Motor imagery training improves balance and mobility outcomes in older adults
Nicholson, Vaughan; Watts, Naomi; Chani, Yannick; Keogh, Justin WL

Published in:
Journal of Physiotherapy

DOI:
10.1016/j.jphys.2019.08.007

Published: 01/10/2019

Document Version:
Publisher's PDF, also known as Version of record

Link to publication in Bond University research repository.

Recommended citation (APA):
Introduction

Age-related deteriorations in balance and mobility contribute to disability, falls and mortality, and place greater strains on the healthcare system. Allied health professionals such as physiotherapists are faced with increased geriatric admission rates and workload pressures to ensure adequate rehabilitation for their older patients via targeted balance, strength and functional training. Unfortunately, such training may produce smaller benefits or be unfeasible for certain patient groups, such as those with enforced immobilisation or recently discharged from hospital. Furthermore, even for older adults able to undertake appropriate exercise rehabilitation, there are additional barriers such as poor exercise compliance and anxiety relating to unsupervised exercise. Importantly, the last decade has seen growth in the use of less physically demanding interventions, such as motor imagery, that may improve a range of functional outcomes in older populations, including balance and mobility, while potentially minimising some of the barriers identified with traditional exercise interventions.

Motor imagery is the imagining of an action without its physical execution and motor imagery elicits activity in brain regions that are normally activated during actual task performance. During motor imagery, also known as 'mental practice', the mental imagery of the movement or task to be learned is systematically repeated and motor imagery training to promote motor learning and enhance cortical excitability. The use of motor imagery is particularly appealing for older patient groups that may be unable to undertake traditional exercise training due to weakness, surgical restrictions or immobilisation.

Most motor imagery research has been conducted in patients with neurological conditions, as is evident in systematic reviews of trials in stroke and Parkinson’s disease. These reviews have helped to inform training recommendations for these groups. Within these reviews, motor imagery has been shown to promote motor planning and improve upper limb function and balance. Furthermore, motor imagery has recently been shown to be more effective when used in conjunction with action observation.

ABSTRACT

Question: Does motor imagery training improve measures of balance, mobility and falls in older adults without a neurological condition? Design: Systematic review and meta-analysis of randomised controlled trials. Participants: Adults aged at least 60 years and without a neurological condition. Intervention: Three or more sessions of motor imagery training. Outcome measures: The primary outcomes were balance measures (such as single leg stance and Berg Balance scale) and mobility measures (such as gait speed and the Timed Up and Go test). Falls were a secondary outcome measure. Risk of bias was evaluated using the PEDro Scale, and overall quality of evidence was assessed using the Grades of Research, Assessment, Development and Evaluation (GRADE) approach. Results: Twelve trials including 356 participants were included in the systematic review and 10 trials (316 participants) were included in the meta-analyses. All trials included either apparently healthy participants or older adults after orthopaedic surgery. There was evidence that motor imagery training can significantly improve balance (SMD 1.03, 95% CI 0.25 to 1.82), gait speed (MD 0.13 m/s, 95% CI 0.04 to 0.22) and Timed Up and Go (MD 1.64 seconds, 95% CI 0.79 to 2.49) in older adults; however, the quality of evidence was very low to no. No data regarding falls were identified. Conclusion: Motor imagery training improves balance and mobility in older adults who do not have a neurological condition. These results suggest that motor imagery training could be an adjunct to standard physiotherapy care in older adults, although it is unclear whether or not the effects are clinically worthwhile.

© 2019 Australian Physiotherapy Association. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
for balance activities.23 Action observation, like motor imagery, is a motor simulation technique24,25 that involves an individual watching motor actions performed by someone else, leading to the activation of the same neural structures responsible for the execution of those same actions.23

To date, no systematic review has assessed the impact of motor imagery training on balance and mobility in non-neurological older adult participants. Inspection of the literature reveals that a wide variety of motor imagery intervention protocols have been utilised for older adults, with differences in training duration, imagery type, frequency of exposure, and tasks trained, as well as outcome measures identified. There are also many examples of methodological concerns among these studies24,25 and conflicting findings regarding the effects of motor imagery training on balance and mobility in older adults.25,26 These issues within the motor imagery literature make it difficult to observe the overall effectiveness of motor imagery for improving balance and mobility in older adults.

