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ABSTRACT 29 

Adaptation to exercise training is a complex trait that may be influenced by genetic variants. We identified 36 30 

single nucleotide polymorphisms (SNPs) that had been previously associated with endurance or strength 31 

performance, exercise-related phenotypes or exercise intolerant disorders. A MassARRAY multiplex genotyping 32 

assay was designed to identify associations with these SNPs against collected endurance fitness phenotype 33 

parameters obtained from 2 exercise cohorts (Gene SMART study; n=58 and Hawaiian Ironman Triathlon 2008; 34 

n=115). These parameters included peak power output (PP), a time trial (TT), lactate threshold (LT), maximal 35 

oxygen uptake (VO2 max) in recreationally active individuals and a triathlon time to completion (Hawaiian 36 

Ironman Triathlon cohort only). A nominal significance threshold of α<0.05 was used to identify 17 variants (11 37 

in the Gene SMART population and 6 in the Hawaiian Ironman Triathlon cohort) which were significantly 38 

associated with performance gains in highly trained individuals. The variant rs1474347 located in Interleukin 6 39 

(IL6) was the only variant with a false discovery rate < 0.05 and was found to be associated with gains in VO2 40 

max (additional 4.016 mL/(kg·min) for each G allele inherited) after training in the Gene SMART cohort. In 41 

summary, this study found further evidence to suggest that genetic variance can influence training response in a 42 

moderately trained cohort and provides an example of the potential application of genomic research in the 43 

assessment of exercise trait response.  44 

  45 

https://doi.org/10.1007/s00438-019-01639-8
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INTRODUCTION 48 

Currently, robust identification of genetic variants associated with exercise phenotypes is limited by a lack of 49 

reproducible results. Family and twin studies have estimated high heritability for various exercise performance 50 

metrics (e.g. muscle mass: 40%, anaerobic power: 70-80%, aerobic exercise: 50%) [1]. However, a wide variety 51 

of environmental (e.g. diet, sleep), psychological and epigenetic factors may also influence exercise responses 52 

[2]. In addition, within-subject variability (i.e. the variable response of a given individual to the same exercise 53 

training) considerably limits the identification of genetic variants with potentially small effects on exercise 54 

response [3].  55 

To date, only two genetic signatures have consistently shown an association with exercise responses; the Alpha-56 

actinin-3 stop gain variant (ACTN3) p.Arg577Ter and the Angiotensin converting enzyme (ACE) 57 

Insertion/Deletion (I /D) in intron 16 [4, 5]. Genome Wide Association Studies (GWAS) have helped discern 58 

genomic loci associated with training response, however these usually contain a low number of participants, 59 

and/or evidence of association with exercise psychology related phenotypes [6]. Studies in metabolic and 60 

cardiovascular disorders such as diabetes or arterial hypertension have further complicated participant ability to 61 

perform exercise training at duration and intensity and as such participants can be classified as having exercise 62 

intolerant disorders [7]. As exercise training yields a host of health benefits, understanding which genetic and 63 

molecular processes contribute to these responses might be helpful to the development of personalised exercise 64 

therapeutics (e.g. exercise dosing to minimise risk of adverse response within exercise intolerant disorders) [8].  65 

In this study, we investigated candidate genes previously implicated in exercise response in cohorts of varying 66 

fitness levels. We used a highly trained cohort (triathlon) and a moderately trained, longitudinal cohort of High-67 

Intensity Interval endurance Training (HIIT) exercise training. We hypothesised that many, if not all, of the 68 

candidate SNPs would be found to be associated with triathlon performance and response to 4 weeks of endurance 69 

exercise training, regardless of age or baseline fitness level.  70 

 71 

 72 
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MATERIALS AND METHODS 73 

The Gene SMART cohort  74 

The Gene SMART (Skeletal Muscle Adaptive Response to Training) study design has previously been described 75 

