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Highlights 

�x A fuzz-canonical model is proposed for risk assessment of power plant projects. 
�x The complexity in the elicitation of probability parameters of fuzzy-BBN models is reduced. 
�x The causal networks for cost overrun risks of power plant projects are developed. 
�x The critical cost overrun risks in thermal power plant projects are assessed. 
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Abstract 

Preventing cost overruns of such infrastructure projects as power plants is a global 

project management problem. The existing risk assessment methods/models have limitations 

to address the complicated nature of these projects, incorporate the probabilistic causal 

relationships of the risks and  probabilistic data for risk assessment, by taking into account 

�W�K�H�� �G�R�P�D�L�Q�� �H�[�S�H�U�W�V�¶�� �M�X�G�J�P�H�Q�W�V���� �V�X�E�M�H�F�W�L�Y�L�W�\���� �D�Q�G�� �X�Q�F�H�U�W�D�L�Q�W�\�� �L�Q�Y�R�O�Y�H�G�� �L�Q�� �W�K�H�L�U�� �M�X�G�J�P�H�Q�W�V�� �L�Q��

the decision making process. A knowledge-based expert system is presented to address this 

issue, using a fuzzy canonical model (FCM) that integrates the fuzzy group decision-making 

approach (FGDMA) and the Canonical model (i.e. a modified Bayesian belief network 

model). The FCM overcomes: (a) the subjectivity and uncertainty involved in domain 

�H�[�S�H�U�W�V�¶���M�X�G�J�P�H�Q�W�������E�����V�L�J�Q�L�I�L�F�D�Q�W�O�\���U�H�G�X�F�H�V���W�K�H���W�L�P�H���D�Q�G���H�I�I�Rrt needed for the domain experts 

in eliciting conditional probabilities of the risks involved in complex risk networks, and (c) 

reduces the model development tasks, which also reduces the computational load on the 

model. This approach advances the applications of fuzzy-Bayesian models for cost overrun 

risks assessment in a complex and uncertain project environment by addressing the major 

constraints associated with such models. A case study demonstrates and tests the application 

of the model for cost overrun risk assessment in the construction and commissioning phase of 

a power plant project, confirming its ability to pinpoint the most critical risks involved���s  in 

this case, the complexity of the lifting and rigging heavy equipment, inadequate work 

inspection and testing plan, inadequate site/soil investigation, unavailability of the resources 

in the local market, and the �F�R�Q�W�U�D�F�W�R�U�¶�V���S�R�R�U���S�O�D�Q�Q�L�Q�J���D�Q�G���V�F�K�H�G�X�O�L�Q�J. 
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1. Introduction  

Infrastructure construction projects are dynamic and complex in nature, with the 

combined effects of human and a myriad of other factors interacting in a dynamic 

environment (Mulholland & Christian, 1999). Power plant projects, for example, constitute 

complex infrastructure project undertakings due to the involvement of many stakeholders, 

their complex organizational structure, use of numerous multistage contracting systems, and a 

multitude of inter-related activities in different phases of the project life-cycle (Zegordi, 

Rezaee Nik, & Nazari, 2012). These factors produce significant risk exposure, uncertainty, 

�Y�D�J�X�H�Q�H�V�V�����D�Q�G�� �Y�X�O�Q�H�U�D�E�L�O�L�W�\���W�K�U�R�X�J�K�R�X�W���D���S�U�R�M�H�F�W�¶�V�� �O�L�I�H-cycle (Sovacool, Nugent, & Gilbert, 

2014). Risk management is a major task, with time and cost being particularly difficult (e.g., 

Love et al., 2015). Cost overrun risks, for instance, are said to be dynamic, interdependent, 

complicated, uncertain, subjective, and fuzzy in nature due to their large size, higher 

complexity, and unique project contexts and environment (Eybpoosh, Dikmen, & Birgonul, 

2011). Given such a situation, therefore, it is unsurprising that cost overruns are a global 

phenomenon (e.g., Love et al., 2015), the main contributory factors involved including 

inaccuracies in cost estimation at their preliminary stages (Sovacool, Gilbert, & Nugent, 

2014), inadequate management resources, optimism bias, and the limited amount of 

information available to the estimators during budget preparation (Flyvbjerg, 2013; Pinto, 

2013). 

However, the situation can be improved by the effective identification and assessment 

of the potential risks involved during the cost estimation process, and the adoption of 

adequate risk management strategies (Ameyaw, Chan, De-Graft, & Coleman, 2015; Vidal, 

Marle, & Bocquet, 2011). This is currently limited by a lack of objective project-based data 
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for risk assessment in �W�K�H�� �S�U�R�M�H�F�W�¶�V��preliminary phase, increasing the reliance on the 

experience and judgment of practitioners (Cárdenas, Al-Jibouri, Halman, & van Tol, 2013). 

Such judgment-based assessment, however, suffers from being biased, inconsistent, and 

imprecise (Guyonnet et al., 2003).  

Although many studies have developed risk assessment models for power plant 

projects, they do not always address such unique inherent risks as the fuzzy, uncertain, 

causal, interdependent, and subjective nature of cost overruns. Fuzzy logic, on the other hand, 

has frequently been proposed for risk assessment at the preliminary stages of complex 

projects because of its capacity to overcome such difficulties (Ji, Huang, & Sun, 2015; 

Kucukali, 2011; Y. Li & Wang, 2016). However, fuzzy logic-based methods are unable to 

accommodate causal interdependencies between project risks, and such probability-based 

methods as Bayesian belief networks (BBN), for example, are considered superior for 

handling probabilistic causal interdependencies between risks, capturing domain expert 

judgments, and updating previous beliefs and probabilities of risks in the light of new and 

more reliable information (Khodakarami & Abdi, 2014). Fuzzy Bayesian belief network 

(FBBN) models (Eleye-Datubo, Wall, & Wang, 2008; G. Kabir, Sadiq, & Tesfamariam, 

2016; Ren, Jenkinson, Wang, Xu, & Yang, 2009; Zhang, Wu, Qin, Skibniewski, & Liu, 

2016) offer the benefits of both fuzzy logic and BBN, but have only a limited potential, as 

eliciting the probabilistic parameters of a complex risk-network is a daunting task (Diez & 

Druzdzel, 2007).  

This study develops an advancement in cost overrun risk assessment in the form of a 

Fuzzy Canonical Model (FCM) using a combination of the fuzzy group decision-making 

approach (FGDMA) and a canonical model (a form of BBN) from the perspective of 

individual project phases. The model is then demonstrated and tested in an application to the 
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assessment of cost overrun risks in the construction and commissioning phase of a 

Bangladeshi thermal power plant project.  

 Our study makes the following unique contributions to the existing body of 

knowledge:  

�x A novel approach (i.e. FCM) to modeling the causal risk-networks for the cost 

overrun risk assessment of different phases of projects. The proposed model requires 

less probability data than existing FBBNs; the main advantage being that it reduces 

the needlessly time consuming and daunting task of the domain experts in eliciting 

conditional probabilities of the risks involved in complex networks. The approach 

also reduces the amount of work in model building as well as the computational load 

on the model, facilitating a quick assessment of cost overrun risks in a complex, 

uncertain project environment.  

�x The identification and assessment of the most critical and sensitive project cost 

overrun risks. This is of significant value to individual project stakeholders (cost 

estimators, project managers, contractors, etc.) in, or from, different application 

domains and perspectives. For example, estimators can allocate a more realistic 

contingency amount in the preliminary budgeting stage; project managers can make 

an informed, proactive decision in managing critical construction and 

commissioning risks; and contractors can better determine their bid mark-ups 

decisions.  

�x The flexibility the model can be applied to future projects. The domain experts or 

users (i.e. project risk assessment team, cost estimators, project manager and project 

engineer of contractors/owners) of the proposed model have the flexibility to revise 

the probabilities of the risks in the causal networks of a future project, particularly a 

thermal power plant project, based on their knowledge and experience gained from 
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similar past projects and through observations of likely changes in cost overruns in 

different risk scenarios. 

For complex power plant and similar projects, the cost overrun risk identification, 

�D�V�V�H�V�V�P�H�Q�W���� �D�Q�G�� �R�Y�H�U�D�O�O�� �P�D�Q�D�J�H�P�H�Q�W�� �K�L�J�K�O�\�� �G�H�S�H�Q�G�� �R�Q�� �W�K�H�� �G�R�P�D�L�Q�� �H�[�S�H�U�W�V�¶�� �N�Q�R�Z�O�H�G�J�H�� �D�Q�G��

project experiences. The existing methods and models have some shortcomings as identified 

from the relevant literature. They include: limited knowledge available to handle the 

subjectivity associated with the varying judgment abilities of the experts in a group, lack of 

tools to aggregate the qualitative responses of the domain experts for assessing the risks and 

reducing inconsistency in their assessment, probabilistic data elicitation difficulties for a 

complex causal risk-network, a huge computation load required on the model, and a lack of 

methods to inference from the risk assessment outcomes for proactive decision making. The 

proposed FCM is an expert system application, which overcomes these particular issues. It 

uses structured probabilistic causal risk-networks and applies the aggregated knowledge and 

experiences of the domain experts and their judgment abilities cumulated from working on 

similar previous projects. The model assists domain experts to handle complex project 

management problems, such as cost overruns in an uncertain project environment, by 

reproducing various real-life scenarios following cause-effect networks propagating to cost 

overruns and applying back-propagation technique to identify the root causes of the problem.  