Therefore, the research question for this systematic review and meta-analysis is:

Does motor imagery training improve measures of balance, mobility and falls in older adults without a neurological condition?

\section*{Method}

This systematic review adhered to the statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions (PRISMA)27 and was prospectively registered.

\section*{Identification and selection of studies}

A comprehensive search of five electronic databases (Medline, EMBASE, CINAHL, Physiotherapy Evidence Database (PEDro), and PsychINFO) was performed from the earliest records to January 2019. The search strategy was based around synonyms and subject headings of the key concepts of motor imagery and older adults combined with the primary outcomes relating to balance and mobility. The detailed search strategy for each database is presented in Appendix 1 (see eAddenda for Appendix 1). The database searches were supplemented by reference checks of the included articles. Studies published in English and French were included; those in any other language were noted but excluded from analyses.

Trials assessing the effectiveness of motor imagery on balance and mobility outcomes were included if they met the inclusion criteria listed in Box 1. Furthermore, the detail of motor imagery training dosage (time per session, weeks of training) and information relating to the activities trained needed to be reported. A two-stage screening process was used to select relevant trials for this review. In the first stage, two reviewers (NW and YC) independently considered information from the titles and abstracts and excluded clearly irrelevant studies. In the second stage, the full text for each potentially eligible study was retrieved and assessed against the eligibility criteria by two independent reviewers (NW and YC). Disagreements were resolved by discussion with a third reviewer (VN or JK).

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
\textbf{Box 1. Inclusion criteria.} \\
\hline
\textbf{Design} \\
• Randomised controlled trials \\
• Adults with a mean age of at least 60 years and without a neurological condition \\
\textbf{Intervention} \\
• A motor imagery intervention (with or without an action observation intervention) performed on at least three occasions \\
• Sufficient reporting of dose (eg, time per session, sessions completed, weeks of training) \\
\textbf{Outcome measures} \\
• At least one objective measure of mobility or balance at baseline and follow-up \\
\textbf{Comparisons} \\
• Motor imagery versus either no intervention or placebo/sham intervention \\
• Motor imagery plus additional intervention (eg, usual care) versus the additional intervention only (eg, usual care only) \\
\hline
\end{tabular}
\end{table}

\section*{Assessment of characteristics of studies}

\subsection*{Study quality}

Study quality was assessed using the PEDro Scale by downloading the available scores from the PEDro database. If a study had not been rated on the PEDro database, it was assessed independently by two authors (NW and YC).28 The total score on the PEDro Scale is the addition of ‘yes’ (criterion is clearly satisfied) responses for Items 2 to 11 (Item 1 is not used for calculation of the total PEDro Scale as it relates to external validity). The 10 criteria contribute 1 point each, thereby providing a score range of 0 to 10. A PEDro score of ≥ 6 out of 10 was considered to represent high quality.29 The PEDro score is a valid measure of methodological quality and completeness of reporting, and has moderate levels of inter-rater reliability.30,31

\subsection*{Participants}

Trials were included if the mean age of the trial participants was at least 60 years. Studies that included participants who were regarded as apparently healthy or were recovering from elective orthopaedic surgery were eligible. Studies that included participants with a neurological condition such as stroke or Parkinson’s disease were ineligible.

\subsection*{Intervention}

To be eligible for inclusion, trials had to evaluate a motor imagery training intervention targeting balance or mobility. The intervention had to include multiple motor imagery training sessions. Trials were included if they used motor imagery as an intervention in isolation or if motor imagery was used as an intervention in addition to standard care. Motor imagery interventions that included the combination of motor imagery and action observation (observing a video or demonstration of an activity) were also included.

