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Background: Deep-learning (DL) methods are rapidly changing the way researchers
classify neurological disorders. For example, combining functional magnetic resonance
imaging (FMRI) and DL has helped researchers identify functional biomarkers of neuro-
logical disorders (e.g., brain activation and connectivity) and pilot innovative diagnostic
models. However, the knowledge required to perform DL analyses is often domain-
specific and is not widely taught in the brain sciences (e.g., psychology, neuroscience,
and cognitive science). Conversely, neurological diagnoses and neuroimaging training
(e.g., fMRI) are largely restricted to the brain and medical sciences. In turn, these disci-
plinary knowledge barriers and distinct specializations can act as hurdles that prevent
the combination of fMRI and DL pipelines. The complexity of fMRI and DL methods also
hinders their clinical adoption and generalization to real-world diagnoses. For exam-
ple, most current models are not designed for clinical settings or use by nonspecialized
populations such as students, clinicians, and healthcare workers. Accordingly, there is
a growing area of assistive tools (e.g., software and programming packages) that aim to
streamline and increase the accessibility of fMRI and DL pipelines for the diagnoses of
neurological disorders.

Objectives and Methods: In this study, we present an introductory guide to some
popular DL and fMRI assistive tools. We also create an example autism spectrum disor-
der (ASD) classification model using assistive tools (e.g., Optuna, GIFT, and the ABIDE
preprocessed repository), fMRI, and a convolutional neural network.

Results: In turn, we provide researchers with a guide to assistive tools and give an
example of a streamlined fMRI and DL pipeline.

Conclusions: We are confident that this study can help more researchers enter the
field and create accessible fMRI and deep-learning diagnostic models for neurological

disorders.

KEYWORDS
autism spectrum disorder (ASD), convolutional neural network (CNN), deep learning (DL), disease
classification, functional magnetic resonance imaging (fMRI)
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1 | INTRODUCTION

Deep learning (DL) is an analytical method commonly used to identify,
classify, and predict phenomena from data (LeCun et al., 2015). Sim-
ply put, DL is a form of modeling that learns patterns from a dataset
and then applies that knowledge to a related problem. For example,
researchers commonly use it with neuroimaging datasets to distinguish
neurodivergent and neurotypical brains (e.g., ASD vs. controls; Ke et al.,
2020). Contemporary methods are derived from traditional statistical
and machine learning techniques. However, DL differs from traditional
techniques due to its basis on human learning (e.g., neural networks;
LeCun et al, 2015) and end-to-end design (i.e., feature extraction,
learning, and classification are all connected within one model). For
example, researchers might commonly use DL to analyze a complex
problem with a large dataset and traditional methods for linear prob-
lems with small datasets (Bzdok et al., 2018; Suzuki, 2017). Accordingly,
DL is often paired with neuroimaging datasets due to its ability to
analyze complex problems (Noor et al., 2019; Yamanakkanavar et al.,
2020). DL is also advantageous for neuroimaging-base classification
because it can analyze high dimensional data, combine neuroimaging
sources (e.g., data concatenation and meta-models), has a high accu-
racy, and can run unsupervised (Esteva et al., 2019; Raza & Singh, 2021,
Wau et al., 2022). Consequently, it is a flexible tool that can be applied to
complex research problems, such as classifying neurological disorders.

The combination of DL and neuroimaging methods (e.g., magnetic
resonance imaging [MRI]) has rapidly increased in recent years. This
combination has resulted in highly accurate models that can reliably
classify neurological disorders (Y.-K. Kim & Na, 2018; Noor et al., 2019).
Most of these classification models use structural information from
MRI (e.g., brain region size, volume, and thickness). However, other
structural modalities, such as positron emission tomography (PET) and
computed tomography (CT), are also common (Zhao & Zhao, 2021).
These structural models have strong evidence and have the potential
for clinical diagnoses. Yet, structural modalities and their biomarkers
are not the only methods for measuring neurological disorders. Evi-
dence suggests that functional information, such as brain activation,
could be a unique biomarker of disorders like ASD and early-stage
Alzheimer’s disease (AD; Feng et al., 2022; Warren & Moustafa, 2023).
Harnessing functional biomarkers is important because it can help
diagnose disorders not exclusively dependent on structural change
(e.g., ASD; Khodatars et al., 2021). Thus, researchers have also investi-
gated the ability of DL to detect neurological disorders when combined
with functional measures such as functional MRI (fMRI; Yin et al,,
2022). For example, studies have found that fMRI can classify multi-
ple stages of the AD spectrum, such as subjective memory complaints
(SMC), mild cognitive impairment (MCIl), and late-stage AD (Parmar
et al., 2020). fMRI has also been applied to the classification of other
neurological disorders such as ASD, Schizophrenia, depression, and
epilepsy (Pominova et al., 2018; Qureshi et al., 2019; Shao et al., 2021);
however, this field of fMRI DL research is rather small and requires

significant development to be clinically and economically viable.
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One overarching reason for the lack of fMRI and DL research is
its complexity. fMRI data is not easy to collect, requires significant
preprocessing (cleaning), and its analysis requires highly specialized
skills (when compared to other neuroimaging methods). While DL
does help to streamline the analysis of fMRI data, it also brings
its own complexities. Specifically, DL is also a highly complex tech-
nique requiring considerable specialized knowledge (e.g., coding, model
design, and computer science theory). For example, a typical fMRI
and DL classification study may require a researcher to understand
big data methods, fMRI acquisition, preprocessing pipelines, coding,
model design, hyperparameter optimization, and classification tech-
niques (e.g., Alorf & Khan, 2022). Accordingly, DL methods may seem
foreign to neuroimaging researchers as they are rooted in computer
science and mathematical concepts not commonly taught in the brain
sciences. Equally, DL specialists may find fMRI analyses unfamiliar
due to the associated statistical and clinical skills often limited to the
brain sciences. However, assistive tools can streamline analyses and,
thus, increase the accessibility of fMRI and DL research. In this article,
we define assistive tools as methods (e.g., software and programming
packages) that can simplify, automate, streamline, or circumvent stages
of an fMRI and DL classification pipeline. By using these assistive
tools, researchers can optimize their classification pipelines and con-
fidently perform fMRI and DL research. Moreover, by harnessing these
assistive tools, researchers could also create pipelines that are more
accessible and interpretable for real-world use (e.g., they can be used
by nonspecialized populations such as students, clinicians, and health-
care workers). Such models could help to increase the accessibility and
viability of fMRI in both diagnostic research and clinical practice.

Consequently, in this study, we present an introductory guide to
assistive tools and techniques that can be used to streamline (e.g.,
automate and simplify) DL and fMRI pipelines. Specifically, we out-
line methods for streamlining data preparation, fMRI preprocessing,
feature extraction, DL model construction, and model optimization.
We exclusively focus on resting-state fMRI methods because they are
the predominant functional method used with DL models; however,
many assistive tools are also useful in similar modalities (e.g., task-
based fMRI, magnetoencephalography, and electroencephalography).
Following our guide, we detail an example pipeline where we classify
ASD using fMRI, DL, and assistive tools. This example aims to give an
example of a full pipeline and detail the resources required to execute
such a project. To our knowledge, no other study has sought to outline
assistive tools for the fMRI and DL-based classification of neurolog-
ical disease. It is important to note that this study does not seek to
explain the full theory and methods underlying DL and fMRI classifi-
cation models. These topics have been covered in prior reviews (Feng
et al., 2022; Valliani et al., 2019; Warren & Moustafa, 2023; Yin et al.,
2022). It should also be stated that this article only introduces assis-
tive tools and is not an exhaustive list of all tools. Instead, we aim to
highlight some of the prominent assistive tools for streamlining DL
and fMRI classification pipelines and provide an example of one such

pipeline.
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FIGURE 1 Atypical fMRI and deep-learning pipeline. Note that fMRI and DL both include feature extraction stages. In this paper, we
predominately discuss fMRI feature extraction because it is an individual stage of a pipeline. Comparatively, DL feature extraction is almost always
contained in the processes of a DL model and, thus, rarely has dedicated assistive tools. It should also be noted that DL model construction and
optimization include other substages such as training, validation, and fine-tuning; however, these stages are not the focus of this article (for similar
reasons as DL feature extraction). For more information on DL pipelines, see reviews by Feng et al. (2022), Valliani et al. (2019), and Yin et al.

(2022).

2 | GUIDE METHODS

This guide explores common assistive tools that streamline fMRI and
DL pipelines for neurological disorder classification. We define assis-
tive tools as any program, package, library, database, or software that
increases the speed and decreases the difficulty of creating an fMRI
and DL classification pipeline. Relevant sources were obtained using a
selection criterion defined by the research team. This selection crite-
rion required that sources are in English (due to language constraints),
discuss at least one assistive tool for performing fMRI or DL analysis,
and be easily accessible to researchers (e.g., are not private databases).
Importantly, the assistive tools did not need to be exclusive to fMRI,
DL, or neurological disorder classification. Instead, the assistive tools
only needed to generalize to fMRI, DL, or neurological disorder clas-
sification research. Unlike a traditional psychological review, we did
not exclusively use academic texts because many assistive tools are
created and used outside the academic literature. For example, many
software packages will have GitHub pages but not academic articles
(except for fMRI preprocessing software). Accordingly, we used multi-
ple search engines to find assistive tools. We specifically used Google
Scholar, GitHub, papers with code, and arXiv. When ajournal article dis-
cussed an assistive tool, we used the original source (when possible).
Our literature search was restricted to common tools and a prede-
fined time limit of 3 months because of the magnitude of potential tools
and sources. All tools were included as long as they met our selection
criteria and the scope of this article. Our results are discussed in the

following section (Section 3).

3 | A GUIDE TO ASSISTIVE TOOLS FOR FMRI
AND DEEP LEARNING PIPELINES

A typical DL and fMRI pipeline follows the general stages of fMRI
data preparation, preprocessing, feature extraction, model construc-
tion, model optimization, and results in disorder classification (see
Figure 1). We discuss these stages and their associated tools in the

following sections.

3.1 | Data preparation

Data preparation is the initial stage of an fMRI and DL pipeline (see
Figure 1). This stage typically involves the steps of acquiring, clean-
ing, and organizing fMRI data. Data acquisition is the initial step,
where data is manually collected or obtained from a third party (e.g.,
other researchers, databases, labs, or organizations). Data acquisition
may seem trivial; however, a study will change in complexity, scope,
and methodology depending on the data acquired. For example, a
study classifying binary conditions (e.g., AD vs. control; Chen & Kang,
2023) may require less data and resources than one performing mul-
ticlass classification (e.g., AD vs. MCI vs. SMC vs. controls; Lin et al.,
2021). Manual fMRI data collection is often seen as the best way to
ensure parity between study aims and feasibility. However, fMRI data is
inherently complex and takes significant resources to collect (e.g., par-
ticipants, money, MRI scanner time, and specialist skills). Moreover, the
ethics and logistics of fMRI data acquisition are further complicated
when studying vulnerable populations (e.g., individuals with dementia).
These fMRI data complexities are not made easier with the addition
of DL. DL models require significantly more data to classify conditions
accurately when compared to traditional fMRI analyses. Accordingly,
fMRI data collection can be perceived as too costly for individual
researchers or a typical lab, even when not performing DL (see Figure 2
for asummary).

One way to overcome the difficulties with fMRI data collection is
to use secondary data (i.e., previously collected data). There are multi-
ple organizations and institutions that maintain large fMRI databases
that are accessible to researchers. For example, some big datasets
that include fMRI data are the Autism Brain Imaging Data Exchange
(ABIDE), the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the
UKBioBank, SchizConnect, and the Cambridge Centre for Ageing and
Neuroscience (Cam-CAN) (see Table 1 for more information). The
accessibility of these datasets changes depending on the organiza-
tion. For example, hospital and government datasets are often private,
while institutional or nongovernmental organization (NGO) datasets
commonly require applications. It is also important to note that some

organizations will often charge for data access while others are open
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Issues With Data
Preparation

Methods Addressing
These Issues

Data sharing

FIGURE 2 Asummary of the problems with data preparation and
potential solutions. Note: This figure is only a summary of the general
problems and solutions discussed in this article. Many more specific
problems and solutions exist concerning data preparation.

access (pending an application). Accordingly, every big dataset has
different practices, advantages, and disadvantages that should be
considered.

There are also general strengths and limitations to big data. For
example, big data can enable and focus research on a specific topic.
Big data can also enable DL research due to the quantity of data. How-
ever, big datasets can also be restrictive as researchers cannot control
the specific participants, disorders, measurements, or data quality. It
should also be noted that downloading data can be slow and costly
depending on one’s internet and storage capacities. In some cases,
downloading can be simplified using assistive tools such as download
managers (see Table 2); however, databases often determine down-
loading options, and software alone cannot fix some problems (e.g.,
unstable internet connection). Accordingly, it is important to under-
stand the scope and flexibility of a big dataset before committing to
a substantial download. Nevertheless, big datasets are assistive tools
enabling researchers to readily access large quantities of fMRI data for
DL and neurological disorder classification.

Data cleaning and organization are the next stages of data prepa-
ration. These stages are intertwined as they serve the same purpose
of preparing the data for preprocessing. Preprocessing software often
requires fMRI data to be presented in a specific way known as Brain
Imaging Data Structure (BIDS). BIDS was created to standardize neu-
roimaging data (Gorgolewski et al., 2016). By organizing all fMRI data
in the same way, researchers can ensure that their data can be easily
shared, preprocessed, transformed, and analyzed using conventional
methods. Raw fMRI data—whether manually collected or acquired
from a database—is not always in BIDS. Accordingly, researchers must
commonly clean and organize their data into BIDS. The specific details
for manually creating a BIDS dataset are beyond this paper’s scope, but

many good resources are available (see https://bids.neuroimaging.io/).

BIDS standardization has enabled the creation of assistive tools for
fMRI data formatting. Some popular BIDS formatting tools are BID-
Scoin (Zwiers et al., 2022) and Dcm2bids (which is based on Decm2niix;
X. Li et al., 2016); however, other assistive tools are also available.
We suggest researchers choose a BIDS formatting tool based on their
project (e.g., data type, operating system, and software accessibility)
and personal preference. For more information on BIDS formatting
tools, see Table 2 and each assistive tool’s associated documentation.
Once fMRI data has been formatted, it should be checked using a BIDS
validation tool (see Table 2). After validation, the data is then ready for

preprocessing.

3.2 | fMRI preprocessing

Preprocessing is the next stage of an fMRI pipeline (see Figure 1).
This stage involves cleaning fMRI images and separating signal (data
of interest) from noise. Unlike some other aspects of fMRI pipelines,
preprocessing has long been computerized and semiautomated due
to the complex nature of fMRI data. Preprocessing usually uses pack-
ages such as FSL, SPM, Freesurfer, BrainVoyager, and fMRIprep (see
Table 2). These assistive tools use statistical methods to remove arti-
facts from fMRI data (e.g., participant movement during the brain scan),
standardize brain images, and remove unwanted information (e.g., the
skull from an MRI image). These preprocessing methods are semiauto-
mated but often require understanding which methods, settings, and
corrections are appropriate for one’s data. Some packages may also
require supervision, such as a professional screening or validating the
preprocessing results (e.g., a neurologist). Alternatively, some packages
are automated and only require general quality checking. For example,
fMRIprep is automated and requires little-to-no specialized oversight
(Esteban et al., 2019, 2020). Most preprocessing packages are open-
source and free to use. However, some packages require paid software
(e.g., SPM12 requires MATLAB). Preprocessing packages have limita-
tions, such as requiring significant resources and being complicated to
set up. For example, fMRIprep requires Linux and can be difficult to set
up on Windows computers (when compared to a typical program). In
turn, the choice of preprocessing tools depends on a researcher’s skills,
resources, project, and data.

It is important to note that preprocessing is computationally inten-
sive and can take a significant amount of resources depending on
the size of a dataset. This computational intensity does not often
restrict individuals’ access to preprocessing methods but can dras-
tically increase the time taken and the quantity of data that can
be cleaned. These resource limitations can be overcome using mid-
to-high-end personal computers, professional workstations, or cloud
computing (e.g., Australian universities can access the ARDC Nectar
Research Cloud). Alternatively, some big databases do contain pre-
processed fMRI data. However, it should be noted that preprocessed
fMRI data is highly rare because it is often niche (i.e., the methods
and data are specialized to a specific research project), computation-
ally intensive to create, or cannot be shared due to ethics agreements.
One of the most popular preprocessed fMRI databases is the ABIDE
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TABLE 2

Citations

Links

Tool

Category

https://wandb.ai/site

WandB

Optimization tools

Akiba et al. (2019)
Liaw et al. (2018)

Smith (2018)

https://optuna.org/

Optuna

https://www.ray.io/

RayTune

Learning rate finder

Cubuk et al. (2019)

AutoAugment

Note: Some tools may require dependencies (e.g., docker), and other tools are available. Pretrained models often include multiple iterations and variants.

WILEY-7*?

[ Semi-Automated Packages ] [ Fully Automated Packages ]

N 0

= >[ Pre-processed Data for Feature Extraction ]

FIGURE 3 The transformation of raw fMRI data into clean
preprocessed data: example steps and tools.

preprocessed database (Cameron et al., 2013). The ABIDE | prepro-
cessed database contains approximately 1112 participants spanning
the autism spectrum, with fMRI data preprocessed using multiple
methods. This database is a good example of an assistive tool that has
enabled many studies to streamline ASD classification research (e.g.,
Shao et al., 2021). Nevertheless, more work must be done to make pre-
processed fMRI data accessible and, thus, lower the barriers to fMRI

research.

3.3 | fMRI feature extraction

fMRI pipelines often require an additional stage of processing known as
feature extraction (see Figure 1, 3, and 4). In this stage, key character-
istics of the preprocessed data are extracted as variables for analysis.
For example, functional connectivity (brain activity) measures are
commonly identified from the preprocessed blood oxygen-dependent
(BOLD) signal. These functional connectivity measures can be tempo-
ral (e.g., time series), structural (e.g., activation maps), or a combination.
Functional connectivity, like preprocessing techniques, is commonly
calculated using statistical analyses that distinguish signal from noise.
However, unlike preprocessing methods, the resulting features are
specific biomarkers chosen based on a study’s design and research
questions. Some popular feature extraction techniques include region
of interest (ROI; e.g., seed-based correlation) and independent compo-
nent analysis (ICA; Lv et al., 2018).

ROI methods extract functional connectivity features in a specific
brain area, often using a seed-based approach. ROIs can be deter-
mined within a study’s population; however, they are more commonly
derived from brain atlases (e.g., Automated anatomical labeling atlas
[AAL]J; Rolls et al., 2020). These seed-based approaches work by identi-
fying voxels that correlate with the ROI (i.e., seed). These correlations
are specifically computed using each voxel’s time series (M.-T. Li et al.,
2023). The specific ROIs chosen for analysis ultimately depend on the
research question and study design. It is also common for studies to
investigate multiple ROls. For example, Wang et al. (2023) classified
AD from controls using ROl methods. Specifically, they identified ROIs
using the AAL atlas and then created connectivity matrices using a

phase synchronization index approach. The specific ROls chosen were
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FIGURE 4 Common fMRI Feature Extraction Techniques. Note:
feature extraction techniques are not comprehensively discussed in
this article. For more information on these techniques, see Lv et al.
(2018), Long et al. (2019), Du and Fan (2013), Du et al. (2020),
Campbell et al. (2022), and Efromovich (2019).

the cerebellar vermis, cerebellum, temporal lobe, basal ganglia, pari-
etal lobe, limbic system, frontal lobe, and occipital lobe. The matrices
for these ROIs were then used in a two-dimensional (2D) convolutional
neural network (CNN) and support vector machine (SVM) model to
classify AD from controls with an accuracy of 98.87%. Most studies
will pick ROI features based on prior findings in the literature; how-
ever, there are also methodological approaches for selecting ROls. For
example, a study by Kim et al. (2023) classified 257 individuals with
Attention Deficit Hyperactivity Disorder (ADHD) or controls using an
ROI-based approach. Their fMRI data was acquired from the ADHD-
200 preprocessed repository, and ROI features were extracted using
an AAL approach. Kim et al. (2023) extracted 116 ROIs, which they
then ranked using an innovative deep-learning model. They then used a
combined CNN and recurrent neural network (RNN) model with the 13
best ROIs to classify ADHD from controls with an accuracy of 70.46%.

An ICA is a data-driven approach that extracts functional
connectivity-based brain networks using statistical analyses. Rather
than using a preexisting atlas, an ICA works by statistically separating
distinct fMRI signals in the brain. Depending on the parameters and
study design, ICA signals can be included as features or disregarded
as noise. For example, a study by Duc et al. (2020) used an ICA to
extract multiple brain networks from participants’ fMRI. Their ICA
identified 30 independent components, and 16 were kept as relevant
features. Some of these components included parts of the visual,
cerebellar, attention, auditory-related, salience, and default mode
networks. These features were then input into a three-dimensional

(3D) CNN, which classified AD from controls with a balanced accuracy
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of approximately 85%. Another study by Ajith et al. (2024) predicted
a large cohort of participants’ mental health quality using ICA-based
feature extraction and DL. Specifically, they performed a spatially
constrained ICA on 34,606 participants’ data from the UKBioBank.
The spatially constrained ICA is an automated approach that works
using a reference template. Ajith et al. (2024) used the neruomark
template to extract 53 independent components related to the sub-
cortical, sensorimotor, visual, auditory, cognitive-control, cerebellar,
and default mode networks (Du et al., 2020). These ICAs were then
transformed into static functional network connectivity matrices and
passed into a one-dimensional (1D) CNN. This model could predict
four levels of mental health (poor, fair, good, and excellent) with an
average accuracy of approximately 85%.

Feature extraction methods are almost always performed using
statistical packages and software. For example, an ICA can be per-
formed using MELODIC, which is a package within FSL (Jenkinson et al.,
2012). Like preprocessing methods, functional connectivity calculation
requires some oversight (e.g., choosing which parts are noise or sig-
nal). However, feature extraction can be semiautomated depending on
resource availability, study methodology, and the assistive tools used.
For example, an ICA can be automated using a technique known as ICA
with reference (e.g., spatially constrained ICA), which identifies fMRI
features based on a template (a preexisting map of typical brain net-
works; Lu & Rajapakse, 2006). It is important to note that different
feature extraction methods often identify and calculate features dif-
ferently. These different feature extraction methods can also produce
data in unique formats or measures. Thus, specific feature extraction
methods may not fit all research projects and should be considered in
the wider context of a study’s aims and methodology. For more infor-
mation on fMRI feature extraction methods, see papers by Lv et al.
(2018), Longetal.(2019), Duand Fan (2013), Du et al. (2020), Campbell
et al. (2022), and Efromovich (2019). See Table 2 for a list of common
assistive tools for feature extraction.

3.4 | Model construction

The next stage of a DL and fMRI pipeline is model construction (see
Figure 1). DL models are constructed using specific programming
languages and packages. Most DL packages are built using popular
languages like Python, C++, Java, or R. For example, most popular
packages—such as PyTorch, TensorFlow, and Keras (see Table 2)—can
use Python. DL packages are the primary medium for model creation as
they simplify and organize the functions required to perform DL. At the
moment, all deep-learning packages require at least an amateur level of
coding knowledge. However, the required knowledge level can drasti-
cally change between languages and packages. Learning to use these
languages and packages can be quickened by accessing each’s forums
and learning resources (e.g., tutorials). Often, the more popular a pack-
age or language, the easier it is to access tools, help, and resources.
Specific research groups also tend to gravitate to certain languages
and packages. We suggest that a deep-learning package or language

should be chosen based on a researcher’s prior knowledge, study aims,
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colleagues, and comfort (e.g., a researcher performing preprocessing
using Python may choose to create their model in PyTorch).

Some assistive tools can help simplify coding a deep-learning model.
These tools are often known as wrappers because they simplify (wrap)
complex code into a simple command. The advantage of these wrap-
pers is that they simplify the coding process and make DL more
accessible. The disadvantage of these wrappers is that they are some-
times less flexible than the base DL packages (e.g., tensor flow), and
they still require significant knowledge of how to design a model. Some
common wrappers include Fast Al, Keras, and PyTorch Lightning (see
Table 2). The ability and availability of these wrappers will depend on
the language and DL packages used (e.g., the PyTorch Lightning wrap-
per is limited to the Python language and PyTorch package). These
assistive tools are also not a substitution for learning to code or using
DL packages. Instead, these wrappers simplify DL packages that can
help accelerate model creation without requiring highly specialized
knowledge. We recommend that individuals new to the field consider
wrappers but also gradually explore the role of all functions within a
model. However, learning some coding skills and DL theory are still
essential (and are invaluable when creating and interpreting models).

One of the best ways to learn how to construct a DL model is to
see how other researchers have coded similar models. It is relatively
easy to access code due to the open-source community. For example,
websites like GitHub and papers with code (see Table 2) host many
journal articles, scripts, and packages. Combining preexisting code with
big datasets (discussed in Section 3.1) can be a good way of learning
how to create a model. Another advantage of the open-source commu-
nity is the access and distribution of pretrained models. These models
are popular architectures created using massive datasets that can be
transferred to many problems. Some popular models include ResNet,
DenseNet, and AlexNet (He et al., 2015; Huang et al., 2018; Krizhevsky
et al., 2012). These pretrained models can reduce the need for building
and training a model from scratch. These models can also increase accu-
racy due to their large training datasets (Han et al., 2021). However, it
should be noted that not all pretrained models are instantly compati-
ble with fMRI data, and some model tweaking or data reduction may
be required. Nevertheless, pretrained models are great assistive tools
for streamlining DL pipelines and classifying neurological conditions
(for example, see Meng et al., 2022; Ramzan et al., 2019; Uyulan et al.,
2023). See Table 2 for more information on specific pretrained neural

networks.

3.5 | Model optimization and classification

Once a model is written and running, it must be optimized for the
best results (see Figure 1). Traditionally, manual optimization involves
tweaking the model’s settings (i.e., hyperparameters) to increase clas-
sification accuracy and reduce loss (error). There are manual methods
for searching for the best hyperparameters; however, manual methods
are time-consuming and require significant experience. Alternatively,
hyperparameter optimization can be automated using optimization

packages (see Table 2). These packages are incorporated into the

model’s code, changing different hyperparameters and comparing the
results to prior runs. These techniques are great for optimizing loss and
accuracy, yet they take considerable time and resources. Some pop-
ular optimization packages are weights and biases (WandB), Optuna,
and RayTune (Akiba et al., 2019; Liaw et al., 2018). Each optimiza-
tion package has different methods and approaches to hyperparameter
tuning (e.g., grid and Bayesian search). Choosing the right method for
optimization can take some trial and error. Some manual tuning and
domain knowledge are also still required. Nevertheless, these assis-
tive tools can help tune a model’s hyperparameters and ensure strong
classification accuracy. It is important to note that other emerging
methods for automating hyperparameter tuning exist. For example,
meta-optimizationis a technique that involves using a second DL model
to tune the primary model (Bischl et al., 2023; Jaafra et al., 2019); how-
ever, meta-optimization is relatively new to the field and beyond the
scope of this paper. Future research should seek to review emerging

assistive tools, such as meta-optimization.

3.6 | Guide conclusion

DL and fMRI are not simple methods, yet some assistive tools can help
reduce the specialization and time required to create diagnostic mod-
els. Such assistive tools cannot replace the need for coding skills and
theoretical knowledge. However, assistive tools can help to simplify
model creation and disorder classification. It is important to note that
this guide is not extensive and that many other assistive tools exist. For
example, there are tools for automating data augmentation and mod-
els for data generation (e.g., GANS; Qu et al., 2022). Instead, this article
only provides an introductory guide to assistive tools for classifying
neurological disorders using fMRI and DL. We hope that current and
future tools will increase the accessibility of fMRI and DL methods and
help scientists make clinically viable diagnostic models for neurological
disorders.

4 | AN EXAMPLE ASSISTIVE TOOLS PIPELINE

Many neurological disorders can be classified using fMRI and DL.
For example, ASD is one of the most popular disorders classified in
the fMRI and DL literature. ASD is a neurodevelopmental disorder
that often manifests as symptoms of social impairment, repetitive
behaviors, functional impairment, and intellectual disability (American
Psychiatric Association, 2013); however, the presence and manifesta-
tion of these symptoms are variable between individuals with ASD and
across an individual’s lifespan (Wozniak et al., 2017). ASD is commonly
paired with functional neuroimaging because disruptions in brain activ-
ity and connectivity are key biomarkers of the disorder (Lord et al.,
2020). Accordingly, an ever-expanding literature seeks to diagnose
ASD using functional neuroimaging, such as fMRI and electroen-
cephalography (Ayoub et al., 2022). However, these imaging methods
are not widely recommended for real-world diagnoses as they his-

torically perform worse than gold-standard clinical assessments (Lord
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et al,, 2020). This poor performance of neuroimaging methods occurs
for many reasons, including the difficulty of the classification problem
(diagnoses are reliant on social constructs and predominantly nonspa-
tial biomarkers) and the variability of an individual’s ASD manifestation
(as mentioned above). Nevertheless, improvements in ASD diagnosis
are required to improve early interventions and, thus, individuals’ qual-
ity of life (Lord et al., 2020). In turn, researchers are increasingly turning
to complex analytical methods, such as DL, to improve neuroimaging-
based ASD diagnostic methods (S. Li et al., 2022; Zhang et al., 2023).
In this article, we create a binary (ASD vs. Control) ASD classification
model using fMRI, DL, and assistive tools. This model aims to act as an

example of an assistive tools pipeline for new researchers.

4.1 | Past research

There have been multiple studies that classify ASD from controls
using fMRI and DL. These studies predominantly use preexisting data
from the ABIDE preprocessed repository. Accordingly, many advance-
ments in ASD diagnoses come from improvements in DL methods.
For example, Jénemo et al. (2023) classified ASD from controls using
fMRI data and a 3D-CNN. They acquired their preprocessed data from
the ABIDE preprocessed repository, which contained 539 participants
with ASD and 573 controls (N = 1112). Their study was primarily
focused on improving ASD classification accuracy using data augmen-
tation techniques. Data augmentation is a machine learning method
that transforms images (e.g., rotation, cropping, and color shifting).
Transforming images is beneficial in DL because it artificially increases
a dataset’s size and can improve a model’s classification ability. The
data augmentation techniques assessed were image flipping, bright-
ness adjustment, deformation (elastic), rotation, and scaling. Using
these techniques, Jonemo et al. (2023) found that they could classify
ASD from controls with an accuracy of approximately 62-66%. They
also found that data augmentation improved classification by approxi-
mately 0.6-2.9%, depending on the technique. However, they could not
conclusively recommend a specific augmentation technique because
they found that these methods varied in effectiveness depending on
design factors (e.g., preprocessing pipeline, features, and dataset). In
turn, Jénemo et al. (2023) diagnosed ASD with relatively good accuracy
and concluded that data augmentation could improve classification
models.

Another avenue for improving ASD classification is the refinement
of fMRI feature extraction techniques. For example, Guo et al. (2017)
classified ASD from controls using a novel Sparse auto-encoders-based
(SAE) feature extraction method. Specifically, they took ROIl-based
functional connectivity matrices derived from the ABIDE preprocessed
repository and extracted features using unsupervised SAE (a type of DL
model). These SAE then passed features to a wider deep neural net-
work model that classified ASD from controls. The whole model was
trained, validated, and tested using 110 participants from the Univer-
sity of Michigan ABIDE sample. Guo et al’'s (2017) resulting model could
classify ASD from controls with an accuracy of 86%. This classification
accuracy is highly accurate compared to other ASD models. However, it

should be noted that the literature has observed a difference in classifi-
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cation accuracy between the whole ABIDE dataset and individual data
acquisition sites (Heinsfeld et al., 2017). Nevertheless, Guo et al. (2017)
showed that strong feature extraction techniques are essential when
creating a cutting-edge ASD classification model.

It is important to highlight that DL model performance varies
depending on the ABIDE data used (e.g., the whole dataset or individ-
ual data acquisition sites). There is some research into the variance
between ABIDE data samples. For example, Zhang et al. (2023) investi-
gated these samples and created a classification pipeline that is reliable
across ABIDE acquisition sites. There are seventeen data collection
sitesin ABIDE |. The associated datasets can vary from one another due
to factors like site location, sample size, and individuals’ ASD charac-
teristics. Zhang et al. (2023) achieved parity between ABIDE collection
sites using an innovative F-score feature extraction method that con-
servatively extracted the best 25% of features from the functional
connectivity data (computed using ROI correlations). Their filtered
data was then used to train an autoencoder-based classification model.
As a result, their model could classify ASD from controls with an accu-
racy of 70.9% when using the whole ABIDE dataset. Their model also
achieved an average accuracy of 64.5% on each ABIDE data collection
site. Accordingly, Zhang et al. (2023) achieved more consistent ABIDE
results and, once again, stressed the importance of feature extraction

techniques when creating ASD classification models.

4.2 | The present study

In line with our guide above, this pipeline aims to provide an example
of an fMRI and DL pipeline that uses assistive tools. Building on prior
studies, we also aim to incorporate contemporary feature extraction
methods and data augmentation to maximize our model’s classification
ability. We aim to show that assistive tools can pair with contemporary
methods to create streamlined and competitive models. We also doc-
ument the tools, data (i.e., which ABIDE samples), time, and resources
used to give new researchers an idea of what creating a streamlined
pipeline might entail. Accordingly, our aims can be summarized as

follows:

1. Create a competitive ASD classification model using fMRI, DL, and
assistive tools.

2. Detail the time, resources, and level of automation required for
each stage of the pipeline.

The following sections discuss our methods, results, and experi-
ences. These sections follow the pipeline stages outlined in Figure 1

and correspond to each part of the guide above (Section 3).

5 | MODEL METHODS

5.1 | Pipeline data preparation

We acquired fMRI data from the ABIDE Preprocessed repository. Our
reasoning for using preexisting data can be summarized by the discus-

sion of data acquisition cost and accessibility outlined in Section 3.1
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above. Our sample contained 240 ASD and 284 control participants
(N = 524). The ABIDE preprocessed repository contains more partic-
ipants; however, the ABIDE |l dataset was unavailable at the time of
analysis. Our ICA methodology also restricted the usability of some
data. Specifically, our ICA required participants’ fMRI data to have the
same repetition time (TR). Thus, our sample only included participants
with a TR of three (i.e., the largest sample with the same TR data). The
exclusion of some participants meant that our sample only contained
data from Carnegie Mellon University (CMU), the California Institute
of Technology (Caltech), New York University (NYU), San Diego State
University (SDSU), Stanford University (Stanford), the University of
Michigan (UM), and Yale University (Yale) data collection sites. A fur-

Sex (F/M)

8/30

6/21
37/147

7/29
8/32
27/116
16/40

ther breakdown of our sample’s descriptive statistics can be seen in
Tables 3 and 4.

5.2 | Data preprocessing and feature extraction

Our acquired data was previously preprocessed using the Connec-
tome Computation System (CCS) pipeline via the ABIDE preprocessed
repository (as discussed in Section 3.2). This pipeline involves typical
preprocessing steps such as slice timing correction, motion realign-
ment, and intensity normalization (Xu et al., 2015). We also used the
“filt_global” subcategory of CCS data that had undergone band-pass
filtering and global signal regression. Further details of this prepro-

cessing pipeline can be found on the ABIDE preprocessed website

Percent

(see Table 1). The ABIDE repository does provide data that is cleaned

7.25
5.15
35.11
6.87
7.63
27.29
10.69

using other preprocessing pipelines; however, through some prelimi-
nary testing, we found that the CCS data was the most compatible with
our pipeline (i.e., the data worked well with our ICA). The ABIDE CCS
dataset is also commonly used throughout the literature.

We used a spatially constrained group information-guided ICA
(GIG-ICA) for feature extraction (see Section 3.3). A spatially con-
strained GIG-ICA is a form of group ICA that can automatically identify
brain networks using a reference. Our GIG-ICA was performed using
the group ICA of fMRI toolbox (GIFT) in MATLAB R2022a with the
default mask setting and the multiobjective optimization with refer-
ence algorithm. We also used the NeuroMark template as a reference
toidentify 53 networks that make up the subcortical, auditory, sensori-

motor, visual, cognitive-control, default mode, and cerebellar domains

Frequency

38
27
184
36
143
56

40

(Du et al., 2020; see Figure 5). The resulting spatial templates of each
participant’s networks were then used as features in our deep-learning

classification model.

5.3 | Model creation and classification methods

We used a 3D-CNN to classify ASD using participants’ GIG-ICA Spatial
maps as input. We chose a 3D-CNN due to the modality and dimen-
sionality of our data. 3D-CNNs are also widely used in the literature
for ASD and similar fMRI classification problems (for example, see
Thomas et al., 2020). We constructed our 3D-CNN using Python and

PyTorch (see Section 3.4). These methods were chosen due to our

Caltech
Stanford
UM

Yale

CMU
NYU
SDSU

TABLE 3 Sample categorical descriptive statistics organized by collection site.
Site

familiarity with the language. Our architecture was loosely based on a
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FIGURE 5 A Connectogram of all 53 networks and 7 domains identified by our GIG-ICA.

version of C3D. C3D is a popular 3D CNN that pairs 3D convolutional
layers with batch-normalization and maxpooling layers to help learn
spatial features (Tran et al., 2015). Unlike C3D, our simplified archi-
tecture only contained three convolutional and two linear layers. This
simplification occurred due to our small dataset and the difference in
classification task (i.e., binary classification is often less difficult than
multiclass classification). We also substituted the SoftMax classifica-
tion layer with a sigmoid activation function due to the nature of our
binary classification task. Further details of our architecture can be
seenin Figures 6 and 7. Our model was initially optimized using Optuna
and then underwent manual tuning (see Section 3.5 for a guide to opti-
mization). Further details on our optimization workflow are discussed
in the results section below (Section 4.2).

We partitioned our data using a stratified sampler into 80% train-
ing, 10% validation, and 10% testing datasets. Our model was trained
using the Adam optimizer, binary cross-entropy loss, a batch size of 52,

and a learning rate of 0.0001. Our data also underwent normalization

and resizing transformations to improve accuracy and compatibility.
Initially, our model experienced significant overfitting due to our small
dataset (N = 524). We used dropout (p = .5) as regularization, 90° ran-
dom rotation (p = .5) for data augmentation, an exponential learning
rate scheduler (gamma = 0.9), and an early stopping function (patience
= 15) to help manage the overfitting. We opted to use the Medical
Open Network for Al (MONAI) rotation transform as this augmen-
tation is specially made for medical images and is compatible with
3D data (The MONAI Consortium, 2020). Our regularization and aug-
mentation methods helped combat overfitting and maximize model
accuracy. The final model was trained on a PC using an AMD Ryzen 5
2600 CPU, RTX 3060 (12Gb) GPU, 32Gb of RAM, and Windows 10.
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FIGURE 6 3D-CNN model architecture. Note: Convolutional layers had a stride of one, and maxpooling layers had a stride of two. No padding
was used. The key terms are as follows: inputs = the number of features fed into a layer; outputs = the number of features fed out of a layer; kernel
size = the size of a patch that a convolutional layer views and reduces at a time; stride = the amount of units a convolutional kernel moves when
viewing parts of an image; padding = adding blank values around an image; maxpooling = a feature extraction and dimensional reduction
technique; LeakyReLU = an activation function which allows for minor negative values; batchnorm = normalizes feature values for each batch;
dropout = a regularization function that turns a percentage of feature values to 0; Conv3d = a 3D convolutional layer that learn features; linear
layers = layers that learn and fit features using a linear function; flatten = a function that dimensionally reduces the data; and sigmoid = a function
that turns a feature value into a binary value.
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FIGURE 7 Agraphical visualization of our models architecture. Our model contains four key sections: the convolutional layers (Conv), flatten
function, linear layers (Lin), and sigmoid classification function. The first convolutional layer takes the fMRI as input, learns the 3D features, and
passes them to the next convolutional layer. The remaining convolutional layers continue this trend, gradually learning and extracting key features
from the fMRI. Once completed, the flatten function takes the 3D fMRI features and dimensionally reduces the data to one dimension (1D). This
1D datais the passed to the linear layers that continue to learn and fit the features. Finally, the last linear layer reduced the features to one value
that is then passed to a sigmoid function for binary classification (i.e., a final value > 0.5 = class 1 and < 0.5 = class 0).
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5.4 | Additional outcomes

Besides model metrics, we also tracked the tasks, tools, and hours
taken to complete our DL model. We chose to include these addi-
tional metrics to provide new researchers with more details about
the timeline and construction of our example pipeline. These statis-
tics were recorded manually using written notes. Our procedures
and experiences with each tool were also documented throughout.

Max
56.2
40

39.1
17.2
12.9
28.8
17.8

These notes and statistics were not overly quantitative but aimed
to give an approximate summary of creating an assistive tools-based

classification pipeline.

6 | MODEL RESULTS

6.1 | ASD classification

Min
17
19
6.5
8.7
75
8.2
7

Our 3D-CNN classified ASD participants from controls with an accu-
racy of 71.2%. This model also had a sensitivity of 72%, a specificity
of 70.4%, a precision of 69.2%, and an F1 score of 0.71. We calcu-
lated the Matthews Correlation Coefficient (MCC) to understand the
relationship between predicted and true diagnoses. MCC is a binary
classification correlation coefficient that is based on and interpreted
similarly to Pearson’s correlation (Chicco & Jurman, 2020; Matthews,
1975). Our MCC was 0.42, indicating a strong positive relationship
between true diagnoses and model predictions. See Figures 8 and 9

for more training, validation, and testing metrics. Our model also per-

SD
10.6
57
6.6
1.8
1.6
3.2
2.9

formed well compared to contemporary models (see Table 5). For
example, our model had the second-highest accuracy compared to a
sample of models using multisite ABIDE datasets. Our model also per-
formed well when compared to other 3D-CNN models. Consequently,
we achieved our aim of creating a competitive ASD classification model
using fMRI, DL, and assistive tools.

Mean
28.2
26.6
15.3
144
10.0
14.0
12.7

6.2 | Project workflow and resources

We documented our procedures throughout to provide more details
on the assistive tools used and our workflow. The whole project
took approximately 6 months and included model construction, learn-

ing, troubleshooting, training, metrics, and optimization. Our specific

Standard deviation.

workflow is as follows: First, we downloaded the full ABIDE pre-

processed dataset from the preprocessed connectomes project using
the Cyberduck download manager. We also downloaded participants’

demographics for classification labels in our 3D-CNN. Next, we used

184
36
40
143
56

7-Zip to extract all NIl files from their compressed state to be com-
patible with GIFT. We also cleaned the demographic files in Excel and
checked for missing data. Then, we downloaded the NeuroMark tem-
plate (from https://trendscenter.org/data/) and ran the GIG-ICA using
GIFT. We then checked the ordering of the spatial maps and recoded
our demographics to pair with GIFT’s participant naming scheme. After

completing preprocessing and feature extraction, we moved on to DL.

Caltech
CMU
NYU
SDSU
Stanford
UM

Yale

TABLE 4 Sample age by collection site.
Site

Note: n = sample participant count and SD
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FIGURE 8 Model training and validation loss and accuracy.
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FIGURE 9 A confusion matrix of the testing dataset’s
classification results. Note: A confusion matrix displays the
relationship between true diagnoses and a model’s predicted
diagnosis. The values in the top left quadrant are true negatives
(controls classified as controls by the model), the top right are false
positives (controls classified as ASD), the bottom left are false
negatives (ASD classified as controls), and the bottom right are true
positives (ASD classified as ASD). The heatmap indicates the
frequency of results in each quadrant. A highly accurate model will
maximize true values and minimize false values.

We started by finding code online that was similar to our intended
design. This search used GitHub, papers with code, and Google Scholar
(i.e., reading journal articles). After finding a model architecture and
some boilerplate code, we rewrote everything to fit our specific clas-
sification problem. This rewriting involved reworking the data loader
to be compatible with our data, including stratification, and coding in
numerous functions (e.g., Optuna, early stopping, model metrics, and
validation). Once the code was functional, we used Optuna to search
for hyperparameters that achieved reasonable accuracy (e.g., ~65%).
We also experimented with other packages, such as LRFinder and
PyTorch lightning; however, they did not end up in the final model
because other tools performed the same function (e.g., Optuna was
used to find the best LR instead of LRFinder). We then moved on

to manually tuning the hyperparameters to maximize model accu-
racy. After the model was tuned, we ran and validated our model
and extracted the classification metrics. Altogether, these tasks took
approximately ten weeks and almost 3 months of full-time work. A
breakdown of these tasks and their approximate time can be seen in
Table 6.

