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Abstract: This research explores edge computing for construction site monitoring using computer
vision (CV)-based worker detection methods. The feasibility of using edge computing is validated by
testing worker detection models (yolov5 and yolov8) on local computers and three edge computing
devices (Jetson Nano, Raspberry Pi 4B, and Jetson Xavier NX). The results show comparable mAP
values for all devices, with the local computer processing frames six times faster than the Jetson
Xavier NX. This study contributes by proposing an edge computing solution to address data security,
installation complexity, and time delay issues in CV-based construction site monitoring. This approach
also enhances data sustainability by mitigating potential risks associated with data loss, privacy
breaches, and network connectivity issues. Additionally, it illustrates the practicality of employing
edge computing devices for automated visual monitoring and provides valuable information for
construction managers to select the appropriate device.

Keywords: edge computing 1; CV-based worker detection 2; construction site monitoring 3

1. Introduction

The construction industry is data-intensive since heterogeneous data are generated
continuously as the construction progresses [1]. Consequently, data sustainability is crucial
in this industry, as it safeguards project data’s long-term availability and integrity. It
guarantees enduring availability, integrity, efficient transmission, and privacy of project
data in the long run. Accurate tracking and efficient resource utilization can be achieved by
upholding data sustainability throughout the construction lifecycle, resulting in improved
project outcomes.

Various automated methods have been used to enhance the effectiveness of construc-
tion management. In particular, the location, pose, and context information are collected
with terminal devices such as sensors and cameras. The collected data are transferred to
the local computer and processed using machine learning or deep learning (DL) methods
for equipment and workers’ safety and productivity management. Computer vision (CV)-
based DL methods have been extensively utilized for automatic construction management.
For instance, some researchers [2–5] applied CV-based object detection and classification
methods for workers’ and equipment safety and productivity monitoring on construction
sites. These methods have greatly enhanced construction process monitoring efficiency
through workforce reduction and cost savings.

Data sustainability is crucial for CV-based DL methods in construction site monitoring
due to the significant requirements for extensive video data capture, storage, and transfer.
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Traditional data processing and communication solutions have to transfer the data collected
from terminal devices (i.e., sensors, cameras) to a high-capacity system for storage and
analysis. Data transfer of this nature could lead to cybersecurity concerns, time delays,
and huge investments. For example, transmitting high-quality live videos from multiple
cameras may cause a time delay [6]. Moreover, deploying high-performance on-site local
computers requires massive labor and investment (e.g., cooling, power, place) [1]. Therefore,
traditional data communication and analysis based on local computing and servers are
insufficient for the diverse needs of current construction digitalization. The emerging
method of edge computing is utilized to achieve high-efficiency data management in the
construction industry.

Edge computing refers to a decentralized computing approach where data storage
and processing are brought closer to the point of data generation [7]. Compared with tradi-
tionally used cloud computing, edge computing has the following advantages: (1) Security
and privacy. There is a significant risk of data leakage or security breaches during the data
transmission to the cloud. Data storage and processing at the edge device can protect the
privacy and commercial secrets of the construction participants. (2) Real-time response. The
proximity of data processing to the data source will significantly reduce the service response
time, achieving nearly real-time performance. In certain application scenarios demanding
real-time feedback (e.g., safety monitoring, traffic monitoring) [8], cloud computing fails to
meet these needs. (3) Energy consumption. Edge computing alleviates network bandwidth
constraints and mitigates the high energy consumption inherent in cloud computing [8].

CV-based methods have been extensively utilized for enhancing construction produc-
tivity and safety through real-time site monitoring techniques [2–5]. However, analyzing
construction visual data using CV-based deep learning methods demands significant com-
putational resources [2–5]. In this context, edge computing has emerged as a transformative
solution for worker detection in construction monitoring. By enabling real-time video feed
analysis directly on edge devices, edge computing reduces the reliance on constant data
transmission and promotes data sustainability. This paradigm shift not only improves the
efficiency of analyzing worker activities but also enhances data privacy by minimizing de-
pendence on cloud-based processing. However, compared with traditional local computers,
the analysis of performance and feasibility of edge computing for computer vision-based
worker detection in construction monitoring remains uncertain. To address this challenge
and enable the implementation of computer vision (CV)-based smart construction manage-
ment, this study intends to investigate the feasibility of edge computing approaches for
automating the detection of construction workers.