\subsection*{Outcomes measures}

To be eligible for inclusion, trials had to report on a post-intervention objective outcome measure of balance or mobility. For this review, balance outcomes included static (eg, single leg stance) and dynamic measures of balance (eg, four step square test) as well as tasks that required participants to walk with a narrow base of support (eg, tandem type walking) or stepping on pre-determined targets (eg, obstacle course). Mobility outcomes were limited to tasks that primarily involved normal straight-line walking with no restraint on stance width or obstacle avoidance, such as the timed 10-m walk test or the Timed Up and Go test (TUG). The incidence of falls was also included as a secondary outcome measure.

\subsection*{Comparison}

The contrast between the randomised interventions was required to be motor imagery versus no intervention or sham intervention. Studies with co-interventions were included provided the co-intervention was delivered to both groups (eg, motor imagery plus usual care versus usual care).

\section*{Data analysis}

A customised data extraction table was applied to each eligible trial by one of two study authors (NW or YC) and extracted data were checked for accuracy and completeness by a senior author (VN or JK). The extracted data included information regarding study design, participants (age, gender), intervention (type of imagery, frequency of
continuous variables) were entered in Review Manager from one point to another and included tasks that primarily target mobility. Mobility was defined as the ability to move independently with a narrow base of support or stepping on pre-determined measures of balance as well as tasks that required participants to perform involuntarily normal straight-line walking or stair climbing (e.g., timed 10-m walk test, TUG, stair climb test) as these assessments are widely involved compared with a fear of falling.41

Balance and mobility measures were analysed separately because, although mobility requires inherent dynamic balance,5 these outcomes may assess different aspects of function relevant to the older adult. For this review, balance outcomes included static and dynamic measurement scales used between studies, the standardised mean difference (SMD) with 95% CI was calculated for each study and then pooled to compare the control and intervention groups. For mobility measures, gait speed and TUG were assessed across multiple studies; therefore, mean differences (MD) with 95% CI were calculated for gait speed and TUG, so a clinically meaningful unit (e.g., gait speed in m/s or time to complete the TUG in seconds) could be presented.

Meta-analysis was completed using RevMan52 version 5.3 to provide evidence of the pooled effect size of the motor imagery interventions. Heterogeneity was tested with chi-square measured by inspection of the I² values that described the percentage of the variability in effect estimates that was due to heterogeneity rather than sampling error. A fixed-effect model was used if the I² value was ≤ 50% and a random-effects model was used if the I² value was > 50%. Additionally, where substantial (> 50%) heterogeneity was observed,6 sensitivity analyses were conducted to check whether the heterogeneity was caused by a single study. In this case, the leave-one-out approach was performed by removing the outlying study.

The overall quality of evidence was assessed for each intervention contrast and rated as high, moderate, low, or very low, as recommended by the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system.21 The GRADE classification was downgraded one level per study flaw, from high quality, if any of the following flaws were present: design limitation (if the majority of studies in the meta-analysis had a PEDro score < 6); inconsistency of results (substantial heterogeneity, I² > 50%) and imprecision based on small samples (< 400 for each pooled outcome). This review did not consider the indirectness criterion because the eligibility criteria ensured a specific population with relevant outcomes. In addition, the review did not assess publication bias due to insufficient study numbers (ie, < 10 studies per meta-analysis).

Sensitivity analyses

Sensitivity analyses were conducted to examine the robustness of the primary meta-analyses for balance and mobility measures. The sensitivity analyses explored the effect of including only high-quality (PEDro ≥ 6) studies in the analysis, to account for methodological aspects that may bias the overall result.

Results

Flow of studies through the review

The electronic database search resulted in a yield of 3449 articles, which was reduced to 2380 after duplicates were removed. Following title and abstract screening, 52 articles were obtained in full text and further assessment reduced the yield to 12 articles that were included in the systematic review (Figure 1). Ten studies were included in the meta-analysis, with two studies not included in the meta-analysis due to insufficient post-intervention data.25,38

Characteristics of studies

Quality

The mean score of the included trials was 4.8 (SD 1.6) on the PEDro Scale. Four39–42 of the 12 included studies were regarded as high-quality studies as they had PEDro scores of ≥ 6. Blinding, concealed allocation and intention-to-treat analysis were the main items susceptible to bias amongst the included studies. The PEDro Scale responses for individual items and the total score for each included randomised controlled trial are presented in Table 1.

