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Abstract 
This paper contributes to the limited-information literature on savings in a 
stochastic environment. In particular, it contributes techniques and concepts 
to the question of state verification (or filtering), by including learning about 
aggregate income shocks, based on signals. As a seminal contribution to the 
extant literature, a “conviction function” is introduced, which takes into ac-
count histories of past prediction errors in determining how rational agents 
internalize such information in taking personal investment decisions. For 
purpose of a more transparent illustration, a numerical rendition of the po-
sited model is provided for five consecutive time periods. We also perform a 
series of Monte Carlo simulations to demonstrate how the posited approach 
could potentially outperform traditional forward-looking models in the pres-
ence of sudden large extraneous shocks reminiscent of the recent Global Fi-
nancial Crisis. 
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1. Background and Motivation 

In order to meet their retirement goals, savers need to react to adverse changes 
during the accumulation phase of retirement planning. One major cause of un-
certainty during the accumulation phase is the stochastic nature of the returns 
on assets in a retirement portfolio. Thus many individuals, who had considered 
that their savings were adequate to meet their retirement needs prior to the 
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global financial crisis (GFC), were rudely disappointed. In this article we ex-
amine the nature of an optimal retirement savings plan and the resilience of 
such a plan to large external shocks. 

A retirement savings plan can in essence be reduced to a dynamic portfolio 
insurance strategy that actively allocates funds to a risky asset (or pool of risky 
assets) when the market is expected to move in a positive direction, and divert-
ing funds to a low-risk asset when market returns are expected to decrease. 
However, a major shortcoming of such a plan is the “forward-looking” nature of 
these decisions. A purely prediction-dependent plan is fraught with non-negligible 
costs of prediction error. While auto-corrections for very small errors in predic-
tion can be built into prediction-dependent models, the impact of large systemic 
shocks can jeopardize their predictive accuracy and render them unusable. Most 
significantly, if such shocks occur towards the end of the planning horizon (i.e. 
as an individual approaches retirement age) then the recovery time is often not 
adequate to allow the models to reach the target savings goal. 

The motivation of this paper is two-fold. Firstly, we postulate a better retire-
ment planning approach that incorporates both forward-looking as well as 
backward-looking techniques in dynamically determining the optimal path. We 
combine the standard dynamic programming approach that applies the Bellman 
principle with a Bayesian learning approach. This allows our posited approach to 
endogenously account for past errors in prediction. We present a numerical 
rendition of our posited dynamic optimization strategy for a five-period horizon 
via a rather large 32 × 32 event-action matrix to extricate the best possible out-
come for each error in prediction made in the past periods. This illustrative me-
thod quickly becomes computationally intractable for large values of n, but n = 5 
helps to adequately illustrate our case. A rational Bayesian learner should not be 
affected by his/her past performances as he/she has incorporated all possible 
match/mismatch between his/her signals and states; and updated his/her beliefs 
accordingly. However, in the real world the assumption of rationality may not 
hold as past performance may be considered one of the crucial factors of ana-
lyzing one’s investment decision, in particular, managing the risk portfolio. We 
therefore examine the case of using past performance as a tracking error and 
consider the implication for the Bayesian learner’s decision making process. We 
find that in the case when the past performances revealed a great number of 
mistakes, this leads the Bayesian learner into an unnecessarily conservative in-
vestment decision making process. However, the reverse is not true i.e. if the 
past performances have revealed that he/she did not make any large mistakes, 
he/she follows the Bayesian decision making process. In other words, past per-
formances affect an individual Bayesian learner’s decision making process only 
when he/she made too many mistakes in the past. Indeed, our theoretical pre-
diction is supported by the recent empirical evidence by reference [1] where they 
examined how the past performance affects mutual fund tracking error. Second-
ly, we run a series of Monte Carlo simulations for two different model versions; 
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a simple one without Bayesian learning and an alternative one incorporating 
Bayesian learning. We compare the results for each version for two alternative 
scenarios one with a massive, systemic shock and the other without such shocks. 
A recent, real-life example of a massive, systemic shock is the of course the GFC. 
Many individuals who had previously thought that their savings were well on 
track to fund their (for some imminent) retirement, were subjected to great dis-
appointment and distress. 