The next section provides an overview of the risk assessment methods used in power 

plant projects, followed by a detailed description of the development of an FCM. We then 

assess the cost overrun risks using, validating, and applying the model to a case study project 

with a particular focus on the construction and commissioning phase. Finally, we provide 

concluding remarks, research limitations, and directions for further research. 
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2. Overview of risk assessment methods for power plant projects 

Risk assessment and the management of risks during different phases of power plant 

and other similarly complex projects require a systematic and integrated approach, because 

the dynamics and complexity of the risks involved are, at times, laden with fuzzy 

dependencies and propagation. Various qualitative and probabilistic methods have been 

proposed for this purpose (Li & Wang, 2016). Dikmen, Birgonul, & Han (2007), for example, 

develop a fuzzy logic-based qualitative cost overrun risk assessment method that they claim 

can more realistically accommodate imprecision, vagueness, and uncertainty in complex 

problems; while Kucukali (2011) leverage fuzzy logic to develop a fuzzy rating tool for the 

risk assessment of hydropower plant projects. Li & Wang (2016), on the other hand, combine 

fuzzy logic and the Analytical Hierarchical Process (AHP) as a means of effectively 

measuring qualitative data for the risk assessment of power plant projects with multiple 

divergent risks by aggregating a risk factor index, and the probability and intensity of risks 

into a fuzzy decision system to calculate their magnitude. However, AHP cannot handle the 

variability in pairwise comparisons between the risks (Nieto-Morote & Ruz-Vila, 2011) and, 

in the case of divergent risks, the complex computation involved renders the process 

impractical (Ebrahimnejad, Mousavi, Tavakkoli-Moghaddam, Hashemi, & Vahdani, 2012). 

Moreover, while power plant project risks are highly interdependent, AHP does not consider 

any causal relationships between risks (Fidan, Dikmen, Tanyer, & Birgonul, 2011).  

The Analytical Network Process (ANP) can be used to when there are 

interdependencies between hierarchical risk levels and present the risks in a network 

(Shafiee, 2015). Yoo, Yang, Kang, & Lee (2016), for example, use ANP to evaluate risk as a 

crisp number, as a crude means of capturing expert judgment-based risk evaluation, with 

Zegordi et al. (2012) improving on this by applying a fuzzy-ANP risk assessment model to 

power plant projects �E�\���H�Y�D�O�X�D�W�L�Q�J���U�L�V�N���D�V���³�W�U�L�D�Q�J�X�O�D�U���I�X�]�]�\���Q�X�P�E�H�U�V�´���L�Q�V�W�H�D�G���R�I���F�U�L�V�S���Y�D�O�X�H�V. 
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Increasing the number of decision criteria and risk networks hinders ANP applications, 

however, making pairwise comparisons between risks a tedious and lengthy process. 

Structural equation modeling (SEM) can help handle situations involving a large number of 

risk networks (Lowry & Gaskin, 2014) and has also been used for the risk assessment of 

power plant projects (Eybpoosh et al., 2011; J. Liu, Xie, Xia, & Bridge, 2017). However, 

neither fuzzy-ANP nor SEM can update risk data when new data become available - a critical 

limitation to developing a dynamic risk assessment model. While SEM provides satisfactory 

outcomes if there is a large size data set, eliciting data from experts is a critical and time-

consuming task, especially for power plants and similar infrastructure projects. Failure Mode 

and Effect Analysis (FMEA) integrated with fuzzy logic provides an expert system for 

assessing risks in complex construction projects. The fuzzy-FMEA considers three 

assessment variables, i.e., risk event detection, probability of occurrence, and severity, 

�µd�H�W�H�F�W�L�R�Q�¶���L�Q�G�L�F�D�Wing the availability of time for taking corrective action, which is important 

for proactive decision-making. This approach is unable to provide the possibility or 

probability of the risks and their effects, but rather defines the risk level by a risk priority 

number and unrealistically considers the three variables of equal importance (Liu, Liu, Liu, & 

Mao, 2012). The fuzzy-TOPSIS (Technique for Order of Preference by Similarity to Ideal 

Solution) is another suitable expert system for selecting the best alternative and risk 

evaluation in an uncertain project environment, which can handle both qualitative and 

quantitative data sets (Wang & Chang, 2007). However, this method disregards the 

correlations between the variables and evaluates the alternatives by comparing their variation 

in subjective judgments, i.e., it provides their relative importance instead of realistic risk 

levels, where reliability can be compromised due to judgment inconsistency (Velasquez & 

Hester, 2013).  
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FBBN - the combination of fuzzy logic and BBN - is increasingly being used to 

improve the reliability of risk assessment models affected by uncertainty and vagueness 

(Islam, Nepal, Skitmore, & Attarzadeh, 2017). Fuzzy logic defines and measures risk 

evaluation criteria according to the verbal opinions of experts and transforms them into a 

fuzzy number. The BBN is a well-accepted probability based model, which can handle the 

causal relationships between risks in an uncertain and complex environment. In BBN, a 

single probability value measures the strengths of the relationships involved. It is critical and 

challenging to deal with the single values for unconditional and conditional probabilities 

obtained from experts in considering project uncertainty, which limits the practicality of BBN 

(G. Kabir et al., 2016; Ren et al., 2009). In order to address uncertainty and bias, fuzzy logic 

defines the probabilistic relationships between the risks as a fuzzy number (i.e. triangular or 

trapezoidal). According to Novak (2012), models based on fuzzy-logic need to be improved 

by being linked with probability theory, while Taroun (2014) suggests improving probability-

based models by adding other methods to address the uncertainties, diminish subjective 

biases, and handle causal interrelationships between risks. Thus, the FBBN has potential to 

provide a realistic and reliable risk assessment outcome for complex power plants, tunneling, 

and similar infrastructure projects.  

The FBBN model has been mainly used for safety risk analysis (Eleye-Datubo et al., 

2008; G. Kabir et al., 2016; Ren et al., 2009; Zhang et al., 2016), project risk evaluation 

(Chiang & Che, 2010), and human reliability analysis (P. Li, Chen, Dai, & Zhang, 2012). The 

basic concept of these FBBN models is to provide fuzzy (i.e. triangular or trapezoidal 

numbers instead of the exact value) probabilities for the nodes in the networks and to develop 

a fuzzy conditional probability table (FCPT) for query nodes having one or more parent 

nodes. Fuzzy-AHP, fuzzy logic, and fuzzy set theory have been used to find the fuzzy 

probabilities for the nodes (i.e. independent or dependent). In general, fuzzy logic demands 
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careful application and improvement for group decision making concerning data elicitation, 

aggregation of expert opinions, and controlling judgment bias (Novak, 2012). In order to 

increase the reliability of group decision making under uncertainty, Tesfamariam, Sadiq, & 

Najjaran (2010) propose a credibility factor based on expert experiences and Jung, Kim, & 

Lee (2016) introduce a professional competency factor to control judgment bias. Similarly, 

Kabir et al. (2016) consider a credibility factor for computing the fuzzy probability of the 

BBN nodes. However, the most challenging aspect of FBBN models is to develop an FCPT 

for each dependent node. Data elicitation from experts is both critical and cumbersome as it  

requires finding xn probabilistic parameters (n and x indicate the number of parent nodes and 

the variables for each parent node respectively) for each dependent node (Sigurdsson, Walls, 

& Quigley, 2001; Xia, Wang, Wang, Yang, & Liu, 2017). This is particularly relevant for 

nodes with more than three parent nodes, as elicitation of such an exponential number of 

probabilistic parameters is impractical. Indeed, there are no examples of an FBBN that has 

assessed the fuzzy probabilities of a dependent node with four or more parent nodes. The 

original formulation of Bayesian networks requires huge conditional probability data for a 

complex network. Another form of Bayesian network, called a Canonical Model with a 

Noisy-Or gate or disjunctive interaction between the risks, can be used to overcome the 

limitations of the conventional FBBN model. Such a model type has been applied to IT 

projects (Gingnell, Franke, Lagerström, Ericsson, & Lilliesköld, 2014). The Noisy-Or gates 

can also successfully model the uncertainty in reliability analysis (Sigurdsson et al., 2001), 

and is able to produce better results even with a small data set ���2�Q�L���N�R���� �'�U�X�]�G�]�H�O���� �	��

Wasyluk, 2001). Xia et al. (2017) use the Canonical Model concept (termed a modified BBN 

model) in which experts provide the probability data for a dependent node on a one-to-one 

basis instead of determining the aggregate impact of multiple parents nodes simultaneously. 

While this approach eases the elicitation of the probabilities of the dependent nodes with n-
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number of parents, the limitation of Noisy-Or is that the node can only have two states i.e. 

true or false. It is still a critical task for experts to provide the exact probability of true or false 

for the node. In contrast, as discussed above, the application of fuzzy probabilities is more 

suited to expert knowledge. Thus, the canonical model (i.e. Noisy-Or gate) has the potential 

to be integrated with a fuzzy method for further improvement and application of the FBBN 

models. Thus, a modified FBBN model in the form of a fuzzy canonical model (FCM) could 

be a potential tool for cost overrun risk assessment.  

