
Bond University
Research Repository

The Future and Applications of Genetic Algorithms

Randall, Marcus

Published in:
Proceedings: Electronic Technology Directions to the Year 2000

Link to output in Bond University research repository.

Recommended citation(APA):
Randall, M. (1995). The Future and Applications of Genetic Algorithms. In L. C. Jain (Ed.), Proceedings:
Electronic Technology Directions to the Year 2000: May 23-25, 1995 Adelaide, Australia (Vol. 2, pp. 471-475).
IEEE Computer Society.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository
coordinator.

Download date: 24 Oct 2021

https://research.bond.edu.au/en/publications/b859f812-913a-4ddd-a490-87887111a98d

THE FUTURE AND APPLICATIONS OF GENETIC
ALGORITHMS

Marcus Randall
Faculty of Engineering and Applied Science

Griffith University - Gold Coast
PMB 50 Bundall Mail Centre, Q 4217
Ph: (075) 948666, Fax: (075) 948679

Email: EASMARCUS@ipnet.ins.gu.edu.au

Abstract - This paper presents a method of
producing solutions to difficult problems based
on the laws of natural selection. The method,
known as the genetic algorithm, is described in
detail and applied to the cart pole control
problem. The future of genetic algorithms is
discussed in terms of potential commercial
application.

Key Words/Phrases: genetic algorithms,
chromosomes, genes, crossover, mutation, generic
genetic algorithm engines, cart pole problem

1.0 INTRODUCTION

Producing solutions to standard business
problems (such as developing and maintaining
payroll systems) have long been the staple activity
of the computer industry. However as more of
these systems are prepared, this is leaving more
diff icult problems to solve using computer
implementation. Diff icult problems are those
which cannot be readily solved using conventional
techniques/algorithms. Such problems involve
finding solutions which are non-linear (i.e. there
may not be a discernible relationship between input
and output). As these problems are often quite
complex, they are dealt with by artificial
intelli gence / heuristic techniques. One such
subclass of techniques search for an optimum
solution in the space formed by assigning each of
the problem’s parameters to a spatial dimension.
As a result of the non-linearity, the space may be
multimodal so that it contains many local minima as
well as the global minimum (the optimal solution).

There are many such techniques for
searching this space. One of these relies on the
laws of natural selection in order to breed solutions
to problems using genetic modification techniques.
These are known as genetic algorithms.

2.0 HOW GENETIC ALGORITHMS WORK

Genetic algorithms, as the name implies,
are based on the premise of the biological concept
of genetic reproduction. Genetic algorithms
essentially manipulate chromosomes which are
vectors of numbers or values. Each of these values
is referred to as a gene. A number of these
chromosomes is generated and applied to a
particular problem. Each chromosome is then
evaluated to determine how well it satisfies the
problem by a problem specific fitness function.
The chromosomes that produce the most suitable
results are then selected to form the basis of a new
generation of chromosomes. This process can be
likened to Darwinian Selection. The objective is
that from initial populations of chromosomes
containing random values, within acceptable
problem defined limits, a solution or perhaps many
solutions to the problem can be obtained after many
generations have been formed.

Reproduction is carried out in order to
produce a new generation of chromosomes. This
process involves the selection of chromosomes that
will form a mating pool and the application of the
reproduction operators. The aim of the
reproductive process is to form a new generation of
chromosomes whose fitness is greater than that of
the previous generation. There are numerous
means of reproduction. However, a widely used
technique of reproduction will be described here
and consequently used in this study. This is known
as the “remainder stochastic sampling without
replacement” technique [3].