An improved understanding of the process by which such shocks affect the 
accumulation of retirement funds would clearly be useful. A naïve solution to 
the dynamic retirement planning problem for an individual would be to redirect 
all savings to proxy risk-free assets. However because of the very low rates of re-
turn and the threat of inflation this approach would not be favorable (or even 
practical). A better solution ought to involve a dynamic funds allocation strategy 
that takes into account the individual planners prediction of the state of financial 
markets as well as the effect of past errors in prediction. This is what we have 
posited and illustrated in this paper. 

2. Brief Review of Extant Literature 

Reference [2] recognized that finding a way around the first principle problem is 
a key issue that lies at the heart of a quintessential social security problem. Effec-
tively the retirement planning problem can be viewed as a special form of the 
social security problem where targeting the saving goal at retirement age and 
subsequently determining how to achieve that target is a crucial factor in ad-
dressing this problem. The extant literature has mostly addressed this problem 
via modern portfolio theory [3] [4] or more recently via optimal stopping rule 
with state constraints [5]. The problem is typically formulated and solved with 
the help of optimal control theory in either continuous time space or discrete 
time space [6]. In the most cases, the continuous time space is much easier to 
solve than that of discrete time space. However, the latter technique is preferable 
in terms of a more transparent representation of the solution method; especially 
with regards to its actual application in funds management [7] [8]. In a seminal 
work of reference [9], the classical dynamic programming approach is embel-
lished by incorporating a suite of key behavioral and situational factors (e.g. an 
individual agents belief, age, nature of employment etc). However, these factors 
are incorporated via pre-set parameters and the only stochastic element in the 
model is the probabilistic equation of motion (i.e. the standard Markov process). 
Most of the later models were minor extensions of the reference [9]’s model [8]. 

As summarized by reference [10] any Finite Horizon Dynamic Programming 
(hereafter FZDP) problem is defined by a tuple ( ){ }, , , , ,t t tS A T v f Ω , where S, A 
and T are state space, action space and positive integer that incorporates the 
time horizon respectively. Here, :tv S A× →  is the reward function; 

:tf S A S× →  is the equation of motion and ( ):t S P AΩ →  corresponding 
feasible action. To ensure that the target fixed point will be arrived at some addi-

https://doi.org/10.4236/tel.2018.85065


M. Cohen et al. 
 

 

DOI: 10.4236/tel.2018.85065 921 Theoretical Economics Letters 
 

tional assumptions are needed, among which the two main ones are: 1) 
:tv S A× →  is concave and 2) :tf S A S× →  obeys a Lipschitz condition of 

contraction mapping. 
The standard model of dynamic programming assumes that the knowledge of 

parameter is known, thus the learning is complete. Indeed, it is quite possible to 
argue that an individual agent does not know the true state of the market, but 
may receive a signal of the future direction (i.e. form a prediction about the fu-
ture state of the market). Such a signal plays an important role in helping the in-
dividual agent decide on an action. Given that an individual agent is rational, it 
may be assumed that he/she engages in Bayesian learning. In this respect, refer-
ence [11] has demonstrated how Bayesian learning can be incorporated in dy-
namic programming to make an optimal decision. Later, the reference [12] has 
incorporated bayesian learning to show how such learning affects asset prices 
empirically. In this paper, we are extending reference [11]’s paper by introduc-
ing the conviction function. A “conviction function”, which is a function of past 
prediction errors, builds persistence, making histories of past shocks to affect the 
value function that agents use in order to make savings choices. Thus it is not 
just the signal (i.e. the prediction) but the conviction function in conjunction 
with the signal that ultimately determines the action. The conviction function is 
something that is not built into classical dynamic programming, thus we regard 
this as the most significant methodological contribution of our paper. 

Note that, in a discrete-event case, the backward induction technique starts 
with the last period and works its way backwards period by period to the initial 
period to establish an optimal time path. However, in so doing, it ignores the 
forward looking induction. A key decision-making task precedes every state va-
riable taking on a particular value before the true nature of a state is revealed; an 
individual agent has to decide whether or not to take a certain course of action 
given how he/she understands the signals, and also given his/her conviction 
function as determined by past prediction errors. This idea is similar to reference 
[13], who introduced the concept of forward looking induction in the context of 
sub-game perfect Nash equilibrium. However, unlike reference [13] we apply the 
forward looking induction in a recursive way through Bayesian learning. 

