provide the MR experience. We identified five main categories of sensory input that are either already in use or feasible to include in the future: world camera, biometric input, audio, position tracking and eye tracking. Depending on the scenario, the individual sensors (or a combination of them) provide the data input that is needed to build a detailed profile about the user and the environment. Here, semantic information is derived from the data and enriched by meta information from other sources outside the system (e.g., social media, news, common knowledge) in order to create a comprehensive model of the situation. For example, when fixating on a product in the supermarket, the list of ingredients is automatically downloaded from the internet and can be presented to the user via the MR application. Below we discuss how these sensors are used and outline their potential ethical issues.

World Camera: This category comprises all optical devices that capture the user’s surroundings as well as the people and the objects contained within it. In order to provide an immersive user experience, these cameras need to constantly scan the environment [21]. This type of passive and “always on” recording raises privacy issues including the identity and actions of the person wearing the MR device and others that are present but are unaware of being recorded.

Biometric Measures: Wearable devices (e.g., Fitbit, Apple Watch) are often used to measure biometric signals such as the heart rate in an effort to help individuals to monitor and improve their health [27]. Beyond providing information about the physical and mental state of a person, these data can also be used for authentication purposes and to infer various types of activities [20]. In MR, data from biometric sensors can be used to provide personalized content by adjusting the MR experience according to body signals and to counteract stress situations via biofeedback. The same data can also be maliciously used to profile and expose individuals and their medical conditions.
Audio Input: Voice assistance in MR is used to offer a natural and hands-free mode for interaction with the system. While voice is used as an explicit input to trigger the action, a microphone needs to be passively listening to identify the activation key word. This circumstance poses privacy issues if the device is unintentionally activated revealing sensitive details about conversations between users. These types of data breaches are becoming more common as evidenced by a recent newspaper report on large amounts of audio data that were being listened to by Amazon workers for manual annotation\(^2\).

Position Tracking: These are the data inputs used to localize the MR users and position them on a map of the environment or a room through GPS and SLAM [7, 16]. While local information is needed to accurately place virtual objects, spatial information beyond the current field of view allows the system to provide solutions such as navigation instructions or weather forecasts. Different privacy issues arise with this type of data [6, 11]. For example, location tracking allows for the exposure of intimate details such as frequently visited places or people’s daily habits.

Eye Tracking: Recording the users’ eye movements and mapping them to areas or objects of interest within the real or virtual world can be applied for interaction purposes and for behavior analysis. Furthermore, gaze behavior (e.g., fixations, scan paths) can reveal information about ongoing cognitive processes [5, 10] and a user’s cognitive load [12] associated with a task. Eye tracking also provides detailed data on changes in pupil diameter and blink rate. Similar to heart rate, dilation and contraction of the pupils are controlled by the sympathetic and parasympathetic nervous systems, respectively. Indeed, researchers have found that variability in pupil diameter may be used as an index for the evaluation of mental states that is comparable to heart rate [1, 23]. The relationship between blinking rates and stress is still not clear. Here, researchers have reported higher [17] and lower [14] frequencies of blinks during stressful situations. Taken together, eye tracking data can be used to infer individual characteristics including age, gender, race, sexual preference, body mass index, hormonal cycle, and health (see [15]). As eye movements occur intentionally and unintentionally, it is difficult for a user to control what to share with the MR system.

Gaze-aware MR

In the following section, we present a possible mixed reality scenario (see Box 1) to motivate a discussion of the implications of a multi-sensor MR system and how different sensors can be combined with eye tracking in order to remedy some of the aforementioned privacy concerns.

Eye Tracking + World Camera: A common challenge with the world camera recording is that objects that are not needed for the current task are also recorded as part of the interaction. In our scenario, the world camera might possibly record sensitive data such as the people or objects in the hospital. Since gaze is used to target an object before the interaction takes place [13, 24], information of the current POR can be used to filter the world camera video feed. This allows the system to process only task critical information within a small area around the current fixation.

Eye Tracking + Biometric Measures: The collection of biometric data should be limited since it can reveal sensitive details about the user [19] (e.g., medical conditions). Here, eye tracking can help to identify situations in which

Box 1: Example scenario for the application of gaze-aware MR.
the collection of biometric data is beneficial and supported by the user. In our scenario, the recording of biometric data could be stopped whenever the user is in close interaction with items from a previously defined blocklist, for example, containing recognized faces or objects.

Eye Tracking + Voice Input: Eye tracking can also be used to avoid privacy issues with voice assistance in MR that requires a microphone to be listening at all times. We propose to use gaze gestures as a trigger to turn the microphone to *listening mode* and thus ensure user's awareness [4]. Besides being distinct from natural gaze behavior and avoiding unintentional triggering, gaze gestures (e.g. blinking) can be detected based on raw gaze data without the need for an active world camera. In our scenario, the microphone is only activated after the user performs the specific gaze-gesture to initiate the call.

Eye Tracking + Position: The collection of eye tracking data by itself can also be sensitive. In the presented scenario, such data collection should be deactivated once the user enters the treatment room in the hospital. Here, geo-fencing can be used for defining restrictive areas where gaze data will not be collected [18]. While this is often applied in outdoor scenarios, marker-based approaches can also be used for geo-fencing in indoor environments [3].

Conclusion

In this position paper, we presented the benefits and privacy risks of the most common sensors used in MR. We highlighted some of the ethical and privacy challenges associated with eye tracking in MR and discussed the manner in which gaze and other sensor data can be used to alleviate some of these issues. Specifically, we showed that the combination of the world camera with gaze can avoid recording objects irrelevant to the task. Similarly, when the microphone is combined with gaze as an explicit trigger, constant listening for a keyword is not necessary to activate the voice assistant. We also demonstrated how gaze can help restrict the collection of sensitive biometric data and the way that location can be used to block gaze recording.

While we focused on a single MR user, the raised issues become increasingly challenging in multi-user scenarios [8]. Aggregating gaze data from multiple individuals allows for the creation of detailed models of visual attention [26] that can be used to detect non-conforming behavior and manipulate intent. For this reason, it is critical to develop a set of guidelines that can be used to control the collection of data and protect the privacy rights of users and the general public.

Bar-Zeev, one of the inventors of the first HoloLens, outlines a series of policies with respect to eye tracking3 that can also be applied in the case of MR. These include, (1) the notion that MR sensor data is highly sensitive and should be treated with the same privacy protocols as health data, (2) the strict regulation of data streaming, (3) the need for transparency with regard to the profiling that is taking place, and (4) the assurance that the collected and processed data are used for the benefit and not the exploitation of the user.

As MR technology becomes more integrated with our daily lives, it is our duty as researchers and developers to consider the ethical consequences of collecting and processing data from multiple sensors for MR applications. The combination of gaze with different sensory data provides an integrative and promising way to address some of these privacy concerns by making use of sensors to influence data collection before processing takes place.

REFERENCES