The application of remainder stochastic
sampling without replacement is described by
Goldberg [3] and involves the following steps:

1. Calculate the fitness of each chromosome
The fitness of each chromosome is the measure of
how well the chromosome performs on the problem
and is referred to as fi. The method of remainder
stochastic sampling without replacement makes use
of this fitness, f i , of the chromosome compared to
the proportion of fitness it accounts for over the
whole population. This will be the chromosome's
probabilit y of being represented in the mating pool
and is:

pselect
f

f
i

i

j
j

n=

=
∑

1

(1)

where:
pselecti : The probabilit y of selection of
chromosome i
f i : The fitness of the chromosome i

n: The population of the chromosomes in
each generation

2. For each chromosome, calculate the expected
number of copies of that chromosome that will be
present in the mating pool.
The mating pool consists of chromosomes that best
satisfy the problem conditions and will hence form
the basis of the next generation. The expected
number of each chromosome in the pool is
determined according to its probabilit y of selection,
pselecti , and the number of chromosomes in the
population, n:

e n pselecti i= × (2)

where:
ei is the expected number of copies
of chromosome i in the mating pool

3. Determine the mating pool constituency
The integer component of ei determines how many
copies of chromosome i will be definitely present in
the mating pool. The chromosome then also has
the probabilit y of the fractional component of ei of
having another copy of that chromosome present in
the mating pool.

4. Apply the reproduction operators
The two most frequently used reproduction
operators are crossover and mutation. Crossover
involves combining one part of a chromosome with
another part of a chromosome (both of which are in
the mating pool) to form a new individual.
Mutation is the process where the genes of certain
chromosomes in the new generation randomly
change to another value. Crossover and mutation
are represented diagrammatically in figure 1.

Mutation

1 0 1 0 1 0 0 1 Ö 1 1 1 0 0 0 0 1

Crossover

1 1 1 1 1 1 1 1 1 10 0 0 1 1 1
Ö

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

Figure 1: Common genetic reproduction operators

Chromosomes are selected at random from
the mating pool to engage in crossover. The
offspring of this activity form the new generation.
The crossing over of pairs of chromosomes
continues until the new generation is full . After
this, mutation occurs.

The process of chromosome fitness
evaluation and reproduction continues until the
problem is seen as being adequately satisfied
(meets a certain condition) or a fixed number of
generations have been formed and evaluated. As
there can be a large number of chromosomes to
evaluate and reproduce, genetic algorithms are
computationally intensive [2].

A complication of coding genetic
algorithms is that the chromosomes should be
represented as binary strings [3], even though most
real world problems involve floating point
numbers. This is because the implementation of
crossover and mutation (as well as other
reproduction operators) becomes simpler and the
solution quality better [3].

There are many variations of the operation
of genetic algorithms in terms of which operators to
apply as well as the exact mechanics of those
operators (for instance the mutation probabilit y
rate). For a comprehensive survey of these, the
reader is referred to [3].

3.0 AN APPLICATION OF THE GENETIC
ALGORITHM : THE CART POLE PROBLEM

Genetic algorithms may be applied to a
wide range of optimisation problems. Hence there
are many areas within such disciplines as
engineering and business where they are finding
use.

Determining the weights of a neural
network is an optimisation problem. To
demonstrate the effectiveness of genetic algorithms
in finding a set of appropriate weights for a neural
network and its optimisation abilit y in general, the
well demonstrated cart pole control problem will be
utili sed. Below is a description of the cart pole
problem and its neural network implementation.

The cart pole problem is derived from the
broom balancing (inverted pendulum) problem
where a person attempts to balance a broomstick
with the palm of their hand. In the case of the cart
pole problem, a pole hinges on a moving platform
known as a cart so that it can pivot in the plane of
cart motion only. The objective is for the cart to
balance the pole for as long a time period

(measured in discrete time steps) as possible. In
order to achieve this, the cart controller must
constantly issue appropriate control instructions to
the cart to prevent the pole from exceeding
predefined failure angles (from the vertical axis) or
the cart overshooting the limits of a finite length
track. The cart pole problem has been considered
by most researchers in a uni-dimensional context.
Therefore the cart may either move left or right in
order to balance the pole as in the system ill ustrated
below:

cart motionleft right

Figure 2: The cart balancing the pole on a finite
length track

The problem of balancing the pole on the
cart can be solved using control theory, although it
is a diff icult problem and a solution by this method
is unwieldy and largely impractical. However, if
the controller is implemented by a heuristic
technique (such as the genetic algorithm), it can
learn how to solve the task rather than necessarily
relying upon supplied or prepogrammed domain
knowledge.