[9]. The study is ongoing with currently > 100 moderately-trained participants who were sampled for blood and 76 

skeletal muscle (vastus lateralis) at several time points: before, immediately after and 3 hours after a single bout 77 

of high-intensity endurance exercise (HIIE), and after 4 weeks of High-Intensity Interval Training (HIIT) [9]. 78 

Exercise-related phenotypic measurements were collected before and after the completion of the exercise training 79 

intervention (e.g. Lactate Threshold (LT, in Watts), Peak Power output (PP, in Watts), maximal oxygen uptake 80 

(VO2max, in mL/min/kg body weight, from graded exercise tests), and a Time Trial measurement (TT, in min). 81 

All participants gave informed consent and the study was approved by the Victoria University Ethics Committee 82 

(Approval number: HRE13-233). Subsequently, the study was also approved by the Queensland University of 83 

Technology (QUT) Human Research Ethics Committee (Approval number: 1600000342). All procedures 84 

performed in studies involving human participants were in accordance with the ethical standards of the respective 85 

institutions research committees, and with the 1964 Helsinki declaration and its later amendments or comparable 86 

ethical standards. At the time of collection, n = 77 participants had participated in the study, with n = 58 completing 87 

the entire 4-week training program. Genomic DNA was extracted and purified from whole blood using the 88 

QIAamp DNA blood midi kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions for 89 

participants that completed the study. Samples that failed genotypic analysis or had a large amount of missing 90 

phenotypic data, were removed from further analysis, leaving a final sample size of n = 52 (Age = 30.95 ± 8.17 91 

years). In the moderately trained cohort (Gene SMART, n = 58), we focused on the response to an exercise training 92 

program (longitudinal analysis). Specifically, we measured the change in (Δ = post - pre) measurement for each 93 

endurance fitness trait as a representation of response to exercise training.  94 

Highly trained (Ironman) cohort 95 

Ironman triathlons consist of a 3.86 km swim, a 180.25 km bike ride, followed by the completion of a full marathon 96 

(42.2 km). The 2008 Hawaiian Ironman Triathlon population has been previously described as an elite endurance 97 

cohort based on their eligibility and participation in the event [10, 11]. Due to the intensity of this endurance event 98 

only highly trained individuals that completed it were included in this study. To avoid genetic confounding, we 99 

analysed only the triathlon participants who self-identified as male and Caucasian (Age = 43.81 ± 11.39 years). 100 

https://doi.org/10.1007/s00438-019-01639-8
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This was performed solely on the triathlon group as the Gene SMART population was already homogeneously 101 

male. All procedures performed in studies involving human participants were in accordance with the ethical 102 

standards of the QUT human Research Ethics Committee (approval number: 1300000499), and with the 1964 103 

Helsinki declaration and its later amendments or comparable ethical standards. Saliva samples (OG-250 Oragene 104 

Kit, DNA Genotek Inc.) and questionnaires were collected prior to the event; time to completion measurements 105 

for each event was collected from the publicly available online event webpage. Genomic DNA was extracted as 106 

per manufacturer instructions and described previously [11]. In the highly trained cohort (Ironman, n = 115), we 107 

focused on endurance performance, the result of months or years of training (cross-sectional analysis). 108 

Specifically, we used the time to completion of the running event, the biking event, the swimming event, and the 109 

total event.  110 

 111 

Genotype method and SNP selection 112 

The SNPs investigated in this study (Table I) were included based on conformity of 1 of 3 criteria. The first was 113 

that SNPs chosen had to have been previously associated with elite athletic status, exercise responses with 114 

reasonable replication, or exercise traits at baseline. This resulted in 11 SNPs chosen, though it should be noted 115 

that we were unable to genotype the ACE I/D variant (rs4340) using the MassARRAY and previous work failed 116 

to identify an association with baseline fitness levels in the Gene SMART cohort [4]. The second criteria 117 

encompassed SNPs previously investigated but less consistently associated with performance i.e. studies with 118 

equivalent numbers of negative studies or studies related to exercise psychology. The third criteria included SNPs 119 

associated with exercise intolerant disorders and non-exercise respiratory, muscular, or energy storage phenotypes 120 

such as hypertension (HT), cardiovascular disease (CVD), or Type 2 Diabetes Mellitus (T2DM). The experimental 121 

methodology for sample preparation and genotype analysis was performed using the Agena Biosciences 122 