Participants

The 12 included studies were conducted between 1985 and 2018, and involved 356 participants (Table 2). The mean age of participants included range from 64 to 79 years. The majority of participants were female (66%). Eight studies24–26,38,42–45 assessed apparently healthy older adults, three studies39,40,46 assessed older adults following non-traumatic orthopaedic surgery (knee or hip arthroplasty), and one study assessed apparently healthy older adults with a fear of falling.41

Intervention

All trials included at least three sessions of motor imagery training (Table 2). Motor imagery training was undertaken in the home in six trials25,41,42,45 in a clinic or laboratory setting in four trials24,38,43,44 in a hospital then at home in three trials39,40,46 and in a library for one trial.39

sessions, setting, supervision), comparison group characteristics (standard care, sham imagery, no training), outcome measures and main findings.

Means and standard deviations for post-intervention outcomes (all continuous variables) were entered in RevMan (RevMan) software version 5.3. Some outcomes used for mobility and balance function indicate improvement by increases in values (eg, gait speed) while others indicate improvement by decreases in values (eg, TUG time). To adjust for the different outcomes, for those outcomes that report improvement with increasing values (eg, TUG time). To adjust for the different outcome directions, for those outcomes that report improvement with decreasing values, the values were transformed by multiplying the values by −1. Raw data (means and SD) of post-intervention data were extracted from each paper. Authors were contacted if there were insufficient published data for analysis.

Balance and mobility measures were analysed separately because, although mobility requires inherent dynamic balance, these outcomes may assess different aspects of function relevant to the older adult. For this review, balance outcomes included static and dynamic measures of balance as well as tasks that required participants to walk with a narrow base of support or stepping on pre-determined targets. Mobility was defined as the ability to move independently from one point to another and included tasks that primarily involved normal straight-line walking or stair climbing (eg, timed 10-m walk test, TUG, stair climb test) as these assessments are widely used to quantify mobility capabilities in older adults.35

For balance, due to differences in outcomes assessed and measurement scales used between studies, the standardised mean difference (SMD) with 95% CI was calculated for each study and then pooled to compare the control and intervention groups. For mobility measures, gait speed and TUG were assessed across multiple studies; therefore, mean differences (MD) with 95% CI were calculated for gait speed and TUG, so a clinically meaningful unit (eg, gait speed in m/s or time to complete the TUG in seconds) could be presented.

Figure 1. Flow of studies through the review.

Records identified
- database searches (n = 3449)
- other sources (n = 1)

Records excluded
- duplicates (n = 1070)
- ineligible based on title and abstract (n = 2329)

Full-text articles assessed for eligibility (n = 52)

Excluded after full text evaluation (n = 40)
- no balance or mobility outcome (n = 15)
- non-randomised (n = 8)
- non-training study (n = 6)
- action observation only (n = 3)
- non-English or French language (n = 3)
- no comparator (n = 2)
- too young (n = 1)
- not healthy (n = 1)
- single session only (n = 1)

Studies included in qualitative synthesis (n = 12)
Studies included in meta-analysis (n = 10)
trial. Motor imagery was delivered via audio guidance in six studies, where participants listened to pre-recorded instructions. Four studies used trainer-guided motor imagery, which involved a trainer (e.g., a physiotherapist) reading a motor imagery script in real time to guide participants’ imagery practice. One study used independent motor imagery that was preceded by initial training and written instructions, and one study used video-guided motor imagery (combined action observation with motor imagery). Motor imagery interventions ranged from three sessions conducted over consecutive days to seven sessions per week for 6 weeks. Three studies prescribed three sessions per week for 8 weeks. The duration of motor imagery sessions ranged from <30 seconds to 30 minutes including rest breaks. The total time spent performing motor imagery training over the course of the interventions ranged from 2 minutes to 21 hours. The tasks trained during the motor imagery interventions included static standing, rising from a chair, mobility tasks such as the TUG, and knee joint movements following knee joint surgery. Other study, participants were instructed to imagine muscle contractions and knee joint movements following knee joint surgery.