It has been determined by Sitte and Geva
[2] that the following four parameters are required
by the cart pole system:

• cart position
• cart velocity
• pole angle
• pole angular velocity
These parameters can be used as inputs to

a single artificial neuron. This neuron simply sums
the products of the weights by these inputs and
thresholds this value to produce either a left or right
control action of constant magnitude. While other
studies [1] have used complex neural architectures,
the cart pole controller can be implemented on a
single neuron. The problem then becomes one of
finding a weight for each of the above parameters.
The following shows the cart pole neuron:

Cart Pole
Neuron

W

W

W

position

velocity

angle

W
angular velocity

Output: The push to
the base of the cart

Figure 3: The single neuron and weights that can
be used to implement the cart pole controller

3.1 COMPUTER IMPLEMENTATION OF
THE CART POLE SYSTEM AND THE
GENETIC ALGORITHM

The genetic algorithm and cart pole
system were simulated in software using Borland
Pascal for MS-DOS. The following set of
parameters (which are for the cart pole system and
the genetic algorithm) is used in this study:

PARAMETER VALUE
Track Length ± 2.4 m
Failure Angles ± 0.21 rad
Gravity 9.8 m/s2

Length of Pole 1 m
Mass of cart 1.0 kg
Mass of pole 0.1 kg
Control Force +10 N or -10 N
Starting condition1 {1,1,0.17,0.18}
Time step (update interval) 0.02 s
Population size 200
Number of allowed
generations

50

Mutation probability 1 in 100 genes
Table 1: Cart pole and genetic algorithm
parameters

3.2 RESULTS

It is diff icult to compare the results
generated in this study with that of other studies as
it uses a unique parameter set and starting condition
(in accordance with the recommendations set out in
[2]). For a standardised comparison of common
adaptive techniques, the reader is referred to [5].

The genetic algorithm found a solution (a
cart pole controller) which could balance the pole
for 1000 seconds (the test recommended by Sitte
and Geva [2]) and longer time periods. The
solution was found by the sixth generation as seen
in the following:

1 The starting condition is in terms of cart position (m),
cart velocity (ms-1), pole angle (rad) and pole angular
velocity (rad-1).

Figure 4: Graph of the balancing time of the best
controller in each generation

The following graphs show the first 20
seconds of the genetic algorithm controller’s
balancing of the pole. The starting condition used
in this study is diff icult for controllers to overcome
[5]. However, as seen by figure 5, the genetic
algorithm’s controller initially moved the cart
nearly to the failure point (the extreme right edge of
the track) and then stabili sed its movement around
the centre of the track for the rest of the time for
which it was balanced. This is similarly reflected in
the pole’s movement (as seen by figure 6).

Figure 5: Graph of the best genetic algorithm
controller - position versus time

 Figure 6: Graph of the best genetic algorithm
controller - angle versus time

The controller is therefore considered to
be proficient at the task because it could overcome
the initial diff icult starting condition and then
stabili se the pole at the centre of the track with the

pole oscill ating only slightly around the vertical
axis. This is an unexpected result, as the fitness
function is only in the form of balancing time, not
stabilising ability.

4.0 GENETIC ALGORITHM
CHARACTERISTICS AND POSSIBLE
IMPROVEMENTS

When the genetic algorithm was applied to
the cart pole problem, it produced stable controllers
which could balance the pole for 1000 seconds and
longer time periods. However for other problems,
genetic algorithms will produce near optimal
solutions [6]. This is one of this technique’s
inherent weaknesses. Therefore genetic algorithms
can be used as a tool for finding good solutions to a
problem, in which total optimality (i.e. the perfect
solution) is not necessary. However in most
problem cases, if the solution to this problem was
exhaustively searched for (i.e. each possible
solution is tested to determine the best solution)
computer processing time would be in the order of
years whereas with genetic algorithms and similar
heuristic techniques, acceptable solutions can be
found in only minutes or hours.