MassARRAY, a Matrix Assisted Laser Desorption Ionisation Time of Flight (MALDI-TOF) mass spectrometer, 123 

which has been described elsewhere [12, 13]. An internal genotyping control SNP (rs17602729, AMPD1), 124 

previously validated in our endurance cohort, was used to ensure the MassARRAY system correctly identified 125 

genotypes [10]. 126 

https://doi.org/10.1007/s00438-019-01639-8
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Table I: Details on the 36 SNPs included in the custom MassARRAY genotyping assay.  127 

CHR Gene SNP ID A1 Phenotype(s) 
Number of studies 

with positive 
results 

Number of participants in 
studies with positive 

results 

Number of studies 
with negative 

results 

Number of participants in 
studies with negative 

results 
Ref 

 Category 1: Well replicated or solely exercise associations 

1 AMPD1† rs17602729 C 
T 

END 
POW 

2 
3 

231 
510 

1 
0 

84 
0 [14] 

6 HFE rs1799945 G END 2 148 - - [14] 
6 VEGFA rs2010963 C END 1 942 - - [14] 

11 ACTN3 rs1815739 C 
T 

END 
POW 

4 
12 

560 
1,484 

14 
5 

3,039 
498 [14] 

11 UCP2 rs660339 T 
C 

END 
POW 

1 
1 

694 
29 

- 
- 

- 
- [14] 

19 CKMM rs8111989 G POW 2 233 - - [14] 
21 COL6A1 rs35796750 T END 1 661 - - [14] 

22 PPARα rs4253778 G 
C 

END 
POW 

5 
2 

740 
260 

- 
1 

- 
81 [14] 

 Category 2: Mixed results 

1 SGIP1 rs9633417 C 
C 

EBH 
POW 

2 
- 

2,838 
- 

- 
1 

- 
753 [15] 

1 LEPR rs1137101 
A 
G 
G 

END 
POW 
EBH 

- 
1 
3 

- 
242 

3676 

1 
- 
- 

846 
- 
- 

[15-
17] 

4 PGC1α rs8192678 A END 4 849 3 508 [14] 

4 UCP1 rs10440457 G EBH 
POW 

2 
- 

2,838 
- 

- 
1 

- 
181 [15] 

4 PGC1α rs6821591 T END 1 235 - - [18] 
5 ADRB2 rs1042713 A POW 1 100 - - [14] 

https://doi.org/10.1007/s00438-019-01639-8
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CHR Gene SNP ID A1 Phenotype 
Number of studies 

with positive 
results 

Number of participants in 
studies with positive 

results 

Number of studies 
with negative 

results 

Number of participants in 
studies with negative 

results 
Ref 

 Category 2 continued: Mixed results 

7 NRF1 rs6949152 G END 1 102 1 75 [19, 
20] 

8 ADRB3 rs4994 C END 1 100 1 81 [14] 
14 BDKRB2 rs1799722 T END 1 316 - - [14] 
15 NRF2 rs7181866 G END 2 129 1 89 [14] 
15 NRF2 rs8031031 T END 1 74 1 89 [14] 

 Category 3: Disease Associations and other 
1 ATP1A2§ rs28933400 T HYP - - 1 388 [21] 
1 LEPR rs12405556 T EBH 2 978 - - [15] 
1 DIO1 rs2294512 A THY 1 547 - - [22] 