This research aims to examine how edge computing supports worker detection us-
ing computer vision in construction monitoring. The structure of this study is outlined
as follows: First, the most widely used CV-based construction worker detection task is
selected for the performance comparison. Then, the chosen methods are evaluated on
local computers and three edge devices. Finally, the worker detection performance across
processing speed, GPU usage, mean average precision (mAP), and other metrics pertaining
to the three tasks for each device will be compared and extensively discussed to validate
the potential of leveraging edge computing for automated construction site surveillance.

2. Literature Review

Over the years, the computer science fields have witnessed a high-speed development
of artificial intelligence methods, enabling computers to record, understand, and interpret
valuable visual information in images and videos. Surveillance cameras are widely installed
on construction sites to record daily construction progress. Therefore, researchers and
engineers have developed numerous CV-based artificial intelligence methods to analyze
construction videos for site monitoring and management. This section introduces current
research into CV-based methods for automatic construction management.

Object detection methods are widely used for detecting construction objects such as
workers, equipment, materials, structure defects, etc. [2–4,9]. Some researchers have em-
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ployed deep learning-based detectors to detect construction workers and personal protec-
tive equipment in the context of managing construction safety. For example, Wu et al. [10]
utilized the single-shot Shot Multibox Detector model to detect the hardhat worn on con-
struction sites, and the detected hardhat is further classified into four colors, which are blue,
white, yellow, and red. The mAP of the proposed method achieved 83.89%. Chen et al. [9]
utilized the You Only Look Once (YOLO)-v5 model to recognize the use of hardhats by
workers on an edge computing device, and the mAP of the detection model achieved 86.8%.
Instead of hardhat detection, Nath et al. [11] detected hardhat and safety vests with Yolo-v3
and obtained 72.3% of the mAP value for the proposed method. Object detection methods
are also widely used for structure defect detection [5,12]. For instance, Zhang et al. [12]
applied the Yolo model to detect the crack on the bridge surface with a precision of 90.88%.
Jiang et al. [13] used Yolo-v3 and SSD models to identify concrete surface damage and
classify the damages into crack, spot, rebar exposure, and spalling.

Object tracking is another visual analyzing method commonly employed for visual
monitoring in construction projects. The tracking method is usually integrated with the
detection approach to obtain the trajectory of objects within the video. For instance,
Xiao [14] created a multiple construction equipment tracker and combined it with the
Yolo-v3 detector to track the trajectory of excavators and trucks in construction videos.
Kim et al. [15] also used a Tracking–Learning–Detecting (TLD) tracker to monitor the
movements of a specific truck across multiple camera feeds, enabling the assessment
of the truck’s productivity. Zhu et al. [16] introduced a visual-based framework that
combined detection techniques and tracking methods for real-time construction workforce
and equipment tracking.

Activity recognition methods are widely used for construction safety and productivity
control. Some researchers used the activity recognition method to recognize workers’
abnormal activities (e.g., falling, laying) in construction videos, thus identifying the unsafe
conditions and protecting workers in advance [17,18]. Activity information can also be used
for productivity monitoring. For example, Luo et al. [19,20] proposed spatial–temporal
Convolutional Neural Network (CNN) models to recognize workers’ activities such as
rebar connecting, moving, preparing, placing framework, etc. Then, by analyzing the time
of the activities, workers’ productivity can be estimated. In addition to workers’ activity
recognition, some researchers focus on equipment activity recognition [21–23]. Kim and
Chi [21] applied the CNN model with a double-layer Long Short-Term Memory (LSTM)
structure for activity recognition of excavators and analysis of the work cycles. Similarly,
Chen et al. [23] introduced a framework that uses a zero-shot learning method to classify
the activities of excavators and loaders and estimate the excavators’ productivity based on
the sequential relationship of activities.