  

3. Development of the fuzzy canonical model  

Fig. 1 shows a detailed flowchart of the development and application of the fuzzy canonical 

model (FCM) for cost overrun risk assessment of power plant projects. In response to the 

limitations of the existing Fuzzy-Bayesian risk assessment models discussed at the end of 

section 2 (i.e. controlling judgment bias, aggregation of expert opinions, data elicitation 

technique, reducing the number of probabilistic parameters and computational load on the 

model), we propose a FCM model, which combines the fuzzy group decision-making 

approach 

Fig. 1. The development and application process of FCM  
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(FGDMA) and the canonical model (i.e. a modified BBN). The fuzzy group decision-making 

approach (FGDMA) assesses the prior probability of the independent risk, and conditional 

probability or degree of causality between the risks (i.e. how much the effect of a parent risk 

is transferred into a dependent risk), and the canonical model assesses the probability of the 

dependent risk in the network.  

The FGDMA, as proposed and validated by Islam, Nepal, & Skitmore (2019), is a suitable 

method for a group of experts involved in the risk assessment of a complex project laden with 

uncertainties. This method increases decision making reliability by taking into account the 

judgment ability of �H�[�S�H�U�W�V�� �E�D�V�H�G�� �R�Q�� �W�K�H�L�U�� �³�S�U�R�I�H�V�V�L�R�Q�D�O�� �F�R�P�S�H�W�H�Q�F�H�´ (Jung, Kim, & Lee, 

2015) and incorporating a quantitative aggregation process of fuzzy judgments of the experts 

to evaluate individual risk. Professional competence is measured based on the characteristics 

of the experts (i.e. professional position, relevant work experience, and academic 

qualifications), which influence their risk evaluation judgment. The FGDMA applies a 

quantitative technique after Xu et al. (Xu et al., 2010) �I�R�U���D�J�J�U�H�J�D�W�L�Q�J���W�K�H���H�[�S�H�U�W�V�¶���M�X�G�J�P�H�Q�W��

to compute the risk-score. Thus, it avoids the much-criticized limitations of conventional 

fuzzy if-then rules for decision making of its subjective biases induced by the different levels 

of knowledge, experience, and judgment ability of the experts.  

Existing FBBN models require the construction of a conventional FCPT for the 

dependent nodes, which is particularly complex for a node with a large number of parent 

nodes (Xia et al., 2017). Developing a FCPT for a critical node with many parent nodes 

increases the data elicitation time and effort, judgment bias, and computation load on the 

model. In order to overcome this challenges, we apply the data elicitation technique proposed 

in (Diez & Druzdzel, 2007) and (Xia et al., 2017), in which the conditional probability data 

elicited from the experts is simplified by one-to-one relationship between a pair of risks (i.e. 

how much one risk influences another risk) instead of considering the collective impact of all 
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parent risks. The probability computation of the dependent/query node is also simplified 

using a Noisy-OR gate, the most common type of canonical model (Gingnell et al., 2014; 

�2�Q�L���N�R���H�W���D�O����������������. The aim is to reduce the computational load on the model as well as to 

enable the elicitation of the conditional probability parameters intuitive and comprehensive to 

the domain experts (Diez & Druzdzel, 2007). However, the proposed FCM is not beyond the 

limitations. For instance, the accuracy of the risk assessment through this model mostly 

depends on developing the realistic causal risk-networks and evaluating the probability of 

occurrences of the individual risks and their cost impacts on corresponding dependent risks. 

�7�K�H�V�H���D�U�H���V�X�E�M�H�F�W�L�Y�H�����X�Q�F�H�U�W�D�L�Q�����D�Q�G���V�R�O�H�O�\���G�H�S�H�Q�G���R�Q���G�R�P�D�L�Q���H�[�S�H�U�W�V�¶���N�Q�R�Z�O�H�G�J�H���D�Q�G���S�U�R�M�H�F�W��

experiences. The following subsections describe a systematic procedure for evaluating risks 

with the FCM.  

 

3.1. Fuzzy Group Decision Making Approach (FGDMA)  

The proposed FGDMA assesses the fuzzy probabilities of the independent risks or 

determines the degree of causality among the risks influencing cost overruns. It captures 

project the uncertainty, vagueness, and imprecision of subjective judgment using linguistic 

terms in risk evaluation. With this model, experts provide judgments using such terms as 

�µ�Q�R�Q�H�¶���� �µ�Y�H�U�\�� �O�R�Z�¶���� �µ�O�R�Z�¶���� �µ�P�H�G�L�X�P�¶���� �µ�K�L�J�K�¶���� �µ�Y�H�U�\�� �K�L�J�K�¶���� �D�Q�G�� �µ�H�[�W�U�H�P�H�¶���� �Z�L�W�K�� �Q�X�P�H�U�L�F�D�O��

values such as 0, 1, 2, 3, 4, 5, and 6 respectively to evaluate the risk likelihood and its 

consequential cost impact. The experts also evaluate the degree of causality between the pairs 

of risks using the same linguistic terms. Based on the expert�V�¶ judgments, FGDMA evaluates 

the probabilities of the risks using the following equations:  

a. The fuzzy triangular number (FTN) for the corresponding linguistic term is extracted 

following Table 1 (Kuo & Lu, 2013). The model is flexible to redefine/change the FTN 

based on the knowledge and experiences of users (or experts). The FTN can be varied to suit 
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the time available for risk assessment, data accessibility, expected level of accuracy desired 

for risk assessment, and the preference of the project risk assessment team. However, the 

provision to using different scales for FTN is quite common as observed in previous studies 

(Chu & Tsao, 2002; Ganguly & Guin, 2013; Maravas & Pantouvakis, 2012; Rabbani, 

Zamani, Yazdani-Chamzini, & Zavadskas, 2014; Ren, Jenkinson, Wang, Xu, & Yang, 

2008). Further, there is no strict rule as such to define the scale of linguistic terms (i.e. none 

to extreme) for risk assessment (Idrus, Nuruddin, & Rohman, 2011). 

 
Table 1  
Linguistic variables and corresponding fuzzy numbers 
Level of risk 
likelihood/ 
consequence 

Fuzzy triangular 
number (FTN) 

Defuzzified 
number range 

Description 

Extremely high 0.9, 1.0, 1.0 0.90 to 1.00 The risk event is almost certain to occur 
and involves an extremely significant cost 
overrun 

Very high 0.7, 0.9, 1.0 0.70 to <0.90 The risk event has a very high chance of 
occurring and involves a most significant 
cost overrun 

High 0.5, 0.7, 0.9 0.50 to <0.70 The risk event has a high chance of 
occurring and involves a significant cost 
overrun 

Medium 0.3, 0.5, 0.7 0.30 to <0.50 The risk event is likely to occur and 
involves a moderately significant cost 
overrun 

Low 0.1, 0.3, 0.5 0.10 to <0.30 The risk event has a rare chance of 
occurring and involves a little significant 
cost overrun 

Very low 0, 0.1, 0.3 0.025 to < 0.10 The risk event has a very rare chance of 
occurring and involves a very little 
significant cost overrun 

None 0, 0, 0.1 0 to < 0.025 The risk event will never happen 
 

b. Using the FTN, a fuzzy decision matrix (FDM) for the risk likelihood (RL) or 

consequence (C) of an individual risk (r) in a particular project phase (p) is formed by  


k�(�&�/ �Ë�Å���¼
�å 
o

�ã
= 
e

�H�5 �I �5 �Q�5
�­ �° �­
�H�á �I �á �Q�á


i [1] 
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where �H�á�I �á�=�J�@���Q represent the low, medium, and upper values of the risk likelihood 

or consequence of a risk respectively and n denotes the number of domain experts 

evaluating the risk.  

c. �7�K�H���H�[�S�H�U�W�V�¶�� �M�X�G�J�P�H�Q�W�V���R�I���D���S�D�U�W�L�F�X�O�D�U���S�K�H�Q�R�P�H�Q�R�Q�����D�Q�G���K�H�Q�F�H���W�K�H�L�U���U�H�O�L�D�E�L�O�L�W�\�����Y�D�U�\��

across the board for a number of reasons and thus need to be weighted accordingly. 