2 MSTN rs1805086 G POW 13 3,080 - - [10, 
23] 

4 UCP1 rs2270565 T T2D 2 981 4 1,382 [24-
26] 

6 EDN1 rs5370 T HYP 2 1,004 - - [27, 
28] 

6 HLA-A rs1061235 T END 1 32 - - [16] 

7 IL6 rs1474347 A T2D 1 10,775 - - [29, 
30] 

10 ADRB1 rs1801253 C HYP 
T2D 

1 
1 

61 
947 

- 
- 

- 
- 

[31, 
32] 

12 IGF1 rs121912430 T OBE 1 502 - - [16] 
15 CYP19A1‡ rs2470158 T EBH 1 1,722 - - [15] 
16 Intronic rs238838 C - - - - - [16] 

18 MC4R rs9965495 A T2D 2 6,657 - - [15, 
33] 

https://doi.org/10.1007/s00438-019-01639-8


8 
 

This is a post-peer-review, pre-copyedit version of an article published in Molecular Genetics and Genomics. 
The final authenticated version is available online at: https://doi.org/10.1007/s00438-019-01639-8 

 128 

NB: Grey rows represent intergenic variants included from GWAS conducted by Rankinen et al. [16].  129 

Phenotypes are the traits in which the SNP has been previously implicated. Previous studies and numbers of participants are shown and separated according to 130 
positive or negative results. SNPs are separated into three categories based on phenotype and replication (adapted from Ahmetov I.I. et al,.[14]). END: Endurance, 131 

POW: Power/Strength, T2D: Diabetes, HYP: Hypertension, EBH: Exercise behaviour, OBE: Obesity, †: Inbuilt genotyping control, A1: Tested Allele 132 

‡ excluded in Gene SMART population.  133 

§ Excluded from highly trained population.  134 

 135 

CHR Gene RS# A1 Phenotype(s) 
Number of studies 

with positive 
results 

# Participants 
Number of studies 

with negative 
results 

#Participants Ref 

 Category 3: Disease Associations and other 

19 APOE rs7412 T 
T2D 
END 
OBE 

2 
- 
- 

9,314 
- 
- 

- 
2 
2 

- 
507 
159 

[34-
39] 

22 PPARα rs1800206 G 
HYP 
POW 
T2D 

1 
1 
4 

269 
610 

3,643 

- 
- 
- 

- 
- 
- 

[40-
46] 

MT MTTT rs199474700 G END 1 46 - - [16] 
MT MTND5 rs28359178 A END 1 46 - - [16] 

https://doi.org/10.1007/s00438-019-01639-8
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Data processing 136 

The output files from the MassARRAY platform were converted to PLINK format and analysed for correct 137 

genotypic identification (calling). For the Gene SMART and Ironman populations respectively, SNPs were 138 

excluded from further analysis if they exceeded the following thresholds: 1) SNPs that had a calling rate < 80% 139 

(>20% missing data) (n = 5, n = 3); 2) SNPs with a minor allele frequency < 2% (n = 1, n = 2); 3) SNPs determined 140 

not in hardy Weinberg equilibrium (n=1, n=1) [12]. Subsequent analysis was performed on n = 29 SNPs for the 141 

Gene SMART population and n = 30 SNPs for the Ironman population.  142 

Statistical analysis 143 

We measured normality metrics (skewness and kurtosis) for each phenotype in both populations using the ggplot2, 144 

tidyverse and moments packages in R, to determine if data transformation was necessary from the raw phenotypic 145 

values. We used PLINK V1.90p to perform quantitative linear association tests (95% CI) with both dominant and 146 

recessive models for each cohort, adjusting for age. An additive model was considered but did not differ from the 147 

results obtained from the dominant model. As this was a candidate gene study, SNPs that had a raw p-value < 148 

0.05 were considered nominally significant while variants that had an adjusted p-value (Benjamini-Hochberg 149 