Adherence

Adherence to motor imagery was poorly reported and was only explicitly measured in one study. In that 5-week program, 90% of participants reported listening to the imagery tracks as prescribed during the preoperative and postoperative periods.

Effects of motor imagery on balance and mobility outcomes

Balance

Meta-analysis of six studies with a total of 114 participants provided very low-quality evidence that motor imagery had a positive effect on balance when compared with controls (SMD 1.03, 95% CI 0.25 to 1.82, I² = 67%) (Figure 2, see also Figure 3 on the eAddenda for a detailed forest plot). The evidence was downgraded from high quality to low quality due to design limitations (four of six trials had PEDro of <6) and imprecision (sample size <400). Meta-analysis of three studies with a total of 107 participants provided low-quality evidence that motor imagery had a positive effect on balance when compared with controls (MD 0.13 m/s, 95% CI 0.04 to 0.22, I² = 0%) (Figure 4, see also Figure 5 on the eAddenda for a detailed forest plot). The evidence was low quality due to design limitations (two of three trials had PEDro of <6) and imprecision (sample size <400).

Mobility

The influence of motor imagery on mobility was assessed with separate meta-analyses for gait speed and TUG, to allow for presentation of results as mean difference in their respective units. Meta-analysis of three studies with a total of 107 participants provided low-quality evidence that motor imagery had a positive effect on gait speed when compared with controls (MD 0.13 m/s, 95% CI 0.04 to 0.22, I² = 0%) (Figure 6, see also Figure 7 on the eAddenda for a detailed forest plot). The evidence was low quality due to design limitations (four of six trials had PEDro of <6) and imprecision (sample size <400).

Falls

None of the eligible studies reported data on falls incidence.

Sensitivity analyses

A sensitivity analysis could only be conducted for the TUG, as there was only one high-quality study within the overall meta-analysis for both balance and gait speed. When only high-quality trials (PEDro score ≥ 6) were included in the meta-analysis for the TUG (n = 2, total of 111 participants), motor imagery still had a positive effect on time to complete TUG compared with controls (MD 1.64 seconds, 95% CI 0.79 to 2.49, I² = 0%) (Figure 6, see also Figure 7 on the eAddenda for a detailed forest plot). The evidence was low quality due to design limitations (four of six trials had PEDro of <6) and imprecision (sample size <400).

Discussion

This systematic review provides evidence that motor imagery can improve measures of balance and mobility, such as gait speed, in neurologically normal older adults. These findings partly align with a recent systematic review and meta-analysis of data from stroke patients, which also identified improvements in balance and mobility outcomes following motor imagery training. Encouragingly, the meta-analyses for gait speed and TUG had mean differences that would be considered clinically worthwhile. The mean difference of 0.13 m/s for gait speed exceeds the estimated level of substantial change (0.1 m/s) for older adults and aligns with the minimal detectable change identified for short-term rehabilitation in older adults.

Table 1

PEDro criteria and scores for included trials (n = 12).

<table>
<thead>
<tr>
<th>Study</th>
<th>Random allocation</th>
<th>Concealed allocation</th>
<th>Groups similar at baseline</th>
<th>Participant blinding</th>
<th>Therapist blinding</th>
<th>Assessor blinding</th>
<th>< 15% dropouts</th>
<th>Intention-to-treat analysis</th>
<th>Between-group difference reported</th>
<th>Point estimate and variability reported</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batson</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>3</td>
</tr>
<tr>
<td>Chiochirien</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>5</td>
</tr>
<tr>
<td>Fantler</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>5</td>
</tr>
<tr>
<td>Goudarzian</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>5</td>
</tr>
<tr>
<td>Hamel and Lajoie</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>Jacobson</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>7</td>
</tr>
<tr>
<td>Kim</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>6</td>
</tr>
<tr>
<td>Linden</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>6</td>
</tr>
<tr>
<td>Marusic</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>4</td>
</tr>
<tr>
<td>Moshref-Razavi</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>3</td>
</tr>
<tr>
<td>Moukarzel</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>7</td>
</tr>
<tr>
<td>Tunney</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>4</td>
</tr>
</tbody>
</table>

N = no, PEDro = Physiotherapy Evidence Database, Y = yes.
However, the con-worthwhile.