�7�K�H�� �H�[�S�H�U�W�V�¶�� �Z�H�L�J�K�W�V�� �D�U�H��a function of their professional position (PP), working 

experience (EP), experience gained working on other projects (EO), and academic 

qualifications (AQ), which �D�U�H���F�R�O�O�H�F�W�L�Y�H�O�\���W�H�U�P�H�G���³professional competence�´��(Jung et 

al., 2015). The level of professional competence of an individual expert needs to be 

incorporated into the risk analysis to increase data reliability (Kabir et al., 2016). The 

weight of professional competence of an expert (�S�Ü
�Â�á�×) can be computed by 

(Aboshady, Elbarkouky, & Mohamed, 2013): 

�S�Ü
�Â�á�×=�:�S�É�É
E�S�¾�É
E�S�¾�È
E�S�º�Ê�;�Ü  [2] 

To evaluate the professional competence of the experts, the criteria 

weights���:�E�ä�A�ä�á�S�É�É�á�S�¾�É�á�S�¾�È, and �S�º�Ê�; are assumed equal. The global weight of the 

professional competence of an expert �:�S�Ü
�Ú�; is calculated by (Ameyaw et al., 2015): 

 �S�Ü
�Ú = 

�ê�Ô
�º�Ù�Ï

�Ã �ê�Ô
�º�Ù�Ï�Ù

�Ô�8�-
 ; �Ã �S�Ü

�Ú 
L �s�á
�Ü�@�5   [3] 

Here, the global weights of all experts must sum to unity to satisfy the condition that 

the highest level of the fuzzy score is 1 as shown in Table 1 (Jung et al., 2015), and n 

indicates the number of domain experts who provide their judgment for risk 

evaluation.  

d. Considering the weight of an expert, the FDM for a risk in a project phase is 

transformed to a weighted FDM (WFDM), where 
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k�9�(�&�/ �Ë�Å���¼
�å 
o

�ã

L 
k�(�&�/ �Ë�Å���¼

�å 
o
�ã

�Û���S�Ü
�Ú = 
e

�H�5 �I �5 �Q�5
�­ �° �­
�H�á �I �á �Q�á


i (.x) �N
�S�5

�Ú

�å
�S�á

�Ú
�O 

  = �N
�H�5�S�5

�Ú �I �5�S�5
�Ú �Q�5�S�5

�Ú

�­ �° �­
�H�á�S�á

�Ú �I �á�S�á
�Ú �Q�á�S�á

�Ú
�O [4] 

e. The fuzzy score (FS) for likelihood (RL) or consequence (C) of a risk in a project 

phase or whole project is computed by the fuzzy arithmetic sum of the individual 

columns of the above matrix (Eq. 4) adopted from Jung et al. (2015) as: 


k�(�5�Ë�Å���¼
�å 
o

�ã
=
c�Ã �H�Ü�S�Ü

�Ú�á�Ã �I �Ü�S�Ü
�Ú�á�á

�Ü�@�5 �Ã �Q�Ü�S�Ü
�Ú�á

�Ü�@�5
�á
�Ü�@�5 
g  [5] 

f. The fuzzy risk score of the importance level of the risk is adopted from Xu et al., 

(2010) as 

 �:�	���� �å�;�Å�á�Æ�á�Î ��= �:
¥�:�(�5�Ë�Å
�å �;�ã �Û�:�(�5�¼

�å�;�ã�;�Å�á�Æ�á�Î   [6] 

where �:�(�5�Ë�Å
�å �;�ã and �:�(�5�¼

�å�;�ã are fuzzy scores for the risk likelihood and consequence 

respectively for the individual project phase (p) or whole project (P). The fuzzy 

method makes an inference about a risk, based on the risk likelihood and consequence 

by applying the conventional fuzzy If-then rules. The fuzzy If-then rules can be 

developed only by domain experts, which are necessarily subjective and uncertain, 

because each varies according to its level of knowledge, experience, and judgment 

ability. Thus, the fuzzy If-then rules have been criticized for not dealing with the 

subjectivity and uncertainty involved (Novak, 2012), which leads us to consider Xu et 

al.'s (2010) application of the technique. 

g. Defuzzification is required to define the risk level (�³very low�  ́to �³extreme� )́, which is 

computed as (Abdelgawad & Fayek, 2010) 

�:�	���� �å�;�½�Ø�Ù�Ù�ä
L
�:�J�V�W�Ý�;�½�>�8�Û�:�J�V�W�Ý�;�¾�>�:�J�V�W�Ý�;�Æ

�:
  [7] 
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We map the defuzzified value measured from Eq. 7 to the corresponding level of risk 

for an individual risk factor as shown in Table 1.  

 

3.2. Canonical Model 

Risk assessment by the canonical model of multi-causal interactions requires the 

determination of two variables, the prior probabilities (i.e. the risk levels of independent 

risks, which have no preceding risk/s) and the conditional probabilities between a pair of 

risks. The model assumes that the causal influence of a parent risk on the dependent risk is 

independent of other parent risks. �,�W���L�V���F�D�O�O�H�G���³disjunctive interaction�  ́(i.e. the noisy Or-gate). 

The disjunctive interaction occurs when any of the parents is likely to cause a certain event, 

and it does not diminish when other parents simultaneously prevail (Pearl, 1988). Moreover, 

it is more natural for the domain experts to evaluate the causal influences between a parent 

and its dependent risk rather than evaluating the influences of all parents on the dependent 

risk (Diez & Druzdzel, 2007). Of the different Bayes propagation processes, the selected 

Canonical Model of multi-causal interactions has a number of application benefits. The 

previously used FBBN model (Kabir et al., 2016; Ren et al., 2009) needs to elicit a huge 

amount of probability data if the child/dependent node has four or more parent nodes. For 

example, if a node has 12 parents with three fuzzy states (i.e. �³low� ,́ �³medium� ,́ and �³high�  ́

probability of risks), the traditional FBBN requires (312 =) 531441 conditional probabilities to 

compute the probabilities of that node. The Noisy-Or canonical model here makes this 

process easier because it requires only 12 probability values (i.e. 12 parent risks will produce 

12 independent pairs with the dependent node). This significantly reduces the amount of time 

and effort needed for the experts to provide data and decreases the computational load on the 

model (Gingnell et al., 2014) while providing an acceptable approximation of the true 

probability distribution ���2�Q�L���N�R�� �H�W�� �D�O������ ����������. Details of the Noisy-Or gate in the canonical 
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model can be found in Gingnell et al. (2014) and Pearl (1988). The basic Bayes equations that 

are applied in calculating the fuzzy probabilities of the dependent risks in this model are: 

a. The FTN of the joint probabilities, i.e. �:�2�:�U�ê���T�Ü�;�;�Å�á�Æ�á�Î , and the probability of 

dependent risk y, i.e. �2���:�U�;�Å�á�Æ�á�Î  can be computed by (Pearl, 1988) 

�:�2���:�U�ê���T�Ü�;���;�Å�á�Æ�á�Î ��= (P(�T�Ü))L,M,U �T �:�2�Ü���:�U����
@�T�Ü�;�;�Å�á�Æ�á�Î   [8] 

The above-mentioned FGDMA will be used to find (P(�T�Ü))L,M,U and �:�2�Ü���:�U����
@�T�Ü�;�;�Å�á�Æ�á�Î  

�X�V�L�Q�J���W�K�H���H�[�S�H�U�W�V�¶���M�X�G�J�P�H�Q�W�V�� 

The probabilities (i.e. FTN) of a dependent risk (�U) are  

�:�2�:�U�;�;�Å�á�Æ�á�Î = ( �Ã �2���:�U�ê���T�Ü�;�Å�á�Æ�á�Î ��
�á
�Ü�@�5 )  [9] 

b. Finally, the posterior probability of the independent risk (�T�Ü) given that of dependent 

risk (�U�;, i.e. �2�:�T�Ü�����U�;�á��can be found by (Pearl, 1988) 

�2�:�T�Ü�����U�; = 
�É�Ô���:�ì ���ë�Ô�;
H�É�:�ë�Ô�;

�É���:�ì �;
 [10] 

 

4. Cost overrun risk assessment using FCM 

4.1. Development of risk-networks  

To demonstrate the applicability of the FCM model in cost overrun risk assessments, 

the development of the causal relationships between the risks is the first and very important 

step. These can be developed from previously validated cause-effect relationships between 

the risks using expert knowledge (Kleemann, Celio, & Fürst, 2018). However, the project 

risks or cost overruns significantly vary depending on project type and size. For example, 

public investment projects and public-private-partnership (PPP) projects have different 

contracting terms and conditions, multi-parties involvement, and complex investment and 

management systems. In order to develop the cause-effect relationships between the risks, 

this study specifically considered publicly owned power plant projects, where the owner may 

have self-fund or managed fund pooled from a host of national or international 
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funding/investment agencies.  In the absence of a complete knowledge base and/or validated 

causal risk-networks for publicly owned thermal power plant projects (i.e. natural gas, coal, 

heavy fuel oil (HFO), or combined cycle power plants (CCPP) i.e. combination of natural gas 

and steam), we derived the causal risk-networks using expert knowledge - an approach very 

common in the development of Bayesian belief networks (Aguilera, Fernández, Fernández, 

Rumí, & Salmerón, 2011). To develop the causal relationships between the risks, the critical 

cost overrun risks were first identified (see Table 2) from Islam et al. (2019), as that study 

was conducted of a thermal power plant project owned and funded by a government agency, 

i.e., the Bangladesh Power Development Board (BPDB). The causal relationships between 

these risks were initially established based on Eybpoosh et al. (2011), Fidan et al. (2011), 

Han & Diekmann (2004), and Xia et al. (2017), and subsequently validated by conducting a 

focus group discussion with experts working on Bangladeshi power plant construction 

projects. The focus group consisted of seven industry experts: a project director, three project 

managers, and three project engineers, with almost 25, 12 to 15, and 6 to 10 years of relevant 

experience. The industry experts from Bangladesh were selected because, currently, the 

country has recently commenced 32 mega projects with a targeted production capacity of 

11,209 MW, and 30 more projects of 4909 MW capacity are now in the procurement phase. 

