Running Speed, Power, and Aerobic Fitness relate to Work Sample Test Battery Performance in Deputy Sheriff Recruits
Wall, Sullivan; Moreno, Matthew R.; Dulla, Joseph; Dawes, Jay J.; Orr, Rob Marc; Lockie, Robert G.

Published: 01/10/2018

Document Version:
Peer reviewed version

Link to publication in Bond University research repository.

Recommended citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.
Running Speed, Power, and Aerobic Fitness relate to Work Sample Test Battery Performance in Deputy Sheriff Recruits

Sullivan J. Walli 1, Matthew R. Moreno 1, Robert G. Lockie 1, J. Jay Dawes 2, Robin M. Orr 3, Joseph M. Dulla 4

1Center for Sport Performance, Department of Kinesiology, California State University, Fullerton, CA, USA 2Department of Health Sciences, University of Colorado-Colorado Springs, Colorado Springs, CO, USA 3Tactical Research Unit, Bond University, Robina, Qld, Australia 4Recruit Training Unit, Training Bureau, Los Angeles County Sheriff’s Department, Los Angeles, CA, USA

ABSTRACT

Many law enforcement recruit candidates complete a state-specific physical test before graduating from their respective academies. In California, this is known as the Work Sample Test Battery (WSTB). 1 The WSTB is comprised of tests resembling job-related tasks. For instance, the WSTB simulates situations in which an officer must chase a suspect; climb over a barrier; apprehend an occupant of a residence; and arrest an incapacitated person. 2

INTRODUCTION

• Many law enforcement recruits complete a state-specific physical test prior to graduating from their respective academies. In California, this is known as the Work Sample Test Battery (WSTB). 1 The WSTB is comprised of tests resembling job-related tasks. For instance, the WSTB simulates situations in which an officer must chase a suspect; climb over a barrier; apprehend an occupant of a residence; and arrest an incapacitated person. 2

• Certain agencies also conduct studies to measure physical fitness; one example is the Validated Physical Abilities Tests (VPAT). The VPAT+ was developed to measure a recruit’s power as well as running speed. The VPAT+ is a composite of tests related to four academy classes (2013–2016); four low law enforcement agencies were conducted. The VPAT+ and WSTB were completed in the last weeks of a 22-week academy training program. The VPAT+ comprised five tests completed for senior physical abilities assessments in the state of California. 5

• The VPAT+ and WSTB were completed in the last weeks of a 22-week academy training program. The VPAT+ was comprised of: a vertical jump (VJ) and seated 2 kg medicine ball throw (MBT) to accurately measure lower- and upper-body power, respectively; a 75-yard pursuit (7SP), which was a simulated foot pursuit involving sprinting and direction changes; and the multi-stage fitness test (MSFT), which is the number of shuttle repeats indicated aerobic fitness. The WSTB comprised five tests completed for senior physical abilities assessments in the state of California. 5

• The VPAT+ and WSTB were completed in the last weeks of a 22-week academy training program. The VPAT+ was comprised of: a vertical jump (VJ) and seated 2 kg medicine ball throw (MBT) to accurately measure lower- and upper-body power, respectively; a 75-yard pursuit (7SP), which was a simulated foot pursuit involving sprinting and direction changes; and the multi-stage fitness test (MSFT), which is the number of shuttle repeats indicated aerobic fitness. The WSTB comprised five tests completed for senior physical abilities assessments in the state of California. 5

• The VPAT+ comprised five tests completed for time: agility run around a 99-yard obstacle course (99OC; Figure 3); 32-foot body drag (BD) with a 165-lb dummy; climb over a six-foot chain link fence (CL) and six-foot solid wall (SW); and 500-yard run (500R). 6

• Partial correlations (p < 0.05) controlling for sex calculated relationships between the tests from the VPAT+ and WSTB.

• Table 1 displays the correlation data. A greater VI related to faster 99OC, CL, SW, and 500R scores. Greater MBT distance correlated to quicker 99OC and CL performance. Faster 7SPR performance was associated with a faster 99OC, CL, SW, and 500R. A higher number of MSFT shuttles correlated to faster 99OC and 500R. 7

• No VPAT+ tests related to the BD.

METHODS

RESULTS

Table 1. Correlation matrix showing relationships between VPAT+ and WSTB performance.

<table>
<thead>
<tr>
<th></th>
<th>99OC</th>
<th>BD</th>
<th>CL</th>
<th>SW</th>
<th>500R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Jump</td>
<td>0.382*</td>
<td>0.062</td>
<td>-0.232*</td>
<td>-0.243*</td>
<td>-0.242*</td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td>0.104</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Medicine Ball</td>
<td>0.291</td>
<td>0.068</td>
<td>0.118</td>
<td>0.154</td>
<td>0.142</td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>75-yard Pursuit</td>
<td>0.498*</td>
<td>0.019</td>
<td>0.476*</td>
<td>0.254*</td>
<td>0.281*</td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td>0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Multi-Stage Fitness Test</td>
<td>-0.274*</td>
<td>-0.805</td>
<td>-0.075</td>
<td>-0.410*</td>
<td>-0.010</td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td>0.194</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

• Significant (p < 0.05) relationships between the two variables.

CONCLUSIONS

• The VI and 7SPR related to the running and barrier-clearing WSTB tests, which may display the need for lower-body power and high-intensity anaerobic performance in these tasks. Furthermore, these findings align with Dawes et al. 3 who highlighted the need for these attributes in law enforcement officers.

• Superior MSFT performance related to the OC9 and 500R times, which highlights high-intensity running capacity needs for law enforcement; not only score highly on physical testing, but this could crossover to job-specific tasks such as suspect pursuit. 5

• Better MRT scores correlated with the 99OC and CL, which provide some indication of the need of upper-body power in occupational tasks, especially when an officer must pull themselves up and over a barrier. Previous research by Lockie et al. 3 has indicated the potential value of upper-body power for law enforcement officers.

• No VPAT+ tests related to the BD. The BD is strength-intensive, which is an attribute not usually tested in recruits. The use of strength testing in recruits should be considered to enable this quality to relate to job-specific tasks such as jumping/climbing over obstacles, apprehending suspects, and dragging a person to safety.

References