3. Model 
3.1. Utility, Strategy and Payoff 

Consider an individual agent who lives for 1n +  periods, where 2n ≥ ; and 
dies at period 2n + . Thus the terminal period is 2n + . An individual agent’s 
decision variable is tc  at period t, where { }0,1,2,3, , 1t n= + . This tc  is in-
terpreted as a choice of his consumption at period t so that he can achieve the 
targeted level of asset ta  at period t. We assume that 2 0na + =  (since agent dies 
at 2N +  period). Each individual agent starts with the initial asset level a  at 
periods 0t =  i.e. our initial condition. Like conventional literature of dynamic 
programming, we assume that an individual’s utility function is time additive 
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separable (hereafter, TAS) and it is concave with respect to decision variable tc . 
Without loss of generality, we assume that an agents’s utility function will be as 
follows: ( )1

0
n i

ti u cβ+

=∑ , where β is a discount factor. All individual agents are 
homogenous in their preferences. 

The state variable ta  evolves with the following equation of motion: 
( )1 1t t ta R a c+ = + −  i.e. the next period targeted asset level depends on the pre-

vious period’s asset level less the choice of consumption at period t, that is the 
net saving. Here, { } { }0, r sR δ δ∈  . Note that, { }0, rδ  and sδ  are the returns 
from the risky and safe investments respectively such that 0 s rδ δ< < . In our 
set-up, we assume that an individual can choose either r

td  or s
td  i.e. to invest 

his saving either in the risky asset or in the safe asset.1 In the case of risky asset 
investment, we assume that the return of risky asset, { }0, rR δ= , (as we have 
mentioned in the equation of motion) follows the Markovian probability 

( )( ) [ ]1 | , 0,1t t tp a R a c α+ = ∈ . In other words, in the case of risky asset, there is 
probability α to obtain rδ , if so then the probability to obtain 0 is ( )1 α− . 
However, the return of safe asset { }sR δ=  follows the Markovian probability 

( )( )1 | , 1t t tp a R a c+ =  i.e. the probability to obtain sδ  is always 1. Clearly, α is 
very important for the risky investment and the nest two sections, we develop 
the conviction function in conjunction with Bayesian learning and define α in 
terms of conviction function. 

3.2. Signals and Bayesian Learning 

Consider the following scenario. An individual agent does not know how well 
the economy will perform at the beginning of each period t i+ , however, he/she 
knows with certainty that there are only two possible outcomes; gS  and bS  
(i.e. good and bad states respectively) with equal probability. This implies that an  

individual’s prior belief is ( ) ( ) 1
2g bP S P S= = . Furthermore, an individual  

receives signals g and b at the beginning of each period. We assume that these 
signals are symmetric binary by nature. In others words, there is probability p 
that both the state and signal will be matched, otherwise there will be mis-
matched outcome with the probability 1 p− . Table 1 summarizes the situa-
tion: 

It should be noted that in our model we consider two different types of states: 
one is the state variable that evolves from the equation of motion, and the other 
is the state of economy’s performance (which depends on the agent’s Bayesian 
learning). From the above table, one can calculate the following Bayesian Proba-
bilities (P): 

( ) ( )
( ) ( )

| ; | 1

| ; | 1
g g

b b

P S g p P S b p

P S b p P S g p

= = −

= = −
               (1) 

 

 

1One can also consider the convex combination of r
td  and s

td , however, this will not change the 
qualitative result of our model. 
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Table 1. States and symmetric binary signals. 

 Signals 

States g b 

gS  p 1 p−  

bS  1 p−  p 

 
Equation (1) defines the following rules, which are crucial for agent’s decision 

making process: 
Definition 1 Given the symmetric binary signal, the following defines the 

ex-ante rules for decision making process at period t: 

1) If *1
2 tp p≥ ≡ , an individual agent will form a posterior belief that there is a  

match between his/her signal and the state of economy’s performance. In this 
case, he/she will follow his signal i.e. if he/she receives g, he/she will choose sig-
nal r

td ; and if he/she receives signal b, he/she will choose s
td . 

2) If *
tp p< , an individual agent will form a posterior belief that there is a 

mis-match between his/her signal and the state of economy’s performance. In 
this case, he/she will always play safe i.e. he/she will choose s

td . 
Definition 1 accords with our intuition. Suppose, an agent receives signal b. 

Given signal b, the state of economy’s performance is either gS  and bS . From 
the symmetric binary signal he/she knows that ( )|bP S b p=  and 
( )| 1bP S g p= − . He/she forms his/her posterior belief that his/her signal is  

matched with the state of economy’s performance if ( ) *11
2 tp p p p≥ − ≥ ≡ . 