Currently, visual analysis methods are widely used in automatic construction manage-
ment. However, existing methods mainly focus on using traditional local computers for
data analysis. This does not require extensive development efforts for on-site installation
and high bandwidth for large visual data transmission. Such constraints hinder the im-
plementation of computer vision-based methods in real-world construction management
projects. To address these problems, this work proposes an edge computing-based method
and compares the performance of edge computing devices in executing CV-based tasks for
detecting construction workers.

3. Methods

This study entailed training widely used object detection models for testing purposes.
Subsequently, these models were deployed onto three edge computing devices to execute
construction object detection tasks based on computer vision (CV). Finally, the proposed
method’s performance was compared on local computers and edge computing devices.
Figure 1 illustrates the framework of this study.
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3.1. CV-Based Construction Object Detection Models

Two representative deep learning models for CV-based construction object detec-
tion were selected and trained for testing on edge devices. The previous literature has
widely applied object detection in the construction industry to identify workers and equip-
ment. Therefore, considering this study’s relevance and aims, this research selected both
Yolov5 [24] and Yolov8 [25] models for comparison. Yolov5 was chosen for its consistent
performance in prior studies [9,26], while Yolov8 represents the latest advancement in
object detection technology. Detailed information on the Yolov5 model can be retrieved
from the papers of Jocher and Reis et al. [24,25].

As shown in Figure 2, the network architecture of the YOLOv5 model has three main
components: backbone, neck, and head. To perform the object detection task, the image
will initially be put into the backbone to extract the features. Accordingly, the features
will be fed into the neck. Then, the YOLO layer will generate feature maps, based on
which the detection results will be generated. The structure of the Yolov8 network consists
of three components: the head, the neck, and the backbone. As shown in Figure 3, the
backbone is built on a 53-layer deep convolutional network to extract features from images
efficiently. Then, the neck component connects the backbone to the head component to
reduce the size of the features and enable efficient processing. The head component consists
of multiple convolutional layers for predicting the objects’ class and location in images. This
architecture enables Yolov8 to dynamically adjust its focus on various image components
based on their relative importance, enabling the detection of both large and small objects in
an image by performing object detection at different scales.

3.2. Edge Computing Devices

In this section, two representative deep learning models for CV-based construction
object detection were selected and trained for testing on edge devices. From the literature
review, object detection is commonly used for workers, and equipment detection is used
for vision-based construction productivity and safety control. Specifically, Yolov5 [24] and
Yolov8 [25] models were used for testing in this research. Yolov5 was selected because
of its excellent performance in previous works [9,26], and Yolov8 was chosen for testing
since it is a novel object detection model that has achieved outstanding performance.
Detailed information on the Yolov5 model can be retrieved from the papers of Jocher and
Reis et al. [24,25].
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This study selected several edge computing devices for testing: Raspberry Pi 4B
(Raspberry Pi, London, UK), Jetson Nano (NAVIDIA, City of Santa Clara, CAL, US), and
Jetson Xavier NX (NAVIDIA, City of Santa Clara, CAL, US). Specifically, Raspberry Pi 4B
was chosen for its low cost and small size. Jetson Nano and Jetson Xavier were selected since
they are widely used edge computing devices with excellent performance. Jetson Xavier
outperforms Jetson Nano in computational performance but at a much higher price point.
The detailed specifications of the devices are shown in Table 1. NVIDIA Jetson Nano is a
powerful small-sized computing device that allows developers to build practical artificial
intelligence (AI) applications. It has a quad-core ARM Cortex-A57 MPCore CPU, a 128-core
NVIDIA Maxwell GPU, 4 GB memory, and 32 GB data storage. The size of Jetson Nano is
69.6 mm × 45 mm. Raspberry Pi 4B is the latest Raspberry Pi board, which can compute like



Buildings 2024, 14, 2299 6 of 12

a local computer with a much smaller size. The size of Raspberry Pi 4B is 85 mm × 56 mm,
and it has a 1.8 GHZ 64-bit quad-core ARM Cortex-A72 CPU without the GPU equipped.
Jetson Xavier NX has a powerful CPU and GPU, bringing computing performance close to
a local computer. It has a 384-core NVIDIA Volta architecture GPU with 48 Tensor Cores
GPU and a 6-core NVIDIA Carmel ARM v8.2 64-bit CPU with 128 G storage and 8 GB
memory. Typically, the size of the Jetson Xavier NX is also 69.6 mm × 45 mm. Images of
the proposed edge computing devices are shown in Figure 4.