Table 2
Characteristics of the included trials.

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Motor imagery intervention description; setting</th>
<th>Target movement/activity trained during MI</th>
<th>Comparator/control group description; setting</th>
<th>Outcome measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batson (2007)</td>
<td>N = 6 apparently healthy</td>
<td>20 min of physical practice (eg, sit to stand) + 20 min auditory-guided MI with visual and kinaesthetic cueing; 2/wk for 6 wks; library</td>
<td>Functional tasks such as rising from a chair and body scanning</td>
<td>20 min physical practice (eg, sit to stand) + 20 min educational control (eg, falls prevention, footware); 2/wk for 6 wks; library</td>
<td>TUG (s) BBS (0 to 56)</td>
</tr>
<tr>
<td>Chiacchio (2015)</td>
<td>N = 10 apparently healthy</td>
<td>Auditory-guided MI: 20 min MI; 3/wk for 4 wks; clinic</td>
<td>Standing and reaching tasks</td>
<td>Control group instructed not to actively listen to tape, 3/wk for 4 wks; clinic</td>
<td>FRT forward, left, right (cm) Body sway: length (cm) and velocity (cm/s) Single leg stance (s)</td>
</tr>
<tr>
<td>Farsley (1985)</td>
<td>N = 30 apparently healthy</td>
<td>Trainer-guided MI: 10 min concentrating of guided relaxation and MI over 3 d; clinic</td>
<td>Single leg balance</td>
<td>Physical one leg balance + 10 min progressive relaxation (as per start of intervention training) over 3 d; clinic</td>
<td>TUG (s)</td>
</tr>
<tr>
<td>Goudarzian (2017)</td>
<td>N = 24 apparently healthy</td>
<td>Trainer-guided: 10 min relaxation then 5 to 8 mins MI; 3 x/wk for 8 wks; laboratory</td>
<td>TUG</td>
<td>Nil training, continue with normal daily routine</td>
<td>TUG (s) 10MWT (s) 6-m tandem Gait (s)</td>
</tr>
<tr>
<td>Hamel and Lajoie (2005)</td>
<td>N = 20 apparently healthy</td>
<td>Auditory-guided: 5 min relaxation followed by 30 kinaesthetic MI; 7/wk for 6 wks; home</td>
<td>Static standing on a platform</td>
<td>Nil training, continue with normal daily routine</td>
<td>Body sway (anteroposterior and lateral)</td>
</tr>
<tr>
<td>Jacobson (2016)</td>
<td>N = 58 post-orthopaedic surgery</td>
<td>Auditory-guided MI with background relaxation music; 20 mins, 7/wk for 5 wks (2 wks preop, 3 wks postop); hospital and home</td>
<td>Activities to facilitate mind-body connections to promote confidence in operated knee, plus guided imagery related to standing posture, walking and stairs</td>
<td>20 min commercially available audio recordings (poetry, short stories); 7 x/wk for 5 wks (2 wks preop, 3 wks postop); hospital and home</td>
<td>10MWT (s)</td>
</tr>
<tr>
<td>Kim (2012)</td>
<td>N = 91 apparently healthy, with FoF</td>
<td>Auditory-guided relaxation and MI: 10 to 15 mins, 2/wk for 6 weeks; home</td>
<td>Guided relaxation and progressively challenging locomotor tasks such as walking in the house and on an icy road</td>
<td>Audiotape-guided relaxation and music: 10 to 15 mins, 2/wk for 6 wks; home</td>
<td>TUG (s)</td>
</tr>
<tr>
<td>Linden (1989)</td>
<td>N = 23 apparently healthy</td>
<td>Auditory-guided: 6 mins daily for 8 d to assist with imagining walking up a ramp, balance beam and step off, home</td>
<td>Obstacle course</td>
<td>Memory games; 6 mins daily for 8 d; home</td>
<td>Obstacle course with narrow gait and balance reactions (0 to 20)</td>
</tr>
<tr>
<td>Marusic (2018)</td>
<td>N = 21 post-orthopaedic surgery</td>
<td>Standard physical rehabilitation + video-guided (action observation) followed by MI: 30 mins, 3/wk for 8 wks; hospital and home</td>
<td>Locomotor tasks such as normal walking, stair climbing, walking on narrow surfaces</td>
<td>Standard physical rehabilitation plus watching documentary videos; 3/wk for 8 wks; hospital and home</td>
<td>TUG (s) Gait speed (m/s) Four Step Square Test (s)</td>
</tr>
<tr>
<td>Moshref-Razavi (2017)</td>
<td>N = 24 apparently healthy</td>
<td>Trainer-guided: 10 min relaxation, 15 min MI, 3/wk for 8 wks; laboratory</td>
<td>Single leg balance</td>
<td>Nil training, continue with normal daily routine</td>
<td>TUG (s)</td>
</tr>
<tr>
<td>Moukarzel (2017)</td>
<td>N = 20 post-orthopaedic surgery</td>
<td>60 min physical rehabilitation (passive ROM, quads strength, gait re-ed) + 15 min trainer-guided MI; 3/wk for 4 wks; hospital and home</td>
<td>Muscle contractions and knee joint movement</td>
<td>60 min physical rehabilitation (passive ROM, quads strength, gait re-ed), 3/wk for 4 wks; hospital and home</td>
<td>TUG (s)</td>
</tr>
<tr>
<td>Tunney (2006)</td>
<td>N = 19 apparently healthy</td>
<td>Participant derived with a live demonstration and scripted verbal instruction; 4 sessions over 48 hours; home</td>
<td>Ascending/descending stairs with a 4-point stick</td>
<td>Nil training, continue with normal daily routine</td>
<td>Stair climbing (0 to 20)</td>
</tr>
</tbody>
</table>