False Discovery Rate (FDR)) < 0.05 were considered significant. This adjustment method represents a good 150 

balance between type I and type II errors and as such minimises false positive results. To avoid multiple testing 151 

burdens with phenotypic traits, we used a separate hypothesis for each quantitative trait. Effect sizes were 152 

determined using raw beta regression coefficient values interpreted as “how much a specific phenotype increased 153 

for each additional X allele at the SNP of interest”.  154 

 155 

RESULTS 156 

The array genotyping control (AMPD1) was identified to be 100% concordant with the 157 

genotyping results from another method (RFLP) in our previous study with the same 158 

population, confirming the validity of the MassARRAY data. 159 

 160 

https://doi.org/10.1007/s00438-019-01639-8
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Table II: Summary of nominally significant variants associated with gains in endurance fitness after exercise training in the Gene SMART cohort. Tests were 161 
performed for both dominant and recessive models for each trait: Wpeak: maximum ergometer intensity at stop (Watts), LT: Lactate Threshold (Watts), VO2max: maximum 162 
oxidative respiration uptake (mL/(kg·min)), TT: time trial completion (seconds). 163 

 164 

CHR = Chromosome, SNP = Single Nucleotide Polymorphism, DOM = Dominant model, REC = Recessive model, MAF = Minor Allele Frequency, FDR = False Discovery 165 

Rate 166 

†P-value adjusted for age 167 

 168 

 169 

Trait CHR SNP Allele 
Gene 

Symbol 
Type of SNP Model MAF P-value† FDR 

Effect size 

(Beta) 

Δ-Wpeak 1 rs17602729 A AMPD1 Stop-gain DOM 0.098 0.009 0.162 13.75 

16 rs238838 A - Intronic DOM 0.11 0.01 0.162 -15.24 

1 rs2294512 C DIO1 Intronic DOM 0.042 0.043 0.393 -16.8 

Δ-LT 14 rs1799722 T BDKRB2 5`UTR variant REC 0.33 0.027 0.24 -17.17 

15 rs8031031 T NRF2 Intronic REC 0.016 0.027 0.24 -37.34 

21 rs35796750 T COL6A1 Intronic REC 0.48 0.035 0.24 11.88 

19 rs7412 T APOE Missense DOM 0.105 0.042 0.64 -11.95 

18 rs9965495 A MC4R Intronic DOM 0.28 0.045 0.64 9.107 

Δ-VO2max 7 rs1474347 C IL6 Intronic REC 0.45 0.00087 0.018 -4.016 

11 rs660339 A UCP2 Missense REC 0.46 0.037 0.38 -2.835 

15 rs8031031 T NRF2 Intronic DOM 0.04 0.04 0.87 4.741 

Δ-TT 6 rs1799945 G HFE Missense DOM 0.21 0.019 0.58 101 

https://doi.org/10.1007/s00438-019-01639-8
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Table III: All nominally significant variants associated with different triathlon event finishing times in the highly trained endurance cohort. SNPs were determined 170 
nominally significant under an arbitrary α<0.05 threshold. FDR adjusted results are shown for all nominal variants. All traits are shown in hours.  171 

CHR = Chromosome, SNP = Single Nucleotide Polymorphism, DOM = Dominant model, REC = Recessive model, MAF = Minor Allele Frequency, FDR = False Discovery 172 

Rate 173 

†P-value adjusted for age 174 

Trait 
CHR SNP Allele Gene Symbol Effect Model MAF P-value† FDR  

Effect size 
(Beta) 