These 62 projects are expected to be completed by 2021 (BPDB, 2017). Cost overruns of 

power plant projects in Bangladesh is a very serious common problem, previous projects 

having experienced cost overruns of 150% to 200% (Hannan, 2015; Kabir, 2012). 
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Table 2  
Critical risks in thermal power plant projects in Bangladesh using FGDMA  
Risk 

Likelihood Consequence Risk Rank 
Score Level Score Level Score Level 

Complex bureaucratic system  0.605 H 0.623 H 0.614 H 1 
Delays in land acquisition  0.613 H 0.596 H 0.604 H 2 
Delays in the project tendering process  0.542 H 0.560 H 0.551 H 3 
�2�Z�Q�H�U�¶�V���G�H�O�D�\ in decision making  0.477 M 0.539 H 0.507 H 4 
Equipment unavailable in the local market  0.505 H 0.489 M 0.497 M 5 
�&�R�Q�W�U�D�F�W�R�U�¶�V���S�R�R�U���S�O�D�Q�Q�L�Q�J���D�Q�G���V�F�K�H�G�X�O�L�Q�J 0.469 M 0.560 H 0.512 H 6 
�&�R�Q�W�U�D�F�W�R�U�¶�V���Gelay in decision making  0.417 M 0.520 H 0.466 M 7 
Govt. customs policy and complexity 0.428 M 0.459 M 0.443 M 8 
Lack of knowledge and experience  0.431 M 0.492 M 0.460 M 9 
Change orders during construction  0.445 M 0.453 M 0.449 M 10 
�&�R�Q�W�U�D�F�W�R�U�¶�V���P�D�Q�D�J�H�U�L�D�O���Z�H�D�N�Q�H�V�V�� 0.450 M 0.521 H 0.484 M 11 
Lack of knowledge and experience 0.418 M 0.510 H 0.462 M 12 
Procurement delays  0.403 M 0.522 H 0.459 M 13 
Site constraints  0.459 M 0.472 M 0.465 M 14 
Poor finance management by contractor  0.442 M 0.475 M 0.458 M 15 
�&�R�Q�W�U�D�F�W�R�U�¶�V���I�X�Q�G���V�K�R�U�W�D�J�H�� 0.407 M 0.489 M 0.446 M 16 
Lack of skilled personnel (technical staff) on site 0.430 M 0.466 M 0.447 M 17 
Unclear project scope  0.415 M 0.456 M 0.435 M 18 
Poor feasibility study  0.393 M 0.452 M 0.421 M 19 
Owner�¶�V���L�Q�F�D�S�D�E�O�H���S�U�R�M�H�F�W���P�D�Q�D�J�H�U 0.357 M 0.512 H 0.428 M 20 
Bank interest rate (fluctuation/high) 0.423 M 0.458 M 0.440 M 21 
Lack of knowledge and experience of the 
manpower  0.431 M 0.481 M 0.455 M 22 

Design/design errors  0.356 M 0.459 M 0.404 M 23 
�2�Z�Q�H�U�¶�V���I�X�Q�G���V�K�R�U�W�Dge and payment delays (govt.)  0.374 M 0.442 M 0.406 M 24 
Transportation difficulties  0.420 M 0.446 M 0.433 M 25 
Shortage of equipment  0.378 M 0.443 M 0.409 M 26 
Govt. interference in procurement  0.348 M 0.374 M 0.361 L 27 
Conflict between the project parties  0.387 M 0.449 M 0.417 M 28 
Poor communication between the parties  0.360 M 0.448 M 0.402 M 29 
Inflation  0.312 M 0.328 M 0.320 M 30 

Source: (Islam et al., 2019) 

In order to develop the causal risk-networks, a power plant project is divided into three 

phases - namely initiation and planning, engineering and procurement, and construction and 

commission - the decision taken based on �W�K�H�� �H�[�S�H�U�W�V�¶�� �R�S�L�Q�L�R�Q��to avoid unnecessary 

complexity in networks yet provide enough practical information of cost overrun risks. We 

allowed the experts to add or remove the nodes (i.e. risks or events of risks) and links 

between the nodes as they saw fit . In the beginning of the focus group discussion, we 

explained the purpose and process of forming risk-networks and asked the experts to review 

the causal risk-networks with a particular focus on the frequently available risks in the 

planning and initiation to construction and commission phases of power plant projects that 

have a direct/indirect impact on project finance. After multi-round qualitative discussions 

with the experts, a few risks were added after (Islam et al., 2019), some of the causal 
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relationships were re-established, and some of the risk terminologies were revised. Appendix 

A shows a list of changes made to the risk networks after the focus group discussions. The 

resulting cause-effect relationships networks of the cost overrun risks for the three project 

phases are presented in Figs. 2-4 respectively. In the following, we provide a brief discussion 

of the causalities of the risks and their propagation.  

 
Fig. 2 shows the cost overrun risk propagation through the networks in the initiation and 

planning phase. Specific to the initiation of the publicly owned power plant project in 

Bangladesh, a project management team from the Power Development Board (PDB) is 

formed to manage the whole project. The experts involved in the focus group identified that 

the Project Charter does not clearly mention the roles and responsibilities of the project 

manager (PM). As a result, t�K�H�� �R�Z�Q�H�U�¶�V�� �Panagerial performance (OMP) will be impacted 

and, when combined with �W�K�H���3�0�¶�V���O�Dck of knowledge and experience, this will have knock-

Fig. 2. Risk propagation networks in the initiation and planning phase 
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on effect on poor OMP throughout the project life cycle. The PM has the important 

responsibilities of undertaking the project feasibility study (environmental, social, political, 

land acquisition and site selection, fuel supply, transportation etc.), development project 

proposal (DPP) and obtaining its approved, site selection, tender document preparation, and 

tendering.  

The DPP is also influenced by such other factors as a poor feasibility study, unclear 

project scope, schedule constraints, lack of lessons learned from previous projects, and 

inadequate cost-benefit analysis and communication with the key stakeholders (i.e. owner, 

consultant, and corresponding government departments). For capital-based power plant 

projects, the DPP is under the Ministry of Planning for approval; such other ministries as the 

Ministry of Finance, Commerce and National Board of Revenue (NBR), and Ministry of Law 

are also involved. Thus, due to high level of bureaucratic complexity in the project approval 

process, subsequent delays occur in tendering, contractor selection, and site selection. A 

significant delay in project tendering, coupled with price inflation of all resources and 

infeasible DPP (i.e. an inadequate cost analysis, in particular) makes the approved project 

budget unable to cope with high inflation. An infeasible DPP and poor OMP propagate 

throughout the project execution phase and directly affect project cost performance. Suitable 

site selection - another important outcome of the planning phase - is negatively affected by a 

poor feasibility study, poor OMP, and inter-department bureaucratic complexity. 

Power plant projects are normally built by Engineer-Procure-Construct (EPC) 

contractors and it is their sole responsibility to properly plan, design, procure resources, and 

execute the project. The procurement process for power plant projects is a rather long, 

continuous process, occurring before and throughout the construction phase, and has a large 

propensity for cost overruns. Fig. 3 shows the cost overrun risk-network propagation in the 

engineering and procurement phase. The risks that arise from the initiation and planning 
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phase (e.g. a poor feasibility study, OMP, unclear project scope, and infeasible DPP) 

influence certain risks in the engineering and procurement phase, where procurement delay, 

change orders, price inflation, and inaccurately estimated procurement costs directly produce 

cost overruns.  

Change orders (e.g. for changes in project scope or in the design and specifications 

defined in the original contract between the project owner and EPC contractor) have a 

sizeable impact on procurement delay and cost overruns. For power plant projects, these are 

frequently due to the owner�¶�V insufficiently clear project scope during the development of the 

project profile (DPP). They are �D�O�V�R�� �V�L�J�Q�L�I�L�F�D�Q�W�O�\�� �L�Q�I�O�X�H�Q�F�H�G�� �E�\�� �W�K�H�� �R�Z�Q�H�U�¶�V�� �F�R�Q�V�X�O�W�D�Q�Ws, as 

they are responsible for providing clear specifications of the materials and equipment needed 

or other technical documents aligned with the project scope. If the consultants lack the 

knowledge and experience needed from working on similar projects, and they are likely to 

fail to understand the uncertainties involved in the project execution phase, which may cause 

substantial changes in project scope, and hence the prevalence change orders.  

 

Fig. 3. Risk propagation networks in engineering and procurement phase 
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Another major cost overrun risk is procurement delay, which is caused by many other 

risks as shown in Fig. 3. Usually, the construction of power plant projects in a developing 

country such as Bangladesh depends on the procurement of plant equipment from overseas. 