BBS = Berg Balance Scale, F = female, FoF = fear of falling, FRT = Functional reach test, M = male, MI = motor imagery, NR = not reported, TUG = Timed Up and Go test, 10MWT = 10-m walk test, re-ed = re-education, ROM = range of motion.

* Age is presented as mean, mean (SD), or range.

* Not included in meta-analysis due to lack of post-intervention data.

Similarly, the mean difference of 1.64 seconds for TUG exceeds the minimum clinically important difference of approximately 1.3 seconds identified for patients with lower limb osteoarthritis. However, the confidence interval around each of these estimates does extend below the nominated threshold; therefore, it must be acknowledged that the effects may or may not be clinically worthwhile.

It is more challenging to identify the clinical significance of improvements seen for balance, because although an SMD of 1.03 indicates a moderate-to-large effect size, multiple balance outcomes were assessed, a substantial degree of heterogeneity was identified, and large 95% CIs were present in the meta-analysis. While one of the strengths of this systematic review and meta-analysis was that it included only randomised controlled trials, a
limited number of high-quality studies were included in the meta-analysis. This is highlighted by the GRADE quality ratings of low and very low assigned to the outcomes of the meta-analyses. Such ratings suggest that the true effect may be markedly different from the estimated effect.17 Downgrading of quality was largely based on design limitations (predominantly low-quality studies: PEDro < 6) and low sample sizes. The low PEDro scores were primarily related to issues with allocation concealment, blinding of assessors and intention-to-treat analysis. Another limitation was that post-intervention data were used instead of change data. Change data may have provided a more precise estimate of effect of motor imagery training on balance and mobility but change data was not consistently presented across all studies. Post-intervention data were used in preference to change data because these were the most commonly provided data in studies. Despite these limitations, it is important to note that the positive results associated with motor imagery training still existed for TUG when only high-quality studies were included in the meta-analysis. Such a result is in contrast to a previous review of stroke patients, where the benefits in lower limb function and gait speed were no longer evident when only high-quality studies were included in analyses.12 The effect of assessing only high quality studies for balance and gait speed was not possible, as each meta-analysis included just one high quality study.