Swim time 7 rs6949152 G NRF1 Intronic REC 0.14 0.019 0.47 0.2459 

19 rs8111989 G CKMM Downstream variant DOM 0.34 0.019 0.31 -0.0903 

6 rs1061235 T HLA-A Non-coding transcript DOM 0.061 0.02 0.31 0.1392 

Cycle time 1 rs9633417 A SGIP1 Intronic DOM 0.1 0.036 0.89 0.3238 

4 rs8192678 A PGC1α Missense REC 0.36 0.038 0.40 0.2965 

4 rs6821591 A PGC1α Non-coding transcript REC 0.45 0.041 0.40 -0.2977 

Run time 1 rs9633417 A SGIP1 Intronic DOM 0.1 0.019 0.61 0.424 

Total-time 1 rs9633417 A SGIP1 Intronic DOM 0.1 0.012 0.37 0.846 

https://doi.org/10.1007/s00438-019-01639-8
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Six variants in five distinct genes were nominally associated with time-to-completion of Ironman events: Nuclear 175 

Respiratory Factor 1 (NRF1: rs6949152), Myostatin (MSTN: rs1805086), Major Histocompatibility complex 176 

class 1A (HLA-A: rs1061235), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 177 

(PPARGC1α: rs6821591, rs6821591), and SH3 Domain GRB2 Like Endophilin Interacting Protein (SGIP1: 178 

rs9633417). The results of our association testing did not change significantly when age was used as a covariate.  179 

In the Gene SMART cohort, eleven variants in nine distinct genes were shown to be nominally associated with 180 

gains in endurance fitness following exercise training (Table II): Adenosine Monophosphate Deaminase 1 181 

(AMPD1: rs17602729), Iodothyronine Deiodinase 1 (DIO1: rs2294512), Bradykinin receptor B2 (BDKRB2: 182 

rs1799722), Nuclear Respiratory Factor 2 (NRF2: rs7181866, rs8031031), (COL6A1, rs39796750), 183 

Apolipoprotein E (APOE: rs7412), Interleukin 6 (IL6: rs1474347), Mitochondrial uncoupling protein 2 (UCP2: 184 

rs660339), and Homeostatic Iron Regulator (HFE: rs1799945).  185 

Interestingly, no variants were identified to be significantly associated with both time-to-completion in the 186 

Ironman cohort and the response to endurance exercise training in the Gene SMART cohort. Only rs1474347 in 187 

IL6 passed correction for multiple testing using the BH-FDR method (FDR: 0.018). The C allele at rs1474347 188 

was associated with VO2max response within the Gene SMART study with an effect size of -4.016mL/(kg·min).  189 

 190 

DISCUSSION 191 

In the present study, we have successfully replicated previously associated exercise-related SNPs using the 192 

combined data from highly trained and moderately trained cohorts. Our main findings identified the rs1474347 in 193 

the IL6 gene to be significantly associated with gains in VO2 max in the Gene SMART cohort after multiple-194 

testing statistical corrections. In addition, 17 genetic variants were found to be associated with either elite 195 

performance or responses to exercise, however, none of these variants were common between these cohorts.  196 

Different genetic signatures likely confer different responses to exercise training via specific molecular pathways. 197 

Therefore, variants that influence pathways responsible for adaptation to moderate training may in part differ to 198 

those that confer response to high intensity endurance training. Additionally, moderately trained cohorts typically 199 

contain individuals with large variability in environmental factors such as diet, sleep and habitual physical activity 200 

https://doi.org/10.1007/s00438-019-01639-8
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patterns, while the inter-individual variability in these measures is smaller in highly-trained cohorts and therefore 201 

less likely to confound results [47]. 202 

Association between genetic variants and exercise responses in the Gene SMART cohort 203 

Located in an intron of the IL6 gene, the rs1474347 variant has been previously associated with T2D traits in a 204 

large-scale study (n = 10,775). The IL6 protein is a pro-inflammatory cytokine with myokinetic (i.e. excreted from 205 

skeletal muscle) functions and is responsible for triggering and maintaining immune processes following post-206 

exercise muscle damage [48]. We found that the C allele at this locus negatively affected the exercise response to 207 

the VO2max phenotype (β = -4.016mL/kg·min) and therefore a homozygous C/C genotype would result in a 208 

