Police Injuries in Profile
Lyons, Kate; Orr, Rob Marc; Pope, Rodney R; Stierli, Michael

Published: 17/10/2017

Document Version:
Peer reviewed version

Link to publication in Bond University research repository.

Recommended citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.
Police injuries in profile

1Kate Lyons, 2Rob Orr, 3Rodney Pope, 4Mick Stierli

1HSM, Bond University
2Tactical Research Unit - North, Bond University
3Tactical Research Unit - South, Charles Sturt University
4NSW Police
Introduction

• In tactical populations such as the military and fire-fighters the lower extremity contributes between 31.7% and 66.5%.

• In the current law enforcement literature the lower extremity contributes between 13.2% and 29.7%.
Introduction

• Law enforcement personnel are required to perform tasks carrying loads which can range from 3-15kg.

• They can be required to perform arduous tasks in situations that are unpredictable and can be life threatening in some circumstances.

• Therefore they may be at a higher risk of musculoskeletal injury when compared to many other occupations.
Aim

• To determine the musculoskeletal profile of lower extremity injuries within a state law enforcement agency.
Methods

• Retrospective cohort study
• Data were collected by the NSW Police Force over a 7-year period (2009 - 2016). Data not meeting the specific definitions for musculoskeletal injury were excluded using a tiered system with data cleaned to ensure no incomplete entries and recoded to improve data integrity.
• Ethics approved by Bond University HREC, Protocol Number RO15360, with compliant consent waiver
Methods

• Definitions
 – Injury: ‘harm to the body which occurred as a result of energy applied to the body whilst on duty’
 – MSK injuries: ‘injuries/incidents of a musculoskeletal nature, affecting the muscles, nerves, tendons, joints and cartilage’
 – Lower extremity: ‘injuries to toe/s, foot, ankle, knee, groin, hip/s, leg-upper, leg-lower and leg-not classified’
Methods

• Data Analysis
 – Initially completed descriptively
 • Frequencies determined and means with standard deviations (SD) where applicable
 – Chi-square tests of independence (R x C)
 • Key descriptive variables between genders
 – Cramer’s V then calculated
 • Strength of any significant association
 • Level of significance set at < .001
Results

Of the initial 65,579 incidents:

- 12,452 (19%) were musculoskeletal lower limb incidents.
- The knee was the most commonly injured site (31.4%)
- Sprains and strains were the most common nature of injury (42.3%)
- Arresting offenders (24.2%) was the most common cause of injury.
- Slips/trips/falls (37.8%) were found to be the most common cause of injury.
Results

Body Site by frequency

All Officers

- Leg upper: 31%
- Knee: 1%
- Foot: 0%
- Hip/s: 4%
- Ankle: 10%
- Toe/s: 7%
- Leg not classified: 6%
- Multiple body sites (1 or more lower extremity): 2%
- Multiple body sites (only lower extremity): 2%
- Groin: 5%

Male Officers

- Leg lower: 33%
- Knee: 0%
- Foot: 0%
- Hip/s: 10%
- Ankle: 7%
- Toe/s: 1%
- Leg not classified: 5%
- Multiple body sites (1 or more lower extremity): 2%
- Multiple body sites (only lower extremity): 1%
- Groin: 0%

Female Officers

- Leg lower: 33%
- Knee: 0%
- Foot: 0%
- Hip/s: 10%
- Ankle: 6%
- Toe/s: 1%
- Leg not classified: 4%
- Multiple body sites (1 or more lower extremity): 3%
- Multiple body sites (only lower extremity): 1%
- Groin: 0%
Results

• Variations were found between gender. Most notably within the incident activity (p<.001), where males had a 10.6% higher rate for arresting an offender and females an 8.6% higher rate for walking/running.

• The mean number of hours worked prior to injury was 6.12±3.96, mean shift length = 10.34±3.52 hours.
Discussion

• The leading sites of injuries (knees and ankles) were similar to that of other tactical populations.

• The tendency for injuries to occur later in a shift suggest that fatigue may play a part.
Discussion

• For any Police Force unit, injuries have consequences that can range from a couple of days for recovery and rehabilitation to longer periods of with many lost working days and increased future injury risk.

• Evidence based lower extremity injury reduction measures and return-to-work protocols may be of use in this population. Work hardening should include specific tasks (like arresting an offender) and progress to functionality over a full shift length.
References

References