This is a complex process involving multiple organizations and multi-level contracts. To 

procure plant equipment efficiently, the contractors should have a realistic advance plan and 

defined schedule that considers the customs policy and complexity of the host country. The 

project owner also has direct involvement in the procurement process, which may cause 

significant delays. These include, for example, situations involving a guaranteed advance 

payment before procurement and payment after equipment shipment showing necessary 

paper documents (i.e. an invoice with forwarding letter, bill of entry/export, and custom 

clearance certificate). If the owner delays in making a payment or an incomplete procurement 

document is supplied by the contractor, the procurement process may be significantly 

delayed. Moreover, any change in the design and specification of the procured item during or 

after completion of the procurement process has a high-level impact on the procurement 

delay and cost overruns. Other risks and their propagations to produce cost overruns are 

shown in Fig. 3.  

After initiation and planning, such project work as land acquisition and procurement 

are conducted simultaneously. While delays in land acquisition are mostly due to inadequate 

site-selection and poor feasibility studies, some projects are seriously delayed by strong 

public resistance arising from resettlement issues of the inhabitants and other social and 

political factors. Land acquisition can also be delayed by government bureaucracy�¶�V lack of 

coordination between its own bodies such as the Ministry of Forestry and Environment, 

Ministry of Power, Energy and Mineral Resources, Settlement Department, and Local 

Government. Inappropriate site selection induces such other undesirable consequences as a 
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severely constrained site for equipment set up and mobilization, materials supply and storage, 

congested working spaces, working time restrictions, and the supply of fuel (i.e. coal or 

natural gas) to the site. Another major risk encountered is the �F�R�Q�W�U�D�F�W�R�U�¶�V��shortage of funds, 

which is significantly influenced by poor financial management, the �R�Z�Q�H�U�¶�V��shortage of 

funds, and payment delays. Payment delays are often the consequence of �G�R�Q�R�U�� �D�J�H�Q�F�L�H�V�¶��

delays in project funding, poor site OMP, and the late approval of contractor submittals. 

Construction delays are often the result of delayed work order approvals �E�\�� �W�K�H�� �R�Z�Q�H�U�¶�V��

consultant, �F�R�Q�W�U�D�F�W�R�U�¶�V��poor site management, an inadequate soil investigation, and site 

logistic problems. The latter is attributed to complexity in heavy equipment erection due to 

the lack of heavy lifting crane (i.e. 600 tons or more), inefficient port facilities adjacent to the 

site, and/or unavailability of special consumables (special grease, oil, air filter, and welding 

electrodes). Construction delays directly translate into cost overrun risk due to increases in 

overhead costs, financing costs, and the cost of resources.  

Fig. 4 presents the major risks and their propagation paths in the construction and 

commissioning phase. 
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Fig. 4. Risk propagation networks in construction and commissioning phase 

 

 
4.2. Finding the probabilities of input variables 

Risk assessment using the proposed FCM requires two sets of probabilities, i.e. the prior 

probabilities of independent risks, and the conditional probabilities between the risks (i.e. the 

probabilistic causal dependencies between pairs of risks). Both prior and conditional 

probabilities can be elicited from the domain experts. To elicit the fuzzy probabilities of the 

independent risks and causal dependencies between pairs of risks (i.e. conditional 

probabilities), we asked the experts to assess the probabilities on a qualitative scale, i.e. �µvery 

low�¶ to �µextreme�¶, and mapped the fuzzy probabilities from Table 2. We then used 

professional software Netica to form Conditional Probability Tables (CPTs). Netica produces 

CPTs based on the weights of the parent risks directed to the dependent �U�L�V�N�� �X�V�L�Q�J�� �³�1�R�L�V�\-

�2�U�´��distribution, a most common canonical model. In the Noisy-Or-gate (i.e. disjunctive 

interaction) type of canonical model, it is assumed that a true condition of a single risk can 

produce a greater consequence with or without the true condition of other risks influencing 
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the dependent risk (Pearl 1988). For example, a change order (Fig. 4) may have a very high 

impact on cost overruns while only a change in soil condition can produce significant cost 

overrun; on the contrary, if both risks became actual events then the cost overrun will just 

increase, which is aligned with the concept of canonical probability theory (i.e. Noisy-Or 

gate).  

In order to elicit the conditional probabilities, we approached to seven experienced experts 

who have been working on thermal power plant projects in Bangladesh for 10 to 15 years. 

They provided their response to the survey questions using a qualitative scale (i.e. �µvery low�¶ 

to �µextreme�¶) as mentioned in Table 1 in section 3.1. They evaluated the pairwise conditional 

probabilities between the risks and the prior probabilities (i.e. likelihoods) of the newly added 

risks as noted in Appendix A. The fuzzy prior probabilities of the independent risks were 

taken from the questionnaire survey in (Islam et al., 2019) of 70 randomly selected experts 

working on Bangladeshi thermal power plant projects. 

 

4.3. Cost overrun risk assessment findings 

A canonical model was firstly built in the Netica Application, Netica 604 

(http://www.norsys.com/). To build the model in Netica, the risk-networks for �³�F�R�Q�V�W�U�X�F�W�L�R�Q��

an�G�� �F�R�P�P�L�V�V�L�R�Q�L�Q�J�� �S�K�D�V�H�´��was selected in addition to some important risks from previous 

phases based on the findings of (Islam et al., 2019). This model has 27 independent and 14 

dependent risks, and 54 causal relationships between the risks. The FGDMA was used to 

analyze the elicited expert knowledge, computing the fuzzy prior probabilities of all the 

independent risks, and the conditional one-to-one relationships between the risks involved in 

the risk-network model. The defuzzified values of all the independent risks and conditional 

risk-relationships were given as inputs to the model.  
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The model first created the conditional probability tables (CPTs) between the parent risks 

and child risk for all cases using the weighted Noisy-Or model. At this time, based on the 

findings of previous studies (Gingnell et al., 2014), 20% leaky in Noisy-Or was used to 

compute the conditional probabilities. While Gingnell et al. (Gingnell et al., 2014) found that, 

while their respondents covered 75-90% of the critical factors quantifying the project success 

in terms of time, budget and quality, they did not fully understand the leaky probability. 

Therefore, the respondents here were not asked about leaky probability but rather assumed 

20%. This means there is 20% chance of project cost overruns beyond the risks covered in 

this study. The weight of each risk to produce a cost overrun is input into the properties as an 

equation to build the CPTs in Netica. For example, the cost overrun probability (PCO) has 

four parent risks, i.e. construction delay (CD), change orders (CO), an inadequate soil 

investigation (ISI), and inflation (I). The individual impacts of these four risks on the PCO 

were found to be 0.74, 0.703, 0.645, and 0.62 respectively using FGDMA. The weighted 

values of these risks are given by the individual weight divided by the total weight. For 

example, the weighted value of CD to PCO is 0.74/(0.74+0.703+0.645+0.62)=0.27. 

Similarly, the weighted conditional probabilities of CO, ISI, and I were found to be 0.26, 

0.24, and 0.23 respectively. The equation was written in Netica as NoisyOrDist (PCO, e, CD, 

0.27, CO, 0.26, ISI, 0.24, I, 0.23). Here, e means leaky and its value was given 0.2 to denote 

20%. Fig. 5 shows a CPT table with probability values for four major parent risks. Similar 

equations were written into Netica for other dependent risks, to produce the CPTs.  
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Fig. 5. Conditional Probability Table (CPT) for the cost overrun probability and 
associated parent risks generated by Noisy-Or (20% leaky) 
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Fig. 6. Application of FCM to the construction and commissioning phase 
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Fig. 6 shows an outcome of the risk assessment in the construction and commissioning 

phase using FCM (i.e. Noisy-Or with 20% leaky). The results show that the complexity in 

lifting heavy equipment is very high (i.e. risk likelihood above 70%). There is a high 

likelihood (i.e. between 50 to 70%) of an inadequate work inspection and testing plan, soil 

investigation, unavailability of resources in the �O�R�F�D�O�� �P�D�U�N�H�W�����F�R�Q�W�U�D�F�W�R�U�¶s poor planning and 

�V�F�K�H�G�X�O�L�Q�J���� �F�R�Q�W�U�D�F�W�R�U�¶�V�� �G�H�O�D�\�� �L�Q�� �G�H�F�L�V�L�R�Q�� �P�D�N�L�Q�J����complex government bureaucracies, 

�J�R�Y�H�U�Q�P�H�Q�W�¶�V�� �F�X�V�W�R�P�� �S�R�O�L�F�\�� �D�Q�G�� �F�R�P�S�O�H�[�L�W�\����poor communication between the parties (i.e. 

project owner, consultants, and EPC contractor), unavailability  of special site consumables, 

and the �R�Z�Q�H�U�¶�V�� �S�R�R�U�� �V�L�W�H�� �P�D�Q�D�J�H�P�H�Q�W��risk factors. The analysis results also show that the 

major dependent risks, namely change orders, procurement delay, construction delay, land 

acquisition delay, shortage of contractor funds, delay in work order approvals, and conflict 

between the parties have high probability of occurrence (i.e. above 50% and below 70%). 

Finally, the overall cost overrun probability was determined to be high at 56.6%.  

 

5. Model validation  

A thorough validation is essential to ensure the theoretical and practical soundness of a 

proposed knowledge-based model. Such well-established approaches as quantitative 

benchmarking, extreme condition tests, different scenario analysis, and sensitivity testing 

have been frequently used for validating fuzzy-Bayesian models (Zaili, Bonsall, & Jin, 2008). 