Table 1. Detailed specifications of edge computing devices.

Jetson Nano Raspberry Pi 4B Jetson Xavier NX

GPU 128-core NVIDIA Maxwell
architecture GPU N/A

384-core NVIDIA Volta
architecture GPU with

48 Tensor Cores

CPU Quad-core ARM
Cortex-A57 MPCore

Broadcom BCM2711, quad-core
Cortex-A72 (ARM v8)
64-bit SoC @ 1.8 GHz

6-core NVIDIA Carmel ARM v8.2
64-bit CPU 6 MB L2 + 4 MB L3

Memory 4 GB 64-bit LPDDR4
25.6 GB/s 8 GB LPDDR4-3200 SDRAM 8 GB 128-bit LPDDR4x

59.7 GB/s

Display 2 multi-mode DP 1.2/HDMI 2.0
1 × 2 DSI

2 × micro-HDMI
1 × 2 DSI

2 multi-mode DP 1.4/eDP
1.4/HDMI 2.0

Data storage 32 GB Micro-SD 128 GB Micro-SD 128 G SSD

Connectivity 1× GbE WLAN, Bluetooth 5.0, GbE 1× GbE

Size 69.6 mm × 45 mm 85 mm × 56 mm 69.6 mm × 45 mm

Price HK$ 1500 HK$ 500 HK$ 4500
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3.3. Evaluation Criteria and Strategies

The widely used criteria mAP is used to measure the performance of worker detection
and tracking [9]. The mAP value is calculated with the intersection-over-union (IoU) value,
a universal standard for evaluating the degree of overlap between predicted bounding
boxes and ground truth bounding boxes. The detailed computation process of the IoU value
can be retrieved from the paper of Xiao et al. [27]. The object is regarded as correctly detected
when the IoU is larger than 0.5. In addition, precision is calculated with Equation (1), and
recall value is calculated with Equation (2) [9], respectively. TP is true positive, representing
the category of the object that is correctly classified and the bounding box that is correctly
predicted. The detection result will be a false positive (FP) if at least one of the bounding
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boxes or categories is incorrectly predicted. False negative (FN) refers to the predicted
bounding box not fully overlapping with the ground truth box.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

The precision–recall curve is drawn based on precision and recall values. Typically,
precision quantifies the proportion of TPs within all detected objects, and recall measures
the proportion of TNs within all actual objects in the image. Then, the 11-point interpolation
method is used to calculate the area under the curve. Specifically, the recall value is
divided into 11 parts. The AP value is calculated by separately calculating each part’s
area, as illustrated in Equation (3). Based on the average value of all detection objects, use
Equation (4) to calculate the mAP value [9].

AP =
1

11åRecalli
Precision(Recalli) (3)

mAP =
1
N åN

k=1 APk (4)

APk: AP of class k; N : number of the object’s category.