VO2max loss of -8.032 mL/kg·min.. The rs1800795 coding variant within the IL6 gene has shown mixed evidence 209 

of exercise associations i.e. variant C = athleticism, G = power [14, 49]. Interestingly, further analysis identified 210 

the rs1474347 C allele to be in strong linkage disequilibrium (LD) with the C allele of rs1800795 (R2 = 0.96). As 211 

such, it is feasible that the LD identified between these variants has contributed to the mixed evidence reported 212 

for association studies implicating the latter variant (rs1800795) in IL6 for exercise traits. We propose that the 213 

rs1474347 variant may reduce the expression of IL6 during acute muscle damage and therefore cause a reduced 214 

local immune response leading to loss of skeletal muscle remodelling and repair. In addition this variant is also 215 

located 2kb upstream of an uncharacterised long non-coding RNA (lncRNA; LOC541472) and therefore, variants 216 

in this region may affect the IL-6 pro-inflammatory pathway or post-translational epigenetic and regulatory 217 

processes. 218 

Association between genetic variants and Ironman performance 219 

The run time (42.2 km marathon), and bike time (180.25 km ride) events in the triathlon are largely leg-based 220 

exercise activities, and therefore we expected a significant overlap of variants associated with these traits. In 221 

contrast, the triathlon swimming event utilises whole body muscle groups, therefore SNPs seen in this test were 222 

anticipated to only be associated with this particular trait. Our findings supported this as the variants associated 223 

with the swim time event were not seen in either of the other isolated finishing times, or indeed the total time to 224 

completion trait. This is also supported by the current literature where elite runners and swimmers are not analysed 225 

collectively [50]. We also note that the two variants nominally associated with the swim time trait are involved in 226 

hypoxic events characteristic of swimming [51]. It is possible that the rs6949152 G allele within the NRF1 gene 227 

results in lower activity of NRF transcription factor and therefore increased levels of Hypoxia Inducible Factor 1 228 
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alpha (HIF1α). This would cause reduced oxidative metabolic processing and therefore lead to the increase in 229 

swim time that is associated with the variant (β = 0.2459 hours). Additionally, the CKMM protein has been shown 230 

to exhibit protective effects during mild hypoxia and therefore e hypothesised that the rs8111989 variant would 231 

increase the functionality of the CKMM protein, resulting in protection against re-oxygenation induce muscle 232 

damage and decreased swim time [52].  233 

Although multiple SNPs examined in this study passed our nominal threshold for significance, which was 234 

unexpected given our relatively small sample sizes, all variants nominally significant in each cohort have 235 

previously been investigated as causative variants in multiple exercise studies.  236 

Using a MassARRAY design of 36 SNPs, we found a significant association for the rs1474347 SNP in IL6 with 237 

the change in VO2max trait in a cohort of moderately trained individuals. Furthermore, 16 other SNPs were shown 238 

to have nominal association with exercise response in the Gene SMART cohort, or Ironman performance in 239 

highly-trained athletes. As such, these markers may be useful in the development of tailored genetic panel 240 

screening and therapeutics in sports science and exercise intolerant disorders. However, to more fully exploit their 241 

applicability in this context, confirmation of the genotypic phenotype on gene function is required. Whilst this is 242 

outside the purview of this study, we have successfully replicated the significance of several exercise genes in 243 

two relatively small exercise study cohorts through nominally significant associations identified in the study 244 

cohorts. We were also able to implicate and ascertain directionality of SNPs between the different phenotypic 245 

traits. Additionally, the different variants associated with each cohort highlight the need to examine multiple 246 

cohorts of differing fitness levels and training capabilities. However, more replication studies are required in 247 

conjunction with functional transcriptomic/proteomic studies to confirm the genes and pathways associated with 248 

exercise adaptations. The use of multi-centre studies and consortia, such as the Athlome study consortium would 249 

be helpful to better facilitate these efforts to further develop the field of exercise genomics research [53]. 250 
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