B�H�Q�F�K�P�D�U�N�L�Q�J���Y�D�O�L�G�D�W�L�R�Q���G�H�P�R�Q�V�W�U�D�W�H�V���W�K�H���P�R�G�H�O�¶�V���V�X�S�H�U�L�R�U�L�W�\���R�Y�H�U���F�R�Q�Y�H�Q�W�L�R�Q�D�O���D�S�S�U�R�D�F�Kes 

to find the standard outcomes while maintaining transparency and simplicity in its 

computational processes. A fully quantitative benchmarking validation was not conducted in 

this study due to not having comparable standard cost overrun risk assessment networks and 

results for thermal power plant projects available in the literature. Rather, we conducted a 

partial quantitative validation by axioms-testing (Jones, Jenkinson, Yang, & Wang, 2010; 
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Zaili et al., 2008). An extreme-condition test, other scenario analysis (Kleemann et al., 2018; 

Zaili et al., 2008), and sensitivity analysis (Kabir et al., 2016; Kabir, Tesfamariam, 

Francisque, & Sadiq, 2015; Ren et al., 2009; Siraj, Tesfamariam, & Dueñas-Osorio, 2015) 

was also conducted. The following sub-sections present the details of the validation.  

5.1. Partial validation 

The three-axiom-based partial quantitative validation approach (Jones et al., 2010) was 

used for the quantitative validation of the proposed FCM. The first axiom is stated as: �³�D��

slight increase/decrease in the prior probabilities of the parent nodes should certainly 

�L�Q�F�U�H�D�V�H���G�H�F�U�H�D�V�H�� �W�K�H�� �S�R�V�W�H�U�L�R�U�� �S�U�R�E�D�E�L�O�L�W�L�H�V�� �R�I�� �W�K�H�� �F�K�L�O�G�� �Q�R�G�H�V�´����In order to test this axiom, 

the prior probabilities of all of the parent nodes were increased by 2%, resulting in very 

similar changes in the posterior probabilities of all the child nodes. For example, the posterior 

probabilities of procurement delay, change orders, construction delay, and cost overrun 

increased by 1.67, 1.90, 1.59, and 1.45% respectively. The second axiom is such that �³the 

total impact of the probability variations from the x attributes (evidence) on the final outcome 

should always be greater than that from the set of m-n (n���Ð�I ) attributes (sub-evidence)�´����

Fig. 7 shows that an increase in the probability of site constraints increases the probability of 

a cost overrun; an increase in the probabilities of shortage of skilled manpower, change 

orders, and an inadequate soil investigation further increases the probability of a cost overrun, 

while an additional increase in inflation progressively increases the probability of a cost 

overrun. 
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Fig. 7. Third axiom test for partial validation of the FCM 
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The third axiom is framed as: �³�W�K�H�� �Y�D�U�L�D�W�L�R�Q�� �L�Q��the subjective probability distributions 

�R�I�� �H�D�F�K�� �S�D�U�H�Q�W�� �Q�R�G�H�� �V�K�R�X�O�G�� �K�D�Y�H�� �W�K�H�� �F�R�Q�V�L�V�W�H�Q�W�� �L�Q�I�O�X�H�Q�F�H�� �R�Q�� �W�K�H�� �F�K�L�O�G�� �Q�R�G�H�´����The scenario 

analysis as discussed earlier and the results shown in Fig. 8 clearly show that Noisy-OR (0% 

leaky) with changed CPTs distributions produces a consistent outcome for the probabilistic 

assessment of cost overruns. Here a �³consistent outcome�  ́ means same levels of input 

probabilities produce similar outputs, for example, 10 to 30% probabilities of independent 

risks (i.e. input variables) produce cost overrun probabilities between 10 to 30%, and so on, 

following the definition of the fuzzy probabilities of linguistic variables (i.e. none to extreme) 

given in Table 1.  

 

Fig. 8. Comparative scenario analysis using different distributions of CPTs in FCM 
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5.2. Extreme condition test and other scenario analysis 

A rigorous scenario analysis was performed to justify the operational validity of the 

FCM, to examine whether the model structure and results behave logically in extreme 

conditions and other scenarios of the cost overrun risks. Two extreme conditions used are: (a) 

all the input variables are true (i.e. 100% risk likelihood), and (b) all the input variables are 

false (0% risk likelihood). Other scenarios considered in the validation were, for example, 

starting with the assumption that all independent risks have a 10% chance of being true, and 

then increasing them by 10% in each step up to a 90% probability (Zaili et al., 2008). As we 

assessed the risk in section 4.3 using Noisy-Or with a 20% leaky probability, it is important 

to justify its outcomes under a different scenario and by changing the percentage of leaky 

probabilities in Noisy-Or. Accordingly, the scenario analysis was conducted using different 

CPT distributions such as Noisy-Or with 0%, 10%, 15%, and 20% leaky.  

Furthermore, the model has the advantage of fine-tuning the input variables to achieve 

�D���U�H�O�L�D�E�O�H���D�Q�G���U�H�D�O�L�V�W�L�F���R�X�W�F�R�P�H���E�D�V�H�G���R�Q���W�K�H���H�[�S�H�U�W�V�¶���M�X�G�J�P�H�Q�W����Moreover, the CPTs, which 

are produced using the Noisy-Or distribution, can also be revised after the initial elicitation of 

probabilities. Initially developed CPTs to the project can be modified by the experts as they 

see fit, and in response to the risk assessment outcome and new evidence or information 

gathered as the project progresses. Based on this advantage of FCM, another scenario was 

produced for its operational validity analysis by making a change in the CPTs produced by 

Noisy-OR with 0% leaky. For example, the Noisy-Or distribution produced a 68.38% 

conditional cost overrun probability on the condition that all the parent risks were true, a 

seemingly an unrealistic situation. The conditional probabilities of all dependent risks were 

changed in such a way that, when all the parent risks will be true (i.e. 100%), the probability 

of the corresponding dependent risk will also be true (i.e. 100%).  
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The results of running different scenarios on the cost overrun probability are presented 

in Fig. 8. These results were also compared with the fuzzy definition of the project risks and 

their corresponding significance to produce a cost overrun (Table 1). It is evident that Noisy-

Or with 10%, 15%, and 20% leaky has failed the extreme condition test. With a very low or 

zero probability for the input variables, the model still predicts a 18 to 30% cost overrun 

probability for these types of Noisy-Or distributions. This indicates that, in a condition of no 

risk, the project can experience a low to medium level of cost overrun. Alternatively, extreme 

cases of all input variables (i.e. probabilities of 100%) provide an unexpectedly lower 

prediction (i.e. 55 to 70%). On the contrary, Noisy-Or with no leaky (i.e. 0%) provides 

satisfactory outcomes of up to a 50% chance of being true for all input variables. Later, it 

fails the upper-level extreme test and other scenario tests. For example, if all the inputs have a 

100% probability of being true, the probability of a cost overrun becomes 66.3%. However, if 

the produced CPTs based on expert�V�¶�� �N�Q�R�Z�O�H�G�J�H is changed, the Noisy-Or with 0% leaky 

produces the most satisfactory outcomes in all cases, including the extreme condition tests. It 

also satisfies the fuzzy range mapped in Table 1 to define the category of risk. For example, 

if the input parameters (i.e. the likelihood of independent risks) have a probability of 10 to 

30% of being true, the probability of a cost overrun will be low, while it will be medium for a 

30 to 50% probability of the input parameters being accurate, and so on.  
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5.3. Sensitivity analysis 

Sensitivity analysis is an important aspect of the model for testing the variability of the 

outcomes in response to minor changes in input parameters. In the FCM model, the input 

parameters vary and are uncertain, as the probability data are based on expert judgments, and 

the final probability of a risk is dependent on the prior and conditional probabilities. Thus, 

sensitivity analysis is needed to identify the critical input parameters that may have a 

significant impact on the final outcome (Kabir et al., 2015). Sensitivity analysis in a Fuzzy-

Bayesian model, such as the proposed FCM, can be carried out in various ways (Kabir et al., 

2016, 2015; Ren et al., 2009; Siraj et al., 2015). Since the input parameters of the model are 

discrete (probability of being true or false) in Noisy-Or, the entropy reduction method is 

preferred (Pearl, 1988), in which the entropy reduction (I) is computed between the 

dependent risk (Y) and parent risks (X) in measuring the sensitivity of the model. Entropy 

reduction (I) indicates the total uncertainty in reducing the potential of X finding Y, and can 

be found by (Pearl, 1988): 

�+�:�; �á�: �; 
L ���* �:�; �; 
F �* ���:�; ����
@�: �;  

  
L���Ã �Ã �2���:�U���ê���T�;�Ž�‘�‰�>�2���:�U���ê���T�;���<�2�:�U�; �Û���2�:�T�;�=�?�ë�ì   [11] 

where 

�x y is the state of the query node Y; 

�x x is the state of the varying variable node X; 

�x �* ���:�; ����
@�: �;��is the entropy function Y given that of X (or causal effect of X on Y); 

�x �* �:�; �; is the entropy function of Y before consulting X. 