Clearly, further motor imagery research that incorporates appropriate research design characteristics including blinded assessors, concealed allocation and larger sample sizes will help to provide more robust evidence in this area. Future studies should also focus on patient groups that are less able to undertake traditional rehabilitation, such as those with enforced immobilisation or restricted weight-bearing, as they may most benefit from motor imagery training.

Table 3

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Trials</th>
<th>Participants (n)</th>
<th>SMD or MD (95% CI), (GRADE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance</td>
<td>6</td>
<td>114</td>
<td>SMD 1.03 (0.25, 1.82), 67% Very low</td>
</tr>
<tr>
<td>Gait speed (m/s)</td>
<td>3</td>
<td>107</td>
<td>MD 0.13 (0.04, 0.22), 0% Low</td>
</tr>
<tr>
<td>TUG (s)</td>
<td>6</td>
<td>175</td>
<td>MD 1.64 (0.79, 2.49), 0% Low</td>
</tr>
</tbody>
</table>

MD = mean difference, SMD = standardised mean difference, TUG = Timed Up and Go test.

* Downgraded due to design limitations (five of six trials had PEDro of < 6), imprecision (low sample size) and substantial heterogeneity.

* Downgraded due to design limitations (two of three trials had PEDro of < 6), imprecision (low sample size).

* Downgraded due to design limitations (four of six trials had PEDro of < 6) and imprecision (low sample size).

Further information regarding program compliance and participant perceptions of motor imagery and action observation should also be included in future studies.

Another strength of this systematic review was that all but three studies24,42,43 prescribed a motor imagery training intervention of at least 4 weeks, which appears to be a sufficient duration to promote gains in performance.18 Although not established for balance or mobility measures, a recent meta-analysis identified that a training period of 4 weeks, involving a training frequency of three times per week and a session duration of 15 minutes, was associated with enhanced strength improvements following motor imagery training.22 Furthermore, most motor imagery training studies in the present review were conducted in a group setting or were self-directed with the aid of audiocassette guidance. This has clinical relevance, as the use of effective training programs in group settings or unsupervised environments reduces therapist burden,3 reduces ‘wasted’ time outside of structured therapy5 and typically represents low-cost interventions,25 suggesting that the inclusion of motor imagery training in rehabilitation programs for older adults is very feasible.

The improvements in mobility associated with motor imagery training identified in this systematic review are thought to be largely explained by improvements in motor planning that promote motor learning.19,55 Motor learning associated with motor imagery training has long been established in sport,56 in rehabilitation settings,7,58 and more recently in older adults.59 Motor imagery elicits activity in brain regions that are normally activated during actual task performance60,61 and the spatiotemporal characteristics of imagined and
What was already known on this topic:
In older people, multiple sessions of mental imagery training clearly improves measures of balance and mobility. Due to limitations in the amount and quality of the available data, it is not yet possible to confirm whether these benefits are large enough to be considered worthwhile.

What this study adds: In older people, multiple sessions of mental imagery training after stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2013;84:938–947.

Ethics approval: Not applicable.

Acknowledgements: Thank you to librarians David Honeyman and Lindy Ramsey for their assistance with developing database search strategies.

Provenance: Not invited. Peer reviewed.

Correspondence: Vaughan Nicholson, School of Allied Health, Australian Catholic University, Brisbane, Australia. Email: vaughan.nicholson@acu.edu.au

References

Table

<table>
<thead>
<tr>
<th>Study</th>
<th>MD (95% CI)</th>
<th>Fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moukarzel 2017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8. Mean difference (95% CI) in the effect of motor imagery training versus no intervention or sham on time to complete the Timed Up and Go test (high-quality studies only).