4. Results and Discussion

The model was trained on a local computer equipped with an NVIDIA GTX 1660 graphics
card (NAVIDIA, City of Santa Clara, CA, USA) and an Intel Core i5-9300H CPU (Intel, City
of Santa Clara, CA, USA). The price of the local computer was 13,000 HK$. The proposed
method was implemented on the Ubuntu 64 system using Python programming. The
Yolov5 and Yolov8 models were trained on a dataset with 5000 images. Specifically, the
dataset’s images were recorded from real construction sites in Hong Kong. Images in the
dataset were labeled manually with the LabelImg object detection annotation tool. In the
training stage, the dataset was divided into a training set and a test set, with 4000 images
and 1000 images, respectively. Specifically, the Yolov5 model was operated under a PyTorch
environment. The CUDA toolkit 11.6 and cuDNN 8.3.2 were utilized to accelerate model
training. The training configuration of Yolov5 was 16 for the batch size, 100 for the number
of training iterations, and 0.01 for the learning rate. The training time was 4.16 h. Figure 5b,c
show the precision and recall curves, respectively. Figure 5a shows that the mAP value
is 0.852, equal to the area under the curve. The training configuration of Yolov8 is 16 for
the batch size, 100 for the number of training iterations, and 0.01 for the learning rate. It
took 1.11 h to train the model. The mAP value is 0.824. The comparison results of mAP,
precision, and recall values of the detection models are indicated in Table 2. Table 3 shows
examples of test results.

Table 2. Comparison training results of yolov5 and yolov8.

mAP Precision Recall

Yolov5 0.852 0.86 0.79

Yolov8 0.824 0.78 0.82
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Table 3. Comparison results of the local computer and edge computing devices.

Model Speed
(ms/per Frame) GPU Consumption (%) CPU Consumption

(%)
mAP
(%)

Local computer
Yolov5 0.9 77 159.5 85

Yolov8 0.8 69 185.7 82

Jetson Nano
Yolov5 14.2 84 36.5 85

Yolov8 13.2 78 53.9 82

Raspberry Pi 4B
Yolov5 45.9 N/A 400 85

Yolov8 25.7 N/A 400 82

Xavier NX
Yolov5 5.4 68 120.3 85

Yolov8 5.9 57 168.2 82
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Figure 5. Training curves of mAP, precision, and recall Yolo-v5 and Yolov8.

4.1. Test and Comparison Results

A video collected from real construction sites tested the performance of construction
worker detection tasks. A total of 18,000 video frames with a duration of 20 min were used
for the test. Specifically, the videos were 15 frames per second (FPS), with 720 × 1280 pixels
resolution, and the video frames were transferred to 640 × 640 pixels to be fed into the
neural networks. The test results on edge computing devices and local computers are
detailed in this section. Specifically, performance indicators such as processing speed,
mAP, GPU consumption, and CPU consumption are compared. The comparison results
are indicated in Table 3. The test results show that the mAP values on local computers and
edge computing devices are the same. The processing speed of one video frame on a local
computer for the Yolov5 and Yolo v8 models were 0.9 and 0.8 MS, respectively. Among the
three edge computing devices, Xavier NX had the fastest computing speeds: 5.4 MS for
Yolov5 and 5.8 MS for Yolov8. Raspberry Pi 4B achieved the slowest computing speeds of
45.9 and 25.7 MS for the Yolov5 and Yolov8 models, respectively. The computing speed of
Jetson Nano for processing one video frame on Yolov5 and Yolov8 was 14.2 and 13.2 MS,
respectively. The GPU consumption of Jetson Nano for both Yolov5 and Yolov8 models
was the largest among all devices. Raspberry Pi 4B CPU consumption was the largest
since it lacks a GPU. Figure 6 shows several example frames of the tested video. From the
example images, it can be seen that 14 workers in the frame were detected correctly by
Yolov5. However, one worker at the middle top of the frame was not detected by Yolov8.
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4.2. Discussion

This work proves the feasibility of using edge computing devices to detect construction
workers in construction management by providing comparative tests, thus contributing to
the research community. It also includes detailed information about the performance of
construction worker detection on local computers and different types of edge computing
devices, which can support the application of edge computing in real building projects in
the future. The test results show that the computing speed of Yolov8 is faster than the speed
of Yolov5 on all tested devices except for Xavier NX. However, it still achieved the fastest
computing speed among all edge computing devices. Typically, the computing speed of
the local computer is approximately six times faster than that of Xavier NX.