For sensitivity analysis, we also compute the variance of belief V (Y, X), i.e. the expected 

changes of the beliefs of Y given that of a finding at X, using (Neapolitan, 1990): 

�8���:�; �á�: �; 
L �Ã �Ã �2���:�U���ê���T�;�ë �Û�>�2���:�U����
@�T�; 
F�2�:�U�;�?�6�ì  [12] 
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Table 3 presents the results of the sensitivity analysis. Notice that the risks that have a 

direct impact on the cost overrun have the highest percentage of variance of beliefs. For 

example, construction delay, inadequate soil investigation, change orders, inflation, and 

changes in design and specifications are very sensitive, with a corresponding contribution to 

the variance of beliefs of 27.99%, 20.93%, 21.68%, 15.33%, and 6.13% respectively. Other 

risks that indirectly affect cost overruns are very less sensitive (less than 10% in total). The 

results indicate that construction delay highly influences project cost overrun. Additionally, 

procurement delay, land acquisition delay, the �F�R�Q�W�U�D�F�W�R�U�¶�V�� �S�R�R�U�� �V�L�W�H�� �P�D�Q�D�J�H�P�H�Q�W���� �F�R�Q�I�O�L�F�W��

between the parties, and the �F�R�Q�W�U�D�F�W�R�U�¶�V��shortage of fund are the most influencing risks 

causing construction delay of power plant projects. 

Table 3  
Sensitivity analysis using the proposed model 
Probability of cost overrun Probability of construction delay 

Risk (Top 25 factors) Entropy 
reduction 

% variance 
of beliefs 

Risk 
(Top 25 factors) 

Entropy 
reduction 

% variance 
of beliefs 

Construction delay 0.03037 27.99811 Procurement delay  0.012 38.05607 

Inadequate soil investigation  0.02358 20.92987 Land acquisition delay  0.00174 5.51215 

Change orders    0.02331 21.6851 Contractor's poor site management  0.00171 5.399065 

Inflation   0.01649 15.33183 Conflict between the parties  0.00168 5.307477 

Changes in design 
specifications 

0.00663 6.135322 Contractor's fund shortage  0.00155 4.914019 

Owner's additional required 0.00379 3.504691 Change orders   0.00137 4.359813 
Infeasible DPP  0.00119 1.099898 Lack of skilled manpower 0.00129 4.072897 

Performance of consultant  0.00118 1.086381 Poor communication  0.00122 3.83271 

Procurement delay  0.00092 0.852378 Inadequate soil investigation  0.00113 3.566355 

Owner's fund shortage  0.0003 0.275678 Delay in work's approval  0.00104 3.303738 

Managerial performance  0.00025 0.231187 Inefficient port facilities  0.00088 2.784112 

Unclear project scope  0.00016 0.143612 Unavailable of special consumables 0.00088 2.784112 

Owner's payment delay  0.00013 0.120521 Complexity in lifting he 0.00088 2.772897 

Contractor's fund shortage  0.0001 0.094333 Site constraints  0.00063 2.005607 

Land acquisition delay  0.00007 0.059979 Owner's fund shortage  0.0006 1.88972 

Contractor's poor site 
management 

0.00006 0.058853 Owner's payment delay  0.00057 1.802804 

Delay in project tendering 0.00006 0.058289 Changes in design specifications  0.00043 1.354206 

Conflict between the parties  0.00006 0.057726 Owner's additional requirement  0.0003 0.938318 
Lack of skilled manpower 0.00005 0.044492 Infeasible DPP   0.00026 0.820561 

Poor communication  0.00005 0.041676 Contractor's poor financial 
management  

0.00024 0.765421 

Delay in work's approval  0.00004 0.036044 Owner's poor site management  0.00018 0.559813 

Inefficient port facilities 0.00003 0.030412 Delay in project tendering  0.00016 0.494393 



ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

 

39 
 

Probability of cost overrun Probability of construction delay 

Risk (Top 25 factors) Entropy 
reduction 

% variance 
of beliefs 

Risk 
(Top 25 factors) 

Entropy 
reduction 

% variance 
of beliefs 

Unavailable of special 
consumables 

0.00003 0.030412 Govt.'s bureaucracy  0.00011 0.342991 

Complexity in lifting heavy 
equipment  

0.00003 0.03013 Approval delay from owner 0.00008 0.251402 

Site constraints  0.00002 0.021964 Owner's poor finance management 0.00008 0.247664 

 

6. Application of the FCM to a case study project 

The proposed model is easy to apply for risk assessment of thermal power plant and other 

projects with similar characteristics. One of the following two steps are needed: (1) the 

developed causal risk-networks can be used directly or the experts of the respective project 

can modify the networks by adding or deleting any relevant risk, if needed, or (2) the experts 

will apply their best judgment in order to determine the frequencies of the independent risks 

and the probabilistic cost impacts of the independent or precedent risks on the succeeding 

risk/s propagating through the network to cause project cost overrun.  

A recently completed 450 MW Combined Cycle (i.e. natural gas and steam-powered) 

power plant (CCPP) project owned by the Bangladesh Power Development Board (BPDB) 

was selected to demonstrate the application of the proposed FCM to the real world situation. 

The project period was March 2013 to July 2016. The total project cost at completion was 

USD 439.38 million. The project was defined as a public invested project, while 89% of the 

money was managed by a loan from an overseas financer. A foreign company built this 

project with an EPC type contract. The project documents show that there were 31 weeks of 

delay (i.e. close to 24% of the total planned project duration) in the procurement of the major 

equipment - gas components. A change order was required due to a change in the original gas 

supply condition. The project was expecting the gas supply to be received with reduced 

pressure. Nevertheless, the National Gas Regulations Authority imposed the condition that 

the project must comply with the national regulations. This involved a major change in the 

design specification of the gas equipment and delayed the major procurement process. There 
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were also such additional issues as inefficient port facilities, change of rebar supplier at the 

owner�¶�V���U�H�T�X�H�V�W, additional piling work due to an inadequate soil investigation, and payment 

delays. The EPC contractor claimed over USD 81 million (almost 23% of the initial cost) 

from the owner as compensation. Thus, several factors were involved in the actual conditions 

and were in full play during the project execution, causing widespread delay in procurement 

and construction, and cost overruns. We have used these actual conditions in the model (i.e. 

probability 100%) of the certain factors (i.e. change order, changes in design specification, 

inefficient port facilities, an inadequate soil investigation, payment delay and the o�Z�Q�H�U�¶�V��

additional requirements such as the directive to change the supplier). It was learned from the 

PM team that other risks such as complexity in lifting heavy equipment, an inadequate 

inspection and testing plan, and the unavailability of special site consumables were also at a 

high level. While the risks of land acquisition delays, site constraints, �F�R�Q�W�U�D�F�W�R�U�¶�V���G�H�O�D�\s in 

decision making, poor planning and scheduling, and the government�¶�V complex bureaucracy 

may have a significant impact on cost overruns (as discussed in sub-section 4.3), these risks 

were disregarded in the case study project. It should be mentioned that since BPDB built this 

project on their own land, the risks associated with public resistance, inadequate site selection 

issues, and land acquisition delays were avoided. The EPC contractor and its team were 

highly experienced in building CCPP power plant projects, which ensured timely and 

efficient decision making, and suitable planning and scheduling for the procurement of 

equipment. The PM team did not consider that government bureaucracy was an important 

risk on this project. 

As an application of the FCM model in this case study project, the best performing model 

(i.e. Noisy-OR with 0% leaky) with a change in CPTs was selected and the identified risks 

were given as inputs. The probabilities of the identified risks for which the contractor claimed 

extra cost were taken to be 100%. The risks addressed by the PM team were kept unchanged, 
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as all were high level (i.e. probability >50%), with the remaining risks in the networks 

assumed to be false (i.e. 0% probability) as they were neither mentioned by the PM team nor 

considered as likely to be additional requirements from the owner. The model calculated the 

probability of a project cost overrun to be 58.9%, a high-level risk (0.50 to <0.70) of a 

significant cost overrun from the mapping presented in Table 1. Fig. 9 shows the risk analysis 

output for this specific case study project generated in Netica. 
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Fig. 9. Application of the FCM to cost overrun risk assessment 
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The PM team can use this model and the outcome of this case project for the cost 

overrun risk analysis of a future project. For example, the risks that did not prevail and had 

0% probability of being true in the case project could actually have a 50% probability in 

another project. This can be done by updating the probabilities of the independent risks. With 

other risks unchanged, this scenario will produce an increased probability (79.5%) of a cost 

overrun (Fig. 10). Thus, the proposed model can be fine-tuned by updating the probabilities 

of independent risks or changing the CPTs of the dependent risks, and its behavior can be 

analyzed for better risk management and cost control. Moreover, the model can also update 

the probabilities of the independent risks as posterior probabilities through the back 

propagation of the belief networks. For example, the updated belief for a change order (i.e. 

100% true) increased the probability of changes in design and specification, and the �R�Z�Q�H�U�¶�V��

additional project scope requirement to 100% respectively. These changes increased the 

probabilities of such corresponding parent risks as the poor managerial performance of the 

owner (63%), unclear project scope (60.1%), poor consultant performance (78.1%), and 

infeasible DPP (88.3%). All these risks can be identified and managed accