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Abstract

Background: Deep-learning (DL) methods are rapidly changing the way researchers

classify neurological disorders. For example, combining functionalmagnetic resonance

imaging (fMRI) andDLhas helped researchers identify functional biomarkers of neuro-

logical disorders (e.g., brain activation and connectivity) and pilot innovative diagnostic

models. However, the knowledge required to perform DL analyses is often domain-

specific and is not widely taught in the brain sciences (e.g., psychology, neuroscience,

and cognitive science). Conversely, neurological diagnoses and neuroimaging training

(e.g., fMRI) are largely restricted to the brain andmedical sciences. In turn, these disci-

plinary knowledge barriers and distinct specializations can act as hurdles that prevent

the combinationof fMRI andDLpipelines. The complexity of fMRI andDLmethods also

hinders their clinical adoption and generalization to real-world diagnoses. For exam-

ple, most currentmodels are not designed for clinical settings or use by nonspecialized

populations such as students, clinicians, and healthcare workers. Accordingly, there is

a growing area of assistive tools (e.g., software and programming packages) that aim to

streamline and increase the accessibility of fMRI and DL pipelines for the diagnoses of

neurological disorders.

Objectives and Methods: In this study, we present an introductory guide to some

popularDL and fMRI assistive tools.We also create an example autism spectrumdisor-

der (ASD) classification model using assistive tools (e.g., Optuna, GIFT, and the ABIDE

preprocessed repository), fMRI, and a convolutional neural network.

Results: In turn, we provide researchers with a guide to assistive tools and give an

example of a streamlined fMRI andDL pipeline.

Conclusions: We are confident that this study can help more researchers enter the

field and create accessible fMRI and deep-learning diagnostic models for neurological

disorders.

KEYWORDS

autism spectrumdisorder (ASD), convolutional neural network (CNN), deep learning (DL), disease
classification, functional magnetic resonance imaging (fMRI)
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1 INTRODUCTION

Deep learning (DL) is an analytical method commonly used to identify,

classify, and predict phenomena from data (LeCun et al., 2015). Sim-

ply put, DL is a form of modeling that learns patterns from a dataset

and then applies that knowledge to a related problem. For example,

researchers commonly use itwith neuroimagingdatasets todistinguish

neurodivergent andneurotypical brains (e.g., ASDvs. controls; Ke et al.,

2020). Contemporary methods are derived from traditional statistical

andmachine learning techniques. However, DL differs from traditional

techniques due to its basis on human learning (e.g., neural networks;

LeCun et al., 2015) and end-to-end design (i.e., feature extraction,

learning, and classification are all connected within one model). For

example, researchers might commonly use DL to analyze a complex

problem with a large dataset and traditional methods for linear prob-

lemswith small datasets (Bzdoket al., 2018; Suzuki, 2017).Accordingly,

DL is often paired with neuroimaging datasets due to its ability to

analyze complex problems (Noor et al., 2019; Yamanakkanavar et al.,

2020). DL is also advantageous for neuroimaging-base classification

because it can analyze high dimensional data, combine neuroimaging

sources (e.g., data concatenation and meta-models), has a high accu-

racy, and can run unsupervised (Esteva et al., 2019; Raza&Singh, 2021;

Wu et al., 2022). Consequently, it is a flexible tool that can be applied to

complex research problems, such as classifying neurological disorders.

The combination of DL and neuroimaging methods (e.g., magnetic

resonance imaging [MRI]) has rapidly increased in recent years. This

combination has resulted in highly accurate models that can reliably

classify neurological disorders (Y.-K. Kim&Na, 2018;Noor et al., 2019).

Most of these classification models use structural information from

MRI (e.g., brain region size, volume, and thickness). However, other

structural modalities, such as positron emission tomography (PET) and

computed tomography (CT), are also common (Zhao & Zhao, 2021).

These structural models have strong evidence and have the potential

for clinical diagnoses. Yet, structural modalities and their biomarkers

are not the only methods for measuring neurological disorders. Evi-

dence suggests that functional information, such as brain activation,

could be a unique biomarker of disorders like ASD and early-stage

Alzheimer’s disease (AD; Feng et al., 2022;Warren &Moustafa, 2023).

Harnessing functional biomarkers is important because it can help

diagnose disorders not exclusively dependent on structural change

(e.g., ASD; Khodatars et al., 2021). Thus, researchers have also investi-

gated the ability ofDL to detect neurological disorderswhen combined

with functional measures such as functional MRI (fMRI; Yin et al.,

2022). For example, studies have found that fMRI can classify multi-

ple stages of the AD spectrum, such as subjective memory complaints

(SMC), mild cognitive impairment (MCI), and late-stage AD (Parmar

et al., 2020). fMRI has also been applied to the classification of other

neurological disorders such as ASD, Schizophrenia, depression, and

epilepsy (Pominova et al., 2018; Qureshi et al., 2019; Shao et al., 2021);

however, this field of fMRI DL research is rather small and requires

significant development to be clinically and economically viable.

One overarching reason for the lack of fMRI and DL research is

its complexity. fMRI data is not easy to collect, requires significant

preprocessing (cleaning), and its analysis requires highly specialized

skills (when compared to other neuroimaging methods). While DL

does help to streamline the analysis of fMRI data, it also brings

its own complexities. Specifically, DL is also a highly complex tech-

nique requiring considerable specializedknowledge (e.g., coding,model

design, and computer science theory). For example, a typical fMRI

and DL classification study may require a researcher to understand

big data methods, fMRI acquisition, preprocessing pipelines, coding,

model design, hyperparameter optimization, and classification tech-

niques (e.g., Alorf & Khan, 2022). Accordingly, DL methods may seem

foreign to neuroimaging researchers as they are rooted in computer

science and mathematical concepts not commonly taught in the brain

sciences. Equally, DL specialists may find fMRI analyses unfamiliar

due to the associated statistical and clinical skills often limited to the

brain sciences. However, assistive tools can streamline analyses and,

thus, increase the accessibility of fMRI and DL research. In this article,

we define assistive tools as methods (e.g., software and programming

packages) that can simplify, automate, streamline, or circumvent stages

of an fMRI and DL classification pipeline. By using these assistive

tools, researchers can optimize their classification pipelines and con-

fidently perform fMRI andDL research.Moreover, by harnessing these

assistive tools, researchers could also create pipelines that are more

accessible and interpretable for real-world use (e.g., they can be used

by nonspecialized populations such as students, clinicians, and health-

care workers). Suchmodels could help to increase the accessibility and

viability of fMRI in both diagnostic research and clinical practice.

Consequently, in this study, we present an introductory guide to

assistive tools and techniques that can be used to streamline (e.g.,

automate and simplify) DL and fMRI pipelines. Specifically, we out-

line methods for streamlining data preparation, fMRI preprocessing,

feature extraction, DL model construction, and model optimization.

We exclusively focus on resting-state fMRI methods because they are

the predominant functional method used with DL models; however,

many assistive tools are also useful in similar modalities (e.g., task-

based fMRI, magnetoencephalography, and electroencephalography).

Following our guide, we detail an example pipeline where we classify

ASD using fMRI, DL, and assistive tools. This example aims to give an

example of a full pipeline and detail the resources required to execute

such a project. To our knowledge, no other study has sought to outline

assistive tools for the fMRI and DL-based classification of neurolog-

ical disease. It is important to note that this study does not seek to

explain the full theory and methods underlying DL and fMRI classifi-

cation models. These topics have been covered in prior reviews (Feng

et al., 2022; Valliani et al., 2019; Warren & Moustafa, 2023; Yin et al.,

2022). It should also be stated that this article only introduces assis-

tive tools and is not an exhaustive list of all tools. Instead, we aim to

highlight some of the prominent assistive tools for streamlining DL

and fMRI classification pipelines and provide an example of one such

pipeline.
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F IGURE 1 A typical fMRI and deep-learning pipeline. Note that fMRI andDL both include feature extraction stages. In this paper, we
predominately discuss fMRI feature extraction because it is an individual stage of a pipeline. Comparatively, DL feature extraction is almost always
contained in the processes of a DLmodel and, thus, rarely has dedicated assistive tools. It should also be noted that DLmodel construction and
optimization include other substages such as training, validation, and fine-tuning; however, these stages are not the focus of this article (for similar
reasons as DL feature extraction). For more information onDL pipelines, see reviews by Feng et al. (2022), Valliani et al. (2019), and Yin et al.
(2022).

2 GUIDE METHODS

This guide explores common assistive tools that streamline fMRI and

DL pipelines for neurological disorder classification. We define assis-

tive tools as any program, package, library, database, or software that

increases the speed and decreases the difficulty of creating an fMRI

and DL classification pipeline. Relevant sources were obtained using a

selection criterion defined by the research team. This selection crite-

rion required that sources are in English (due to language constraints),

discuss at least one assistive tool for performing fMRI or DL analysis,

and be easily accessible to researchers (e.g., are not private databases).

Importantly, the assistive tools did not need to be exclusive to fMRI,

DL, or neurological disorder classification. Instead, the assistive tools

only needed to generalize to fMRI, DL, or neurological disorder clas-

sification research. Unlike a traditional psychological review, we did

not exclusively use academic texts because many assistive tools are

created and used outside the academic literature. For example, many

software packages will have GitHub pages but not academic articles

(except for fMRI preprocessing software). Accordingly, we used multi-

ple search engines to find assistive tools. We specifically used Google

Scholar,GitHub, paperswith code, andarXiv.Whena journal article dis-

cussed an assistive tool, we used the original source (when possible).

Our literature search was restricted to common tools and a prede-

fined time limit of 3months because of themagnitudeof potential tools

and sources. All tools were included as long as they met our selection

criteria and the scope of this article. Our results are discussed in the

following section (Section 3).

3 A GUIDE TO ASSISTIVE TOOLS FOR FMRI
AND DEEP LEARNING PIPELINES

A typical DL and fMRI pipeline follows the general stages of fMRI

data preparation, preprocessing, feature extraction, model construc-

tion, model optimization, and results in disorder classification (see

Figure 1). We discuss these stages and their associated tools in the

following sections.

3.1 Data preparation

Data preparation is the initial stage of an fMRI and DL pipeline (see

Figure 1). This stage typically involves the steps of acquiring, clean-

ing, and organizing fMRI data. Data acquisition is the initial step,

where data is manually collected or obtained from a third party (e.g.,

other researchers, databases, labs, or organizations). Data acquisition

may seem trivial; however, a study will change in complexity, scope,

and methodology depending on the data acquired. For example, a

study classifying binary conditions (e.g., AD vs. control; Chen & Kang,

2023) may require less data and resources than one performing mul-

ticlass classification (e.g., AD vs. MCI vs. SMC vs. controls; Lin et al.,

2021). Manual fMRI data collection is often seen as the best way to

ensureparity between studyaimsand feasibility.However, fMRIdata is

inherently complex and takes significant resources to collect (e.g., par-

ticipants,money,MRI scanner time, and specialist skills).Moreover, the

ethics and logistics of fMRI data acquisition are further complicated

when studying vulnerable populations (e.g., individuals with dementia).

These fMRI data complexities are not made easier with the addition

of DL. DL models require significantly more data to classify conditions

accurately when compared to traditional fMRI analyses. Accordingly,

fMRI data collection can be perceived as too costly for individual

researchers or a typical lab, evenwhen not performingDL (see Figure 2

for a summary).

One way to overcome the difficulties with fMRI data collection is

to use secondary data (i.e., previously collected data). There are multi-

ple organizations and institutions that maintain large fMRI databases

that are accessible to researchers. For example, some big datasets

that include fMRI data are the Autism Brain Imaging Data Exchange

(ABIDE), the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the

UKBioBank, SchizConnect, and the Cambridge Centre for Ageing and

Neuroscience (Cam-CAN) (see Table 1 for more information). The

accessibility of these datasets changes depending on the organiza-

tion. For example, hospital and government datasets are often private,

while institutional or nongovernmental organization (NGO) datasets

commonly require applications. It is also important to note that some

organizations will often charge for data access while others are open
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F IGURE 2 A summary of the problemswith data preparation and
potential solutions. Note: This figure is only a summary of the general
problems and solutions discussed in this article. Manymore specific
problems and solutions exist concerning data preparation.

access (pending an application). Accordingly, every big dataset has

different practices, advantages, and disadvantages that should be

considered.

There are also general strengths and limitations to big data. For

example, big data can enable and focus research on a specific topic.

Big data can also enable DL research due to the quantity of data. How-

ever, big datasets can also be restrictive as researchers cannot control

the specific participants, disorders, measurements, or data quality. It

should also be noted that downloading data can be slow and costly

depending on one’s internet and storage capacities. In some cases,

downloading can be simplified using assistive tools such as download

managers (see Table 2); however, databases often determine down-

loading options, and software alone cannot fix some problems (e.g.,

unstable internet connection). Accordingly, it is important to under-

stand the scope and flexibility of a big dataset before committing to

a substantial download. Nevertheless, big datasets are assistive tools

enabling researchers to readily access large quantities of fMRI data for

DL and neurological disorder classification.

Data cleaning and organization are the next stages of data prepa-

ration. These stages are intertwined as they serve the same purpose

of preparing the data for preprocessing. Preprocessing software often

requires fMRI data to be presented in a specific way known as Brain

Imaging Data Structure (BIDS). BIDS was created to standardize neu-

roimaging data (Gorgolewski et al., 2016). By organizing all fMRI data

in the same way, researchers can ensure that their data can be easily

shared, preprocessed, transformed, and analyzed using conventional

methods. Raw fMRI data—whether manually collected or acquired

from a database—is not always in BIDS. Accordingly, researchers must

commonly clean and organize their data into BIDS. The specific details

formanually creating aBIDS dataset are beyond this paper’s scope, but

many good resources are available (see https://bids.neuroimaging.io/).

BIDS standardization has enabled the creation of assistive tools for

fMRI data formatting. Some popular BIDS formatting tools are BID-

Scoin (Zwiers et al., 2022) and Dcm2bids (which is based on Dcm2niix;

X. Li et al., 2016); however, other assistive tools are also available.

We suggest researchers choose a BIDS formatting tool based on their

project (e.g., data type, operating system, and software accessibility)

and personal preference. For more information on BIDS formatting

tools, see Table 2 and each assistive tool’s associated documentation.

Once fMRI data has been formatted, it should be checked using a BIDS

validation tool (see Table 2). After validation, the data is then ready for

preprocessing.

3.2 fMRI preprocessing

Preprocessing is the next stage of an fMRI pipeline (see Figure 1).

This stage involves cleaning fMRI images and separating signal (data

of interest) from noise. Unlike some other aspects of fMRI pipelines,

preprocessing has long been computerized and semiautomated due

to the complex nature of fMRI data. Preprocessing usually uses pack-

ages such as FSL, SPM, Freesurfer, BrainVoyager, and fMRIprep (see

Table 2). These assistive tools use statistical methods to remove arti-

facts from fMRI data (e.g., participantmovement during the brain scan),

standardize brain images, and remove unwanted information (e.g., the

skull from anMRI image). These preprocessing methods are semiauto-

mated but often require understanding which methods, settings, and

corrections are appropriate for one’s data. Some packages may also

require supervision, such as a professional screening or validating the

preprocessing results (e.g., a neurologist). Alternatively, somepackages

are automated and only require general quality checking. For example,

fMRIprep is automated and requires little-to-no specialized oversight

(Esteban et al., 2019, 2020). Most preprocessing packages are open-

source and free to use. However, some packages require paid software

(e.g., SPM12 requires MATLAB). Preprocessing packages have limita-

tions, such as requiring significant resources and being complicated to

set up. For example, fMRIprep requires Linux and can be difficult to set

up on Windows computers (when compared to a typical program). In

turn, the choice of preprocessing tools depends on a researcher’s skills,

resources, project, and data.

It is important to note that preprocessing is computationally inten-

sive and can take a significant amount of resources depending on

the size of a dataset. This computational intensity does not often

restrict individuals’ access to preprocessing methods but can dras-

tically increase the time taken and the quantity of data that can

be cleaned. These resource limitations can be overcome using mid-

to-high-end personal computers, professional workstations, or cloud

computing (e.g., Australian universities can access the ARDC Nectar

Research Cloud). Alternatively, some big databases do contain pre-

processed fMRI data. However, it should be noted that preprocessed

fMRI data is highly rare because it is often niche (i.e., the methods

and data are specialized to a specific research project), computation-

ally intensive to create, or cannot be shared due to ethics agreements.

One of the most popular preprocessed fMRI databases is the ABIDE
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F IGURE 3 The transformation of raw fMRI data into clean
preprocessed data: example steps and tools.

preprocessed database (Cameron et al., 2013). The ABIDE I prepro-

cessed database contains approximately 1112 participants spanning

the autism spectrum, with fMRI data preprocessed using multiple

methods. This database is a good example of an assistive tool that has

enabled many studies to streamline ASD classification research (e.g.,

Shao et al., 2021). Nevertheless, moreworkmust be done tomake pre-

processed fMRI data accessible and, thus, lower the barriers to fMRI

research.

3.3 fMRI feature extraction

fMRIpipelinesoften require anadditional stageof processingknownas

feature extraction (see Figure 1, 3, and 4). In this stage, key character-

istics of the preprocessed data are extracted as variables for analysis.

For example, functional connectivity (brain activity) measures are

commonly identified from the preprocessed blood oxygen-dependent

(BOLD) signal. These functional connectivity measures can be tempo-

ral (e.g., time series), structural (e.g., activationmaps), or a combination.

Functional connectivity, like preprocessing techniques, is commonly

calculated using statistical analyses that distinguish signal from noise.

However, unlike preprocessing methods, the resulting features are

specific biomarkers chosen based on a study’s design and research

questions. Some popular feature extraction techniques include region

of interest (ROI; e.g., seed-based correlation) and independent compo-

nent analysis (ICA; Lv et al., 2018).

ROI methods extract functional connectivity features in a specific

brain area, often using a seed-based approach. ROIs can be deter-

mined within a study’s population; however, they are more commonly

derived from brain atlases (e.g., Automated anatomical labeling atlas

[AAL]; Rolls et al., 2020). These seed-based approacheswork by identi-

fying voxels that correlate with the ROI (i.e., seed). These correlations

are specifically computed using each voxel’s time series (M.-T. Li et al.,

2023). The specific ROIs chosen for analysis ultimately depend on the

research question and study design. It is also common for studies to

investigate multiple ROIs. For example, Wang et al. (2023) classified

AD from controls using ROI methods. Specifically, they identified ROIs

using the AAL atlas and then created connectivity matrices using a

phase synchronization index approach. The specific ROIs chosen were
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F IGURE 4 Common fMRI Feature Extraction Techniques. Note:
feature extraction techniques are not comprehensively discussed in
this article. For more information on these techniques, see Lv et al.
(2018), Long et al. (2019), Du and Fan (2013), Du et al. (2020),
Campbell et al. (2022), and Efromovich (2019).

the cerebellar vermis, cerebellum, temporal lobe, basal ganglia, pari-

etal lobe, limbic system, frontal lobe, and occipital lobe. The matrices

for these ROIswere then used in a two-dimensional (2D) convolutional

neural network (CNN) and support vector machine (SVM) model to

classify AD from controls with an accuracy of 98.87%. Most studies

will pick ROI features based on prior findings in the literature; how-

ever, there are also methodological approaches for selecting ROIs. For

example, a study by Kim et al. (2023) classified 257 individuals with

Attention Deficit Hyperactivity Disorder (ADHD) or controls using an

ROI-based approach. Their fMRI data was acquired from the ADHD-

200 preprocessed repository, and ROI features were extracted using

an AAL approach. Kim et al. (2023) extracted 116 ROIs, which they

then ranked using an innovative deep-learningmodel. They then used a

combinedCNNand recurrent neural network (RNN)modelwith the13

best ROIs to classify ADHD from controls with an accuracy of 70.46%.

An ICA is a data-driven approach that extracts functional

connectivity-based brain networks using statistical analyses. Rather

than using a preexisting atlas, an ICA works by statistically separating

distinct fMRI signals in the brain. Depending on the parameters and

study design, ICA signals can be included as features or disregarded

as noise. For example, a study by Duc et al. (2020) used an ICA to

extract multiple brain networks from participants’ fMRI. Their ICA

identified 30 independent components, and 16 were kept as relevant

features. Some of these components included parts of the visual,

cerebellar, attention, auditory-related, salience, and default mode

networks. These features were then input into a three-dimensional

(3D) CNN, which classified AD from controls with a balanced accuracy

of approximately 85%. Another study by Ajith et al. (2024) predicted

a large cohort of participants’ mental health quality using ICA-based

feature extraction and DL. Specifically, they performed a spatially

constrained ICA on 34,606 participants’ data from the UKBioBank.

The spatially constrained ICA is an automated approach that works

using a reference template. Ajith et al. (2024) used the neruomark

template to extract 53 independent components related to the sub-

cortical, sensorimotor, visual, auditory, cognitive-control, cerebellar,

and default mode networks (Du et al., 2020). These ICAs were then

transformed into static functional network connectivity matrices and

passed into a one-dimensional (1D) CNN. This model could predict

four levels of mental health (poor, fair, good, and excellent) with an

average accuracy of approximately 85%.

Feature extraction methods are almost always performed using

statistical packages and software. For example, an ICA can be per-

formedusingMELODIC,which is a packagewithinFSL (Jenkinsonet al.,

2012). Like preprocessingmethods, functional connectivity calculation

requires some oversight (e.g., choosing which parts are noise or sig-

nal). However, feature extraction can be semiautomated depending on

resource availability, study methodology, and the assistive tools used.

For example, an ICA can be automated using a technique known as ICA

with reference (e.g., spatially constrained ICA), which identifies fMRI

features based on a template (a preexisting map of typical brain net-

works; Lu & Rajapakse, 2006). It is important to note that different

feature extraction methods often identify and calculate features dif-

ferently. These different feature extraction methods can also produce

data in unique formats or measures. Thus, specific feature extraction

methods may not fit all research projects and should be considered in

the wider context of a study’s aims and methodology. For more infor-

mation on fMRI feature extraction methods, see papers by Lv et al.

(2018), Long et al. (2019),DuandFan (2013),Duet al. (2020), Campbell

et al. (2022), and Efromovich (2019). See Table 2 for a list of common

assistive tools for feature extraction.

3.4 Model construction

The next stage of a DL and fMRI pipeline is model construction (see

Figure 1). DL models are constructed using specific programming

languages and packages. Most DL packages are built using popular

languages like Python, C++, Java, or R. For example, most popular

packages—such as PyTorch, TensorFlow, and Keras (see Table 2)—can

usePython.DLpackages are the primarymedium formodel creation as

they simplify and organize the functions required to performDL. At the

moment, all deep-learning packages require at least an amateur level of

coding knowledge. However, the required knowledge level can drasti-

cally change between languages and packages. Learning to use these

languages and packages can be quickened by accessing each’s forums

and learning resources (e.g., tutorials). Often, themore popular a pack-

age or language, the easier it is to access tools, help, and resources.

Specific research groups also tend to gravitate to certain languages

and packages. We suggest that a deep-learning package or language

should be chosen based on a researcher’s prior knowledge, study aims,
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colleagues, and comfort (e.g., a researcher performing preprocessing

using Pythonmay choose to create their model in PyTorch).

Some assistive tools can help simplify coding a deep-learningmodel.

These tools are often known as wrappers because they simplify (wrap)

complex code into a simple command. The advantage of these wrap-

pers is that they simplify the coding process and make DL more

accessible. The disadvantage of these wrappers is that they are some-

times less flexible than the base DL packages (e.g., tensor flow), and

they still require significant knowledge of how to design amodel. Some

common wrappers include Fast AI, Keras, and PyTorch Lightning (see

Table 2). The ability and availability of these wrappers will depend on

the language and DL packages used (e.g., the PyTorch Lightning wrap-

per is limited to the Python language and PyTorch package). These

assistive tools are also not a substitution for learning to code or using

DL packages. Instead, these wrappers simplify DL packages that can

help accelerate model creation without requiring highly specialized

knowledge. We recommend that individuals new to the field consider

wrappers but also gradually explore the role of all functions within a

model. However, learning some coding skills and DL theory are still

essential (and are invaluable when creating and interpretingmodels).

One of the best ways to learn how to construct a DL model is to

see how other researchers have coded similar models. It is relatively

easy to access code due to the open-source community. For example,

websites like GitHub and papers with code (see Table 2) host many

journal articles, scripts, andpackages. Combining preexisting codewith

big datasets (discussed in Section 3.1) can be a good way of learning

how to create amodel. Another advantage of the open-source commu-

nity is the access and distribution of pretrained models. These models

are popular architectures created using massive datasets that can be

transferred to many problems. Some popular models include ResNet,

DenseNet, andAlexNet (He et al., 2015; Huang et al., 2018; Krizhevsky

et al., 2012). These pretrainedmodels can reduce the need for building

and trainingamodel fromscratch. Thesemodels canalso increaseaccu-

racy due to their large training datasets (Han et al., 2021). However, it

should be noted that not all pretrained models are instantly compati-

ble with fMRI data, and some model tweaking or data reduction may

be required. Nevertheless, pretrained models are great assistive tools

for streamlining DL pipelines and classifying neurological conditions

(for example, see Meng et al., 2022; Ramzan et al., 2019; Uyulan et al.,

2023). See Table 2 for more information on specific pretrained neural

networks.

3.5 Model optimization and classification

Once a model is written and running, it must be optimized for the

best results (see Figure 1). Traditionally, manual optimization involves

tweaking the model’s settings (i.e., hyperparameters) to increase clas-

sification accuracy and reduce loss (error). There are manual methods

for searching for the best hyperparameters; however, manual methods

are time-consuming and require significant experience. Alternatively,

hyperparameter optimization can be automated using optimization

packages (see Table 2). These packages are incorporated into the

model’s code, changing different hyperparameters and comparing the

results to prior runs. These techniques are great for optimizing loss and

accuracy, yet they take considerable time and resources. Some pop-

ular optimization packages are weights and biases (WandB), Optuna,

and RayTune (Akiba et al., 2019; Liaw et al., 2018). Each optimiza-

tionpackagehasdifferentmethods andapproaches tohyperparameter

tuning (e.g., grid and Bayesian search). Choosing the right method for

optimization can take some trial and error. Some manual tuning and

domain knowledge are also still required. Nevertheless, these assis-

tive tools can help tune a model’s hyperparameters and ensure strong

classification accuracy. It is important to note that other emerging

methods for automating hyperparameter tuning exist. For example,

meta-optimization is a technique that involvesusing a secondDLmodel

to tune the primarymodel (Bischl et al., 2023; Jaafra et al., 2019); how-

ever, meta-optimization is relatively new to the field and beyond the

scope of this paper. Future research should seek to review emerging

assistive tools, such asmeta-optimization.

3.6 Guide conclusion

DL and fMRI are not simple methods, yet some assistive tools can help

reduce the specialization and time required to create diagnostic mod-

els. Such assistive tools cannot replace the need for coding skills and

theoretical knowledge. However, assistive tools can help to simplify

model creation and disorder classification. It is important to note that

this guide is not extensive and thatmany other assistive tools exist. For

example, there are tools for automating data augmentation and mod-

els for data generation (e.g., GANS; Qu et al., 2022). Instead, this article

only provides an introductory guide to assistive tools for classifying

neurological disorders using fMRI and DL. We hope that current and

future tools will increase the accessibility of fMRI and DLmethods and

help scientistsmake clinically viable diagnosticmodels for neurological

disorders.

4 AN EXAMPLE ASSISTIVE TOOLS PIPELINE

Many neurological disorders can be classified using fMRI and DL.

For example, ASD is one of the most popular disorders classified in

the fMRI and DL literature. ASD is a neurodevelopmental disorder

that often manifests as symptoms of social impairment, repetitive

behaviors, functional impairment, and intellectual disability (American

Psychiatric Association, 2013); however, the presence and manifesta-

tion of these symptoms are variable between individuals with ASD and

across an individual’s lifespan (Wozniak et al., 2017). ASD is commonly

pairedwith functional neuroimagingbecausedisruptions in brain activ-

ity and connectivity are key biomarkers of the disorder (Lord et al.,

2020). Accordingly, an ever-expanding literature seeks to diagnose

ASD using functional neuroimaging, such as fMRI and electroen-

cephalography (Ayoub et al., 2022). However, these imaging methods

are not widely recommended for real-world diagnoses as they his-

torically perform worse than gold-standard clinical assessments (Lord
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et al., 2020). This poor performance of neuroimaging methods occurs

for many reasons, including the difficulty of the classification problem

(diagnoses are reliant on social constructs and predominantly nonspa-

tial biomarkers) and the variability of an individual’s ASDmanifestation

(as mentioned above). Nevertheless, improvements in ASD diagnosis

are required to improve early interventions and, thus, individuals’ qual-

ity of life (Lordet al., 2020). In turn, researchers are increasingly turning

to complex analytical methods, such as DL, to improve neuroimaging-

based ASD diagnostic methods (S. Li et al., 2022; Zhang et al., 2023).

In this article, we create a binary (ASD vs. Control) ASD classification

model using fMRI, DL, and assistive tools. This model aims to act as an

example of an assistive tools pipeline for new researchers.

4.1 Past research

There have been multiple studies that classify ASD from controls

using fMRI and DL. These studies predominantly use preexisting data

from the ABIDE preprocessed repository. Accordingly, many advance-

ments in ASD diagnoses come from improvements in DL methods.

For example, Jönemo et al. (2023) classified ASD from controls using

fMRI data and a 3D-CNN. They acquired their preprocessed data from

the ABIDE preprocessed repository, which contained 539 participants

with ASD and 573 controls (N = 1112). Their study was primarily

focused on improving ASD classification accuracy using data augmen-

tation techniques. Data augmentation is a machine learning method

that transforms images (e.g., rotation, cropping, and color shifting).

Transforming images is beneficial in DL because it artificially increases

a dataset’s size and can improve a model’s classification ability. The

data augmentation techniques assessed were image flipping, bright-

ness adjustment, deformation (elastic), rotation, and scaling. Using

these techniques, Jönemo et al. (2023) found that they could classify

ASD from controls with an accuracy of approximately 62–66%. They

also found that data augmentation improved classification by approxi-

mately 0.6–2.9%, depending on the technique.However, they could not

conclusively recommend a specific augmentation technique because

they found that these methods varied in effectiveness depending on

design factors (e.g., preprocessing pipeline, features, and dataset). In

turn, Jönemoet al. (2023) diagnosedASDwith relatively goodaccuracy

and concluded that data augmentation could improve classification

models.

Another avenue for improving ASD classification is the refinement

of fMRI feature extraction techniques. For example, Guo et al. (2017)

classifiedASD fromcontrols using a novel Sparse auto-encoders-based

(SAE) feature extraction method. Specifically, they took ROI-based

functional connectivitymatricesderived fromtheABIDEpreprocessed

repository andextracted features usingunsupervisedSAE (a typeofDL

model). These SAE then passed features to a wider deep neural net-

work model that classified ASD from controls. The whole model was

trained, validated, and tested using 110 participants from the Univer-

sity ofMichiganABIDEsample.Guoet al’s (2017) resultingmodel could

classify ASD from controls with an accuracy of 86%. This classification

accuracy is highly accurate compared to otherASDmodels. However, it

should be noted that the literature has observed a difference in classifi-

cation accuracy between the whole ABIDE dataset and individual data

acquisition sites (Heinsfeld et al., 2017).Nevertheless, Guoet al. (2017)

showed that strong feature extraction techniques are essential when

creating a cutting-edge ASD classificationmodel.

It is important to highlight that DL model performance varies

depending on the ABIDE data used (e.g., the whole dataset or individ-

ual data acquisition sites). There is some research into the variance

between ABIDE data samples. For example, Zhang et al. (2023) investi-

gated these samples and created a classification pipeline that is reliable

across ABIDE acquisition sites. There are seventeen data collection

sites inABIDE I. Theassociateddatasets canvary fromoneanotherdue

to factors like site location, sample size, and individuals’ ASD charac-

teristics. Zhang et al. (2023) achieved parity betweenABIDE collection

sites using an innovative F-score feature extraction method that con-

servatively extracted the best 25% of features from the functional

connectivity data (computed using ROI correlations). Their filtered

datawas then used to train an autoencoder-based classificationmodel.

As a result, their model could classify ASD from controls with an accu-

racy of 70.9% when using the whole ABIDE dataset. Their model also

achieved an average accuracy of 64.5% on each ABIDE data collection

site. Accordingly, Zhang et al. (2023) achieved more consistent ABIDE

results and, once again, stressed the importance of feature extraction

techniques when creating ASD classificationmodels.

4.2 The present study

In line with our guide above, this pipeline aims to provide an example

of an fMRI and DL pipeline that uses assistive tools. Building on prior

studies, we also aim to incorporate contemporary feature extraction

methods and data augmentation tomaximize ourmodel’s classification

ability.We aim to show that assistive tools can pair with contemporary

methods to create streamlined and competitive models. We also doc-

ument the tools, data (i.e., which ABIDE samples), time, and resources

used to give new researchers an idea of what creating a streamlined

pipeline might entail. Accordingly, our aims can be summarized as

follows:

1. Create a competitive ASD classification model using fMRI, DL, and

assistive tools.

2. Detail the time, resources, and level of automation required for

each stage of the pipeline.

The following sections discuss our methods, results, and experi-

ences. These sections follow the pipeline stages outlined in Figure 1

and correspond to each part of the guide above (Section 3).

5 MODEL METHODS

5.1 Pipeline data preparation

We acquired fMRI data from the ABIDE Preprocessed repository. Our

reasoning for using preexisting data can be summarized by the discus-

sion of data acquisition cost and accessibility outlined in Section 3.1
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above. Our sample contained 240 ASD and 284 control participants

(N = 524). The ABIDE preprocessed repository contains more partic-

ipants; however, the ABIDE II dataset was unavailable at the time of

analysis. Our ICA methodology also restricted the usability of some

data. Specifically, our ICA required participants’ fMRI data to have the

same repetition time (TR). Thus, our sample only included participants

with a TR of three (i.e., the largest sample with the same TR data). The

exclusion of some participants meant that our sample only contained

data from Carnegie Mellon University (CMU), the California Institute

of Technology (Caltech), New York University (NYU), San Diego State

University (SDSU), Stanford University (Stanford), the University of

Michigan (UM), and Yale University (Yale) data collection sites. A fur-

ther breakdown of our sample’s descriptive statistics can be seen in

Tables 3 and 4.

5.2 Data preprocessing and feature extraction

Our acquired data was previously preprocessed using the Connec-

tome Computation System (CCS) pipeline via the ABIDE preprocessed

repository (as discussed in Section 3.2). This pipeline involves typical

preprocessing steps such as slice timing correction, motion realign-

ment, and intensity normalization (Xu et al., 2015). We also used the

“filt_global” subcategory of CCS data that had undergone band-pass

filtering and global signal regression. Further details of this prepro-

cessing pipeline can be found on the ABIDE preprocessed website

(see Table 1). The ABIDE repository does provide data that is cleaned

using other preprocessing pipelines; however, through some prelimi-

nary testing, we found that theCCS datawas themost compatiblewith

our pipeline (i.e., the data worked well with our ICA). The ABIDE CCS

dataset is also commonly used throughout the literature.

We used a spatially constrained group information-guided ICA

(GIG-ICA) for feature extraction (see Section 3.3). A spatially con-

strainedGIG-ICA is a form of group ICA that can automatically identify

brain networks using a reference. Our GIG-ICA was performed using

the group ICA of fMRI toolbox (GIFT) in MATLAB R2022a with the

default mask setting and the multiobjective optimization with refer-

ence algorithm. We also used the NeuroMark template as a reference

to identify 53 networks thatmake up the subcortical, auditory, sensori-

motor, visual, cognitive-control, default mode, and cerebellar domains

(Du et al., 2020; see Figure 5). The resulting spatial templates of each

participant’s networkswere then used as features in our deep-learning

classificationmodel.

5.3 Model creation and classification methods

Weused a 3D-CNN to classify ASD using participants’ GIG-ICA Spatial

maps as input. We chose a 3D-CNN due to the modality and dimen-

sionality of our data. 3D-CNNs are also widely used in the literature

for ASD and similar fMRI classification problems (for example, see

Thomas et al., 2020). We constructed our 3D-CNN using Python and

PyTorch (see Section 3.4). These methods were chosen due to our

familiarity with the language. Our architecture was loosely based on a
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F IGURE 5 AConnectogram of all 53 networks and 7 domains identified by our GIG-ICA.

version of C3D. C3D is a popular 3D CNN that pairs 3D convolutional

layers with batch-normalization and maxpooling layers to help learn

spatial features (Tran et al., 2015). Unlike C3D, our simplified archi-

tecture only contained three convolutional and two linear layers. This

simplification occurred due to our small dataset and the difference in

classification task (i.e., binary classification is often less difficult than

multiclass classification). We also substituted the SoftMax classifica-

tion layer with a sigmoid activation function due to the nature of our

binary classification task. Further details of our architecture can be

seen in Figures 6 and7.Ourmodelwas initially optimized usingOptuna

and then underwent manual tuning (see Section 3.5 for a guide to opti-

mization). Further details on our optimization workflow are discussed

in the results section below (Section 4.2).

We partitioned our data using a stratified sampler into 80% train-

ing, 10% validation, and 10% testing datasets. Our model was trained

using the Adam optimizer, binary cross-entropy loss, a batch size of 52,

and a learning rate of 0.0001. Our data also underwent normalization

and resizing transformations to improve accuracy and compatibility.

Initially, our model experienced significant overfitting due to our small

dataset (N = 524). We used dropout (p = .5) as regularization, 90◦ ran-

dom rotation (p = .5) for data augmentation, an exponential learning

rate scheduler (gamma= 0.9), and an early stopping function (patience

= 15) to help manage the overfitting. We opted to use the Medical

Open Network for AI (MONAI) rotation transform as this augmen-

tation is specially made for medical images and is compatible with

3D data (The MONAI Consortium, 2020). Our regularization and aug-

mentation methods helped combat overfitting and maximize model

accuracy. The final model was trained on a PC using an AMD Ryzen 5

2600 CPU, RTX 3060 (12Gb) GPU, 32Gb of RAM, andWindows 10.
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WARREN ET AL. 13 of 22

F IGURE 6 3D-CNNmodel architecture. Note: Convolutional layers had a stride of one, andmaxpooling layers had a stride of two. No padding
was used. The key terms are as follows: inputs= the number of features fed into a layer; outputs= the number of features fed out of a layer; kernel
size= the size of a patch that a convolutional layer views and reduces at a time; stride= the amount of units a convolutional kernel moves when
viewing parts of an image; padding= adding blank values around an image; maxpooling= a feature extraction and dimensional reduction
technique; LeakyReLU= an activation function which allows for minor negative values; batchnorm= normalizes feature values for each batch;
dropout= a regularization function that turns a percentage of feature values to 0; Conv3d= a 3D convolutional layer that learn features; linear
layers= layers that learn and fit features using a linear function; flatten= a function that dimensionally reduces the data; and sigmoid= a function
that turns a feature value into a binary value.

F IGURE 7 A graphical visualization of our models architecture. Ourmodel contains four key sections: the convolutional layers (Conv), flatten
function, linear layers (Lin), and sigmoid classification function. The first convolutional layer takes the fMRI as input, learns the 3D features, and
passes them to the next convolutional layer. The remaining convolutional layers continue this trend, gradually learning and extracting key features
from the fMRI. Once completed, the flatten function takes the 3D fMRI features and dimensionally reduces the data to one dimension (1D). This
1D data is the passed to the linear layers that continue to learn and fit the features. Finally, the last linear layer reduced the features to one value
that is then passed to a sigmoid function for binary classification (i.e., a final value> 0.5= class 1 and< 0.5= class 0).
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5.4 Additional outcomes

Besides model metrics, we also tracked the tasks, tools, and hours

taken to complete our DL model. We chose to include these addi-

tional metrics to provide new researchers with more details about

the timeline and construction of our example pipeline. These statis-

tics were recorded manually using written notes. Our procedures

and experiences with each tool were also documented throughout.

These notes and statistics were not overly quantitative but aimed

to give an approximate summary of creating an assistive tools-based

classification pipeline.

6 MODEL RESULTS

6.1 ASD classification

Our 3D-CNN classified ASD participants from controls with an accu-

racy of 71.2%. This model also had a sensitivity of 72%, a specificity

of 70.4%, a precision of 69.2%, and an F1 score of 0.71. We calcu-

lated the Matthews Correlation Coefficient (MCC) to understand the

relationship between predicted and true diagnoses. MCC is a binary

classification correlation coefficient that is based on and interpreted

similarly to Pearson’s correlation (Chicco & Jurman, 2020; Matthews,

1975). Our MCC was 0.42, indicating a strong positive relationship

between true diagnoses and model predictions. See Figures 8 and 9

for more training, validation, and testing metrics. Our model also per-

formed well compared to contemporary models (see Table 5). For

example, our model had the second-highest accuracy compared to a

sample of models using multisite ABIDE datasets. Our model also per-

formed well when compared to other 3D-CNN models. Consequently,

we achieved our aimof creating a competitiveASDclassificationmodel

using fMRI, DL, and assistive tools.

6.2 Project workflow and resources

We documented our procedures throughout to provide more details

on the assistive tools used and our workflow. The whole project

took approximately 6 months and included model construction, learn-

ing, troubleshooting, training, metrics, and optimization. Our specific

workflow is as follows: First, we downloaded the full ABIDE pre-

processed dataset from the preprocessed connectomes project using

the Cyberduck download manager. We also downloaded participants’

demographics for classification labels in our 3D-CNN. Next, we used

7-Zip to extract all NII files from their compressed state to be com-

patible with GIFT. We also cleaned the demographic files in Excel and

checked for missing data. Then, we downloaded the NeuroMark tem-

plate (from https://trendscenter.org/data/) and ran the GIG-ICA using

GIFT. We then checked the ordering of the spatial maps and recoded

our demographics to pairwithGIFT’s participant naming scheme. After

completing preprocessing and feature extraction, we moved on to DL.
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F IGURE 8 Model training and validation loss and accuracy.

F IGURE 9 A confusionmatrix of the testing dataset’s
classification results. Note: A confusionmatrix displays the
relationship between true diagnoses and amodel’s predicted
diagnosis. The values in the top left quadrant are true negatives
(controls classified as controls by themodel), the top right are false
positives (controls classified as ASD), the bottom left are false
negatives (ASD classified as controls), and the bottom right are true
positives (ASD classified as ASD). The heatmap indicates the
frequency of results in each quadrant. A highly accuratemodel will
maximize true values andminimize false values.

We started by finding code online that was similar to our intended

design. This search usedGitHub, papers with code, andGoogle Scholar

(i.e., reading journal articles). After finding a model architecture and

some boilerplate code, we rewrote everything to fit our specific clas-

sification problem. This rewriting involved reworking the data loader

to be compatible with our data, including stratification, and coding in

numerous functions (e.g., Optuna, early stopping, model metrics, and

validation). Once the code was functional, we used Optuna to search

for hyperparameters that achieved reasonable accuracy (e.g., ∼65%).

We also experimented with other packages, such as LRFinder and

PyTorch lightning; however, they did not end up in the final model

because other tools performed the same function (e.g., Optuna was

used to find the best LR instead of LRFinder). We then moved on

to manually tuning the hyperparameters to maximize model accu-

racy. After the model was tuned, we ran and validated our model

and extracted the classification metrics. Altogether, these tasks took

approximately ten weeks and almost 3 months of full-time work. A

breakdown of these tasks and their approximate time can be seen in

Table 6.

It is important to note that the time estimates in Table 6 do not

always account for some vague but essential parts of model creation,

such as learning to use programs, general data work, troubleshooting,

piloting, exploration, and installing dependencies. We do not explicitly

report timeframes for these tasks as they are often subjective and hard

to define (e.g., does learning to use a program ever end?). Similarly, it is

important to note that our timeframes are researcher and technology

specific. For example, one’s computer speed and capacity (e.g., Mem-

ory, CPU thread count, CUDA cores, and SSD speed) will affect the

time it takes to run a model. Equally, a researcher’s skills and familiar-

ity with a pipeline will also influence the time to perform most tasks.

It should also be noted that some tasks can be performed in unison

thanks to automation.While somewhat contextual, we hope this exam-

ple pipeline can help new researchers understand the workflow and

potential timeframes for creating an fMRI andDLmodel.We also hope

that it shows thepotential of assistive tools to automateand streamline

such a pipeline.

7 DISCUSSION

In this project, we built an example ASD classification model using

fMRI, DL, and assistive tools. Unlike prior studies, we explicitly aimed

to incorporate assistive tools to decrease the difficulty of construct-

ing our model and increase the accessibility of our pipeline. In turn, we

found that our assistive tools primarily helpedus to automate laborious

tasks and streamline the stages of our pipeline. For example, we could

automate hyperparameter searching (one of the longest stages) and

skip steps like data collection and preprocessing. Our resulting model

could classify ASD from controls with an accuracy of 71%. This accu-

racy is highly competitive compared to similar models using multisite

data fromABIDE. For example, Deng et al. (2022) achieved an accuracy

of 75%,while Jönemoet al. (2023) andThomaset al. (2020) achievedan
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accuracyof approximately65%onsimilar samples (i.e.,multisiteABIDE

participants). Accordingly, we showed that cutting-edgemodels can be

made for ASD classification using fMRI, DL, and assistive tools.

Our model is relatively unique compared to other fMRI and DL

ABIDE classification models in the literature. For example, we used a

spatially constrained GIG-ICA with reference instead of common ROI

methods. We also used automated techniques like Optuna’s hyperpa-

rameter optimization search. We selected these alternative methods

because of our focus on using assistive tools. For example, our GIG-

ICA helped us streamline our fMRI pipeline by automating the feature

extraction stage. This focus on assistive toolsmay seem contrary to the

typical approach of prioritizing model performance (e.g., maximizing

classification accuracy); however, our preliminary results suggest that

assistive tools do not drastically compromise model performance and

could make fMRI and DL classification techniques more accessible to

new researchers and clinicians.

It is important to note that our study had some notable strengths

and limitations. First,webelieve that this guideandexample-model for-

mat can be a beneficial learning tool for new researchers. Specifically,

our guide can act as a compendiumof commonassistive tools,while our

example model can act as a template for creating a streamlined classi-

fication pipeline. Second, it is essential to highlight that our example

pipeline is highly contextual, and the specific methods used may not

generalize to all classification problems in the field. We want to stress

thatmost projects’ specific timeframes and assistive tools will vary. For

example, our project required more hyperparameter tuning time than

usual because of our overfitting problems (which are common in small

datasets). Nevertheless, our pipeline can still act as an example that can

temper expectations and inspire the adoption of assistive tools. It is

also important to note that there is an inherent data loss when com-

pacting an entire project into some metrics and a written summary.

Not all work leads to results, and model work can sometimes be more

of a craft than a science. We hope our example pipeline can help new

researchers understand the resources and skills required to create a

simple DL and fMRI classificationmodel.

Regarding our model, it is important to highlight that our focus

on assistive tools did result in some difficulties that should be con-

sidered (e.g., overfitting and sample size restrictions). For example,

using a more traditional technique like ROI feature extraction could

have resulted in more data and less overfitting. By preferencing assis-

tive tools, we also chose methods and a model architecture that were

simplistic when compared to some cutting-edge techniques. These dif-

ferencesmightmake it harder to compare ourmodel to other pipelines

that use different sample sizes and techniques (e.g., autoencoder mod-

els). Our choice to use the ABIDE dataset may have also limited our

study as its general accuracy is known to be lower than other neurolog-

ical datasets. Initially, wewanted to conduct our project onAlzheimer’s

disease classification and the ADNI dataset; however, this smaller and

un-preprocessed dataset was not feasible for the timeframe of this

project. These problemswith small datasets also requiremore complex

techniques and attention that are beyond the scope of this paper.
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8 CONCLUSION

This study is only an introductory guide to assistive tools and an ini-

tial proof of concept for an assistive tools pipeline. In turn, future

research should seek to expand on this work by applying assistive

tools to various aspects of fMRI and DL pipelines. For example, future

research could apply assistive tools to cutting-edge models, incorpo-

rate contemporary techniques to assistive tools pipelines (e.g., transfer

and ensemble learning), embrace graphical user interface (GUI) DL

methods, and increase the accessibility of preexisting preprocessed

data. We believe such research can help welcome new researchers

into our interdisciplinary field and increase the viability of neurologi-

cal diagnostic models. More generally, we also believe that improved

accessibility can help to increase our ability (as a community) to make

clinically viable classification models for neurological disorders. These

models could be crucial to improving early diagnoses, treatment, and

individuals’ quality of life. DL and fMRI have a long way to go before

diagnostic models can be clinically viable. However, we believe that

the tools and knowledge required to create clinically viable models are

already being created.
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