Compared with the GPU and CPU consumption of Yolov8 and Yolov5 on all the
tested devices, it can be noticed that Yolov8 requires higher CPU consumption than Yolov5.
However, the GPU consumption of Yolov8 is lower than Yolov5. Therefore, if the Yolov5
model is used for detection, choosing a device equipped with a higher-performance GPU
is best.
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To achieve real-time video processing with 15 fps, the computing device should be
able to process per video frame within 67 MS. The comparison results in Table 3 show that
all the edge computing devices tested in this work meet this requirement. Therefore, based
on Table 2, considering the cost of the devices, Raspberry Pi 4B can be chosen as the most
efficient one for construction monitoring. Considering the device’s size, which can be easier
to install on the construction site, Jetson Nano should be selected.

5. Conclusions

This study proposes an edge computing approach to enhance the implementation
of CV-based worker detection in monitoring scenarios. The viability of employing edge
computing for automated construction oversight is confirmed. First, one of the most widely
used detection methods for construction workers was applied to the test. Then, the worker
detection models yolov5 and yolov8 were tested on the local computer and three recently
developed edge computing devices (i.e., Jetson Nano, Raspberry Pi 4B, and Jetson Xavier
NX) to evaluate and compare their performances. The test results on construction videos
showed that the mAP value of three tasks on local computers and edge devices are the
same. The processing speed on the local computer is 0.8s per video frame, which is six times
faster than Jetson Xavier NX, the fastest among the three tested edge computing devices.

This study makes three key contributions. Firstly, it proposes an edge computing
solution to address data security, complex site installation, and time delays commonly
encountered in traditional CV-based construction site monitoring. Secondly, it evaluates
the feasibility of using edge computing for automated visual surveillance of construction
sites by testing a CV-based worker detection task on local computers and edge computing
devices. Lastly, this study compares the performance of visual tasks on four different
edge computing devices, offering valuable insights for construction managers in selecting
suitable devices for future construction management. Overall, by providing performance
benchmarks between local and edge computing, this study is a valuable resource for
industry stakeholders. Insights gained from this research can guide the adoption of edge
computing solutions in construction management, promoting innovation and enhancing
overall project productivity and safety. This is crucial for improving the scalability and
practicality of CV-based construction site monitoring systems.

Overall, the contribution of this study lies in two aspects. In a theoretical aspect,
a more efficient and safer edge computing method has been proposed to improve the
efficiency of automatic construction management, promote innovation, and enhance the
overall productivity and safety of the whole project. Furthermore, this research benchmarks
the performance of local computing versus edge computing for CV tasks. This comparative
analysis provides a foundational understanding of the computational requirements and
capabilities of edge computing in construction management applications, potentially in-
forming the development of future theoretical models and computational frameworks. In a
practical aspect, this study’s comparison of edge computing devices’ performance offers
practical guidance to construction management, enabling informed decisions on selecting
hardware that best fits their monitoring needs. This practical contribution can lead to
more effective CV implementations in construction, optimizing resource allocation and
improving safety standards, which are crucial for improving the scalability and practicality
of CV-based construction site monitoring systems.

Several limitations of this research should also be noted. This study exclusively
examined one CV-based deep learning task type: worker detection. However, currently,
there are various types of CV-based construction tasks. More tasks should be tested to
validate the performance of the CV-based construction tasks on edge computing devices.
Second, the Yolov5 and Yolov8 models used for testing are created for local computer
use. Therefore, the performance of these models on local computers is superior to that
of edge computing devices. Testing the models designed for edge computing use will be
better. The primary objective of this study is to explore the performance of edge computing
devices in worker detection within the construction industry. Consequently, this study has
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limitations in assessing deployment costs, environmental conditions, and the variability
among different devices utilized.

Based on the limitations, more CV-based construction tasks such as worker and
equipment tracking, activity recognition, and instance segmentation should also be tested
to compare their performances on local computers and edge computing devices. In addition,
an improved model adapted to lightweight edge computing devices should be created in
future works. It might exhibit superior performance on edge computing devices. Moreover,
an edge computing system that includes camera and edge computing device placement,
data transfer methods, and network structure should be designed and validated in an
actual construction environment.
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