It is important to note that the time estimates in Table 6 do not
always account for some vague but essential parts of model creation,
such as learning to use programs, general data work, troubleshooting,
piloting, exploration, and installing dependencies. We do not explicitly
report timeframes for these tasks as they are often subjective and hard
to define (e.g., does learning to use a program ever end?). Similarly, it is
important to note that our timeframes are researcher and technology
specific. For example, one’s computer speed and capacity (e.g., Mem-
ory, CPU thread count, CUDA cores, and SSD speed) will affect the
time it takes to run a model. Equally, a researcher’s skills and familiar-
ity with a pipeline will also influence the time to perform most tasks.
It should also be noted that some tasks can be performed in unison
thanks to automation. While somewhat contextual, we hope this exam-
ple pipeline can help new researchers understand the workflow and
potential timeframes for creating an fMRI and DL model. We also hope
that it shows the potential of assistive tools to automate and streamline
such a pipeline.

7 | DISCUSSION

In this project, we built an example ASD classification model using
fMRI, DL, and assistive tools. Unlike prior studies, we explicitly aimed
to incorporate assistive tools to decrease the difficulty of construct-
ing our model and increase the accessibility of our pipeline. In turn, we
found that our assistive tools primarily helped us to automate laborious
tasks and streamline the stages of our pipeline. For example, we could
automate hyperparameter searching (one of the longest stages) and
skip steps like data collection and preprocessing. Our resulting model
could classify ASD from controls with an accuracy of 71%. This accu-
racy is highly competitive compared to similar models using multisite
data from ABIDE. For example, Deng et al. (2022) achieved an accuracy
of 75%, while Jbnemo et al. (2023) and Thomas et al. (2020) achieved an
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TABLE 6 Abreakdown of the project’s main tasks, their hours to completion, and level of automation.

Time (hours)

80°
7

Automation level

Tools

Tasks

Manual

Research Databases (e.g., PubMed)

Cyberduck
7-Zip

Initial research & project design®

Automated

Data download

Automated

File extraction

Manual

Excel & Windows 10

GIFT

Data cleaning & organization

GIG-ICA

Automated

20
40
40

Manual

GitHub & papers with code

Model & coding research

Manual

Spyder IDE, Python, & PyTorch

Code writing/rewriting

Manual

Spyder IDE, Python, & PyTorch

Model reworking & design

120
80
4

Automated

Optuna

Hyperparameter search

Manual

Spyder IDE, Python, & PyTorch
Sklearn, Matplotlib, and Word

Manual tuning

Manual

Collating metrics and results

399

Total

2Project design included selecting assistive tools, finding data, structuring our pipeline, deciding on the classification problem, and outlining the aims for this project.

bNote that while the project started with 80 h of research and design, these stages are forever ongoing but hard to quantify. Automated tasks also required a small level of setup and occasional supervision.

accuracy of approximately 65% on similar samples (i.e., multisite ABIDE
participants). Accordingly, we showed that cutting-edge models can be
made for ASD classification using fMRI, DL, and assistive tools.

Our model is relatively unique compared to other fMRI and DL
ABIDE classification models in the literature. For example, we used a
spatially constrained GIG-ICA with reference instead of common ROI
methods. We also used automated techniques like Optuna’s hyperpa-
rameter optimization search. We selected these alternative methods
because of our focus on using assistive tools. For example, our GIG-
ICA helped us streamline our fMRI pipeline by automating the feature
extraction stage. This focus on assistive tools may seem contrary to the
typical approach of prioritizing model performance (e.g., maximizing
classification accuracy); however, our preliminary results suggest that
assistive tools do not drastically compromise model performance and
could make fMRI and DL classification techniques more accessible to
new researchers and clinicians.

It is important to note that our study had some notable strengths
and limitations. First, we believe that this guide and example-model for-
mat can be a beneficial learning tool for new researchers. Specifically,
our guide can act as acompendium of common assistive tools, while our
example model can act as a template for creating a streamlined classi-
fication pipeline. Second, it is essential to highlight that our example
pipeline is highly contextual, and the specific methods used may not
generalize to all classification problems in the field. We want to stress
that most projects’ specific timeframes and assistive tools will vary. For
example, our project required more hyperparameter tuning time than
usual because of our overfitting problems (which are common in small
datasets). Nevertheless, our pipeline can still act as an example that can
temper expectations and inspire the adoption of assistive tools. It is
also important to note that there is an inherent data loss when com-
pacting an entire project into some metrics and a written summary.
Not all work leads to results, and model work can sometimes be more
of a craft than a science. We hope our example pipeline can help new
researchers understand the resources and skills required to create a
simple DL and fMRI classification model.

Regarding our model, it is important to highlight that our focus
on assistive tools did result in some difficulties that should be con-
sidered (e.g., overfitting and sample size restrictions). For example,
using a more traditional technique like ROI feature extraction could
have resulted in more data and less overfitting. By preferencing assis-
tive tools, we also chose methods and a model architecture that were
simplistic when compared to some cutting-edge techniques. These dif-
ferences might make it harder to compare our model to other pipelines
that use different sample sizes and techniques (e.g., autoencoder mod-
els). Our choice to use the ABIDE dataset may have also limited our
study as its general accuracy is known to be lower than other neurolog-
ical datasets. Initially, we wanted to conduct our project on Alzheimer’s
disease classification and the ADNI dataset; however, this smaller and
un-preprocessed dataset was not feasible for the timeframe of this
project. These problems with small datasets also require more complex

techniques and attention that are beyond the scope of this paper.
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8 | CONCLUSION

This study is only an introductory guide to assistive tools and an ini-
tial proof of concept for an assistive tools pipeline. In turn, future
research should seek to expand on this work by applying assistive
tools to various aspects of fMRI and DL pipelines. For example, future
research could apply assistive tools to cutting-edge models, incorpo-
rate contemporary techniques to assistive tools pipelines (e.g., transfer
and ensemble learning), embrace graphical user interface (GUI) DL
methods, and increase the accessibility of preexisting preprocessed
data. We believe such research can help welcome new researchers
into our interdisciplinary field and increase the viability of neurologi-
cal diagnostic models. More generally, we also believe that improved
accessibility can help to increase our ability (as a community) to make
clinically viable classification models for neurological disorders. These
models could be crucial to improving early diagnoses, treatment, and
individuals’ quality of life. DL and fMRI have a long way to go before
diagnostic models can be clinically viable. However, we believe that
the tools and knowledge required to create clinically viable models are

already being created.
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