As previously mentioned, researchers have
used a number of variations on the genetic
algorithm formulation in order to improve
performance. However it is believed that dramatic
performance increase can only be gained by
combining genetic algorithms with more traditional
forms of function optimisation from operations
research science and/or other heuristic techniques
such as simulated annealing and tabu search.

5.0 THE FUTURE OF GENETIC
ALGORITHMS

Genetic algorithms can be applied to a
wide range of problems which are NP
(Nondeterministically Polynomial) complete. This
means that if an enumerative search were to be
carried out, it would take an exponential amount of
time [4]. One of the more well researched
examples is the travelli ng salesperson problem,
where a salesperson must find the shortest route
through a number of cities starting and ending at a
base city. However more practical applications
include strategy planning, scheduling / time tabling
and machine learning [7].

To date, the approach to the use of genetic
algorithms has been to develop specific programs
which encode both:

• the problem information

• a genetic algorithm engine (usually
incorporating characteristics inherent
in the particular problem)

As a result of this, finding solutions to optimisation
problems can involve very intensive and costly
development. Increasingly however, software is
being written which separates out these two
characteristics so that the problem information is
input by the user rather than being hard coded. In
order for there to be a wider acceptance of genetic
algorithms for industrial use, the existing generic
genetic algorithm engines need to be able to deal
with a range of different business and scientific
problems. Awareness of the power of genetic
algorithms also needs to be promoted .

Some examples of these products include
Genesis and Genitor [6]. To date however, these
have been mainly of academic interest. In order to
allow more commercial accessibilit y, these
programs would need to be easier to operate
(running under a GUI interface such as MS
Windows) and allow a wide variety of problems to
be solved.

6.0 SUMMARY

The genetic algorithm approach to solving
diff icult problems is outlined in this paper. The
cart pole problem was utili sed with the genetic
algorithms and produced stable controllers which
could balance the pole for more than 1000 seconds.

Genetic algorithm products are beginning
to be produced commercially. However, ease of
use and the abilit y for these products to be used
over a wide variety of problem types will determine
their success.

ACKNOWLEDGMENT

The author wishes to thank Murray
Bourne for his critical reading of the paper.

BIBLIOGRAPHY

[1] Dominic, S.; Das, R.; Withely, D and
Anderson, C. (1991): Genetic Reinforcement
Learning for Neural Networks. Proceeding of the
International Joint Conference on Neural Networks
(July). pp 71-76.

[2] Geva, S. and Sitte, J. (1993): The cart pole
experiment as a benchmark for trainable
controllers. IEEE Control Systems Magazine. Vol
13, Num 5, pp 40-51.

[3] Goldberg, D.E. (1989): Genetic
Algorithms in Search, Optimisation & Machine
Learning. Addison Wesley. Reading, MA. 412
pages.

[4] Luger G; Subblefield (1983): Artificial
Intelligence. Addison Wesley. Reading, MA. 740
pages.

[5] Randall , M.C., Thorne, C.E. and Wild, C
(1994): A Standard Comparison of Adaptive
Controllers to Solve the Cart Pole Problem.
Proceedings of the Second IEEE Australian and
New Zealand Conference on Intelli gent Information
Systems, pp 61 - 65.

[6] Ribeiro, J.L. and Treleaven, P.C.(1994):
Genetic Algorithm Programming Environments.
Computer Vol 27, No 6, pp 28-43

[7] Srinivas M. and Patnaik, L.M.(1994):
Genetic Algorithms : A Survey. Computer Vol 27,
No 6, pp 17-26.

View publication statsView publication stats

https://www.researchgate.net/publication/2641123