3.3. Conviction Function 

Although Definition 1 explains how a decision will be made given the signal for 
the current period, it does not tell how a decision is made when an agent has 
perfect recall of the success or failure of past predictions. Indeed, past history 
may affect agent’s belief and make him/her less confident about his/her current 
signal or the other way around. To make it clear, let assume that agent is at pe-
riod 1t + . He/she can observe whether his/her decision at period t was right or 
wrong by observing the state variable at current period (i.e. in our model 1ty + ). 
In so doing, he/she will follow the following steps: 

At period t, ex-ante, an agent has received signal g with *
tp p≥ , thus accord-

ing to Definition 1, he/she thinks there is a match between his/her signal and 
state of economy’s performance i.e. ( )|gP S g p=  and takes his/her decision 
accordingly. 

At period 1t + , ex-post, an agent has realised whether he/she made a mistake 
or not by observing the state variable 1ty + . If he/she made a mistake that implies 
that ( )| 0gP S g =  and ( )| 1bP S g = . Thus, the magnitude of error at period t, 
denoted as ( )t Eλ , is as follows: ( ) 1t E pλ = − . Note that, if the agent does not 
make a mistake then ( ) 0Eλ = . 
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Suppose, an agent receives the same signal g at period 1t +  and, like Step 1, 
he/she calculates the same posterior belief. Thus ex-ante if an agent has received  

signal g with *
1

1
2 tp p +≥ ≡ , he/she might think that a match between his/her  

signal and the state of economy’s performance (following the Definition 1). 
However, this is true only if ( ) 0t Eλ =  i.e. he/she did not make any mistake in 
last period. If an agent made a mistake in last period, the current signal is not 
enough to build his/her confidence level to choose the same action that he/she 
took in last period. In this case, an agent has to revise his/her confidence level. 
Thus if he/she receives g signal, the strength of the signal g at period 1t +  is  

measured as follows: ( ) ( )
1

| | 2 1g b t
P S g P S g p

+
 − = −  . Agent will be confi-

dence enough that his/her signal is matched with the economy’s performance if 
the following is true: 

( ) ( ) ( )
1

1

| |

2 1 1
2
3

g b tt

c
t

P S g P S g E

p p

p p

λ
+

+

 − ≥ 
⇒ − ≥ −

⇒ ≥ ≡

               (2) 

This implies that an agent will be confident enough that his/her signal is 
matched with the current performance of an economy if his/her signal 1

c
tp p +≥ . 

It should be noted that 1
c c
t tp p +<  when the agent made a mistake at period t. 

Hereafter, c
tp  refers to an agent’s confidence function about his/her signal at 

period t i+ . 
Given condition (2) and the process describe in the above three steps, the 

same procedure can be generalized for 1n +  periods, where 2n ≥ . Suppose at 
period n an agent receives signal g with probability p and revises his/her confi-
dence level based on whether his/her signal is matched with current perfor-
mance of the economy. From the history of past periods, the agent learns that 
his/her signals were correct for k periods, and thus n k−  periods his/her sig-
nals were incorrect. Therefore, at period n, condition (2) will be as follows: 

( ) ( ) ( )

( )( )
( )
( )

1 1
| |

2 1 1

1
2

n k

g b in i

c
n

P S g P S g E

p n k p

n k
p p

n k

λ
−

− =

 − ≥ 

⇒ − ≥ − −

− +
⇒ ≥ ≡

− +

∑
               (3) 

Equation (3) leads to following proposition: 
Proposition 1 
If k n=  i.e. agent does not make any mistakes in any of the previous periods, 

then 1 2
1
2

c c c
np p p= = = = . 

If 1 k n< <  i.e. agent makes mistakes for n k−  periods then 
( )
( )1 2

11
2 2

c c c
n

n k
p p p

n k
− +

= < < < =
− +

 . 
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If 0k =  i.e. agent makes mistakes for all n periods then  
* * *
1 2

1 1
2 2n

np p p
n
+

= < < < =
+

 . And if 1c
nn p→∞⇒ → . 

Proof. The proof follows from Equation (3) and the argument lies in those 
three steps. 

Proposition 1 is explains how an agent learns from his/her past decisions and 
build his/her conviction function c

tp . The important part is that by introducing 
c
tp , we analyze the role of forward looking induction in the dynamic program-

ming which might lead to different dynamic paths as oppose to dynamic path 
suggested by Bellman equation. 

We are now able to define α in terms of c
tp . Indeed, for any period 0t > , α 

is defined as follows: 1 c
tpα = − . Note that, if one has made a lot of mistakes in 

the past, one will have higher value of c
tp  (see Proposition 1(B)) in that case, 

one will face lower value of α, i.e., the probability will be very less that one will 
reach in the next state with the higher return rδ . If one does not make any mis 

take then 
1
2

c
tp =  (see Proposition 1(A)) in that case 

1
2

α =  (in other words, 

the value of α is exactly equal to one’s Bayesian signal i.e. * 1
2tp = ). Although  

the main contribution of our paper is Proposition 1, we also provide an example 
in Appendix illustrating the role of the conviction function in a finite horizon 
decision set-up. 

4. Numerical Rendition 

We present a numerical rendition of the dynamic optimization problem as po-
sited and developed in the previous sections. For purpose of computational 
tractability, we have limited an individual agents planning horizon to five dis-
crete time periods (six nodes) with a time-line going from t0 to t5. 

At each node there are two possible, mutually exclusive events either the sig-
nal matches the true state of the market (i.e. there is no prediction error) or the 
signal does not match the true state of the market (i.e. there is a prediction er-
ror). Also, at each node the individual agent chooses a certain course of action 
and for the sake of simplicity, we limit the pertinent action space to a set of two 
mutually exclusive choices either the individual agent opts for a risky pool of as-
sets or he/she opts for a riskless pool of assets. The starting amount in the re-
tirement fund (i.e. y0) is set as 1.0. Given the agent opts for the risky portfolio, 
the payoff from a match is 0.10h∆ =  while the payoff from a mismatch is 

0.00h∆ = . If on the other hand if the agent opts for the riskless portfolio then 
the payoff is 0.05 in both cases (i.e. irrespective of whether it’s a match or a 
mismatch) as by definition this is a risk free outcome. The riskless portfolio if 
chosen in each of the five periods, would ensure a certain ending amount of 1.25 
at the end of the fifth period irrespective of whether or not the signal matched 
the true state (i.e. whether or not the predictions were correct) in any of the past 
periods. Therefore this serves as a baseline value and realistically, all targeted 
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amounts should be above this baseline. Given our starting numerical values as 
stated above, the four potential targets are 1.50 (best of the lot; with no past er-
rors), 1.45 (achievable with at most one past prediction error), 1.40 (achievable 
with at most two past prediction errors), 1.35 (achievable with at most three past 
prediction errors) and 1.30 (achievable with at most four past errors). 

For each period therefore, there may be a match or a mismatch of signal and 
true state for one, some or all previous periods and a corresponding outcome 
depending on whether a risky or a riskless portfolio was chosen by the agent in 
each of those previous periods. This effectively results in an event-action matrix 
of dimension 2 2n n× , which as one may construe, could become inordinately 
large even for a moderately large value of n and quickly approach the limits of 
computability. For a fairly small n = 5, we have constructed a 32 32×  matrix 
representing all the possible time paths from y0 to y5 that the individual agent 
could follow. 

The results obtained from the 32 × 32 event-action matrix are summarized in 
Table 2.2 

 

Table 2. Numerical output obtained from the posited theoretical model for n = 5. 

Percentage fall in Prob. of achieving target  

For Target 5 1.5Y =   

With 1 mismatch prob. of achieving target drops by: 100% 

For Target 5 1.45Y =   

With 1 mismatch prob. of achieving target drops by: 48.5% 

With 2 mismatches prob. of achieving target drops by: 100% 

For Target 5 1.4Y =   

With 1 mismatch prob. of achieving target drops by: 20% 

With 2 mismatches prob. of achieving target drops by: 66% 

With 3 mismatches prob. of achieving target drops by: 100% 

For Target 5 1.35Y =   

With 1 mismatch prob. of achieving target drops by: 5% 

With 2 mismatches prob. of achieving target drops by: 35% 

With 3 mismatches prob. of achieving target drops by: 73% 

With 4 mismatches prob. of achieving target drops by: 100% 

For Target 5 1.3Y =   

With 1 mismatch prob. of achieving target drops by: -1% 

With 2 mismatches prob. of achieving target drops by: 10% 

With 3 mismatches prob. of achieving target drops by: 42% 

With 4 mismatches prob. of achieving target drops by: 76% 

With 5 mismatches prob. of achieving target drops by: 100% 

 

 

2Note: All numbers are hypothetical and intended for illustration only no primary or secondary data 
sources have accessed for the purpose of this research. 
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The percentage figures (in bold italicized font) represent the percentage drops 
in likelihood of achieving the best outcome for the particular time path for the 
highest number of past errors for which that best outcome is achievable. So, for 
example, for a targeted best possible outcome of 1.45 (i.e. the maximum amount 
an individual agent can expect to have accumulated at the end of the given plan-
ning horizon), the probability of achieving the target drops by 48.5% for a single 
past prediction error. For two past prediction errors, this probability drops by 
100% i.e. the target no longer remains achievable (and would have to be revised 
downward to the next highest number of 1.40). Again; for a targeted best possi-
ble outcome of 1.40, the probability of achieving the target drops by 66% for two 
past prediction errors. For three past prediction errors, this probability drops by 
100% i.e. the target no longer remains achievable (and would have to be revised 
downward to the next highest number of 1.35); and so on. It is interesting to 
note that these percentages can be seen to closely approximate the ratio  

( )* * *

* * *

1 2 1 12
p p p

p p p

− − −
= = − ; where *p  is the conviction level predicted by  

our theoretical model for a given number of past prediction errors. For 1 predic-

tion error * 0.66p =  and *

12 0.5
p

− =  (corresponding to a 48.5% drop in the  

likelihood of achieving the target of 1.45), for 2 prediction errors * 0.75p =  and  

*

12 0.667
p

− =  (corresponding to a 66% drop in the likelihood of achieving the 

target of 1.40); for 3 prediction errors * 0.80p =  and *

12 0.75
p

− =  (corres-

ponding to a 73% drop in the likelihood of achieving the target of 1.35) and for 4 

prediction errors * 0.833p =  and *

12 0.80
p

− =  (corresponding to a 76% drop  

in the likelihood of achieving the target of 1.30). 
It must be noted that this numerical rendition does not incorporate a massive 

exogenous shock (reminiscent of the GFC) but is rather a straightforward nu-
merical demonstration of how the dynamic time paths would pan out for all 
possible combinations of event and action and shows how learning might be or-
ganically embedded in the temporal evolution process. By incorporating the 
conviction level (a function of past prediction errors) into the decision process 
along with the signal generated in each period, an individual agent is better able 
to identify the optimal path into the future given his/her present location in any 
intermediate node. For example, if an agent is at the beginning of the fifth (i.e. 
terminal) period and has only one prediction error till that point, then he can 
reach at best 1.45 (if he/she selects the risky portfolio and there’s a match of sig-
nal with true state in the last period) or, at worst, he/she can reach 1.40 (if he/she 
selects the risky portfolio and there’s a mismatch of signal with true state in the 
last period) so will always select risky if target * 1.40y ≥ . On the other hand, if 
the agent has made two prediction errors already, then he/she can reach 1.40 at 
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best (if he/she selects the risky portfolio and there’s a match of signal with true 
state in the last period) so will need stronger conviction to opt for risky in the 
last period. 

In the next section we firstly present the results of Monte Carlo simulations 
for two different cases a naïve case (without learning) and an alternative one 
(with learning). For each of these cases, we have two alternative scenarios one 
with a massive exogenous shock (reminiscent of the GFC) and the other without 
a shock. We then discuss the results in detail. 

5. Monte Carlo Simulations 

To allow for a more realistic presentation of the implications of the theoretical 
model the simulations is set up in such a manner that it is representative of an 
individual who saves for retirement over a 40 year working career. At the end of 
each month the individual observes the performance of the financial market 
over the last month and formulates a decision as to how the accumulated assets 
should be invested for the following month. 

As in the theoretical formulation of the model, financial markets have only 
two states; high returns or low returns. In the simulation the return when the 
market is “high” is set at 1.0% per month, and when the market is “low” there is 
a negative return of 0.85% per month. The state of the market in any one period 
is modeled as a binomial random variable with a 50% probability of a high or 
low outcome. This effectively gives a slightly positive return to the overall mar-
ket in the longer term. There is also a “safe portfolio” and this is set to give a re-
turn of 0.1% per month. We consider two cases; one in which the individual 
“remembers” his past mistakes and the other in which there is no memory of the 
past. Without memory of past mistakes the individual has no reason not to be 
optimistic and will thus invest in the risky portfolio in each period. However if 
past mistakes are remembered then the theoretical model is used to determine if 
the individual invests in the risky portfolio or the safe portfolio. Without loss of 
generality an initial investment of $1000 at the beginning of the period is made, 
and the total reinvested each period. The results of 2000 iterations of the simula-
tion are shown is Figure 1.3 The fact that there is little difference in the situa-
tions with and without memory is as expected. The recall of past mistakes does 
not lead to an advantage in asset selection since it does not provide any advan-
tage in predicting the future course of the market. 

In order to test for the effect of an external shock to the system the simulation 
is adapted so that a period of “low” returns is forced into the stream of market 
conditions. Since individuals can experience such as shock at various times in 
their working career, this string of low returns is inserted randomly into each of 
the 40 year working careers that are simulated. A shock of 120 consecutive pe-
riods of low returns is therefore introduced. All other conditions remain as per  

 

 

3Note: All numbers are hypothetical and intended for illustration only no primary or secondary data 
sources have accessed for the purpose of this research. 
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Figure 1. Value of retirement savings, with no external shock. 

 
the first simulation. The results are shown in Figure 2.4 

The value of retirement savings falls for both sets of individuals because of the 
crisis, but the individuals with learning do better. This is not because they are 
better at predicting the outcome of the market, but because when they expe-
rience negative outcomes they adjust by holding the safe portfolio until they 
have experience enough signals that are correct for them to once again invest in 
the risky portfolio. 

6. Conclusion 

The significance of our research is two-fold. Firstly, we have proposed and for-
mally derived an extension to the classical dynamic programming model via in-
corporation of a Bayesian learning component. Apart from theoretically deriving 
this extension, we have applied it in the practical context of a retirement savings 
planning problem whereby an individual agent starts with a given amount in 
his/her retirement fund and then tries to optimally manage it over a finite time 
horizon so as to attain a certain minimum target value. The model takes into 
consideration the risk propensity of the individual agent and yields a trivial solu-
tion as per intuition if the target minimum value is less than or equal to the 
maximum value attainable via risk-less investing. The numerical rendition illu-
strates that for every past prediction error, the highest possible target end value 
of the retirement fund would have to be revised downward with an associated 
drop in the probability of achieving the target for each additional error made. 
Clearly then, if the individual agent was “learning” from the past errors and the-
reby becoming more and more “stringent” in terms of the minimum signal 
strength required to induce a selection of the risky portfolio, the riskless portfo-
lio would be opted for more and more as the number of past errors increased. 
This would effectively help to “lock in” the fund value to a certain target end 
value with lower and lower likelihood of any further downward adjustment. Our  

 

 

4Note: All numbers are hypothetical and intended for illustration only no primary or secondary data 
sources have accessed for the purpose of this research. 
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Figure 2. Value of retirement savings, with no external shock. 

 
posited “conviction function” allows for a neat integration of the Bayesian 
learning component with the classical Bellman principle of dynamic optimiza-
tion and therefore makes a significant contribution to optimization theory. Fi-
nally, our Monte Carlo simulations (using hypothetical numbers) clearly illu-
strate how the posited model would work in reality, particularly in the event of a 
large exogenous shock to the investment market (reminiscent of the GFC), the-
reby further highlighting its practical significance in financial planning. 
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1. Appendix 
1.1. Example: Finite Horizon Decision Making Process and  

Conviction Function 

In order to obtain a closed form solution we assume that  
( )1 1

0 0 lnn ni i
t ti iu c cβ β+ +

= =
=∑ ∑ .5 Therefore, we can formulate the finite horizon dy-

namic problem as follows 
1

0
ln

n
i

t
i

cβ
+

=

= ∑                      (4) 

( )1. . 1 ;t t ts t a R a c+ = + −                    (5) 

( ) ( )
( )

1 if one chooses ;

if one chooses .

c r
t r t

s
s t

p d
R

d

δ

δ

 −= 


             (6) 

2 00 and .na a a+ = =                         (7) 

In order to solve the above problem, we assume that an individual agent is 
making his/her decision at period n. At period n, he/she knows for sure that how 
many mistakes he/she made in the past 1n −  periods. Furthermore, we assume 
that, one has made ( )1n k− −  mistakes in the past. In other words, he/she 
made correct decisions in k periods. In these k periods, he/she may have made 
both risky and safe investments. Suppose, he/she makes successful risky invest-
ment for x periods; and he/she makes safe investment for k x−  periods. Thus 
his initial asset accumulation at period 1n −  is as follows: 

( ) ( )1 1 1 k xx
n r sa aδ δ −
− = + +                      (8) 

In period n, the value function (following from Bellman’s optimal principal) 
one faces is as follows: 

( ) ( )1 0 1max ln
n

n
n n nc

V a c V aβ += +                    (9) 

Similarly, in period 1n − , the value function will be as follows: 

( ) ( )
1

2 1 1 1max ln
n

n
n n nc

V a c V aβ
−

− −= +                   (10) 

Both Equations (9) and (10) are key to find out the Bellman’s Optimal prin-
ciple. The solutions of Equations (9) and (10) are discussed in the next section. 

1.2. Solution 

One can easily solve Equations (9) and (10) with the help of Equations (5) to (8). 
The optimal solutions are provided as follows: 

( )
( )

1*
1

1
1 1

n
n

R a
c

β β
−

−

+
=

+ +
                    (11) 

( )( )
( )

1* 1 1
1 1

n
n

R a
a

β β
β β

−+ +
=

+ +
                 (12) 

 

 

5Note that, this assumption is standard in the literature of economics where the utility function is 
subject to diminishing return. 
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( )* 1
1

n
n

R a
c

β
+

=
+

                      (13) 

( )*
1

1
1

n
n

R a
a

β
β+

+
=

+
                    (14) 

By using Equations (8), (12) and (14) we obtain the asset value in period 
1n + , which is as follows: 

( ) ( )( )
( ) ( ) ( )*

1

1 1 1
1 1

1 1 1
k xx

n r s
R R

a a
β β β

δ δ
β β β

−
+

+ + +
= + +

+ + +
       (15) 

If one chooses to invest in the risky asset for two successive periods (provided 
that he/she does not make any mistake) then the Equation (15) will be as follows: 

( )( )
( ) ( ) ( )

22
*

1

1 1
1 1

1 1

c
t r k xx

n r s

p
a a

β δ
δ δ

β β
−

+

+ −
= + +

+ +
         (16) 

On the other hand, if one chooses to invest in the safe asset for two successive 
periods (provided that he/she does not make any mistake) then the Equation 
(15) will be as follows: 

( )
( ) ( ) ( )

22
*

1

1
1 1

1 1
k xxs

n r sa a
β δ

δ δ
β β

−
+

+
= + +

+ +
          (17) 

Note that, following from Proposition 1(B), the value of c
tp  when 1t n= −   

will be 
1

n k
n k

−
− +

. Thus comparing Equations (16) and (17), one will invest in  

risky asset if the following condition is met: 

( )

( )**

1

1

c
t r s

r s

r s s

r s

p

n k
n k

n
k k

δ δ

δ δ

δ δ δ
δ δ

− ≥

−
⇒ ≥

− +
 − −

⇒ ≡ ≥ − 

             (18) 

Equation (18) develops the following Lemma: 
Lemma 1 There exists ** 0k >  such that if **k k<  then an individual deci-

sion maker will choose to invest in the risky asset. On the other hand if **k k≥  
then an individual investor will invest in the safe asset. 

Proof. The proof follows from Equation (18). 
Lemma 1 implies that there exists a critical level for the periods of correct de-

cision making, **k , in conjunction with conviction function such that if **k k<  
then an individual decision maker invests in the risky asset since the expected 
benefit from investing on such asset will be higher. However, the reverse will be 
true if **k k≥  i.e. in this case safe investment gives higher return. 

Interesting question one might ask is that how the above outcome based on 
conviction function differs from the outcome based on Bayesian learning. The 
answer lies on what values α will take based on Bayesian learning only (follows 
by Definition 1) when one chooses to invest on risky asset ( r

td ). Indeed, in such 
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case, α takes the following value: 

11 if and signal  is matched ;
2

0 otherwise.

p g
α

  >  =  



            (19) 

However, with the conviction function one faces the following value of α 

{ }( )1 1 2 | signal g is matched,c
tp p kα = − > =             (20) 

Here, { }k=  refers past history where k number of periods an individual 
investor makes correct decisions in making investment on risky asset. Equation 
(19) will be special case of conviction function (follows from Proposition 1(A) 
and 1(C)). Thus without conviction function α will be either overestimated or 
underestimated which makes an individual investor too much optimistic or too 
much pessimistic. Indeed, Equation (20) is methodologically novel in a sense it 
not only incorporates Bayesian learning from current signals but also incorpo-
rates the learning from past mistakes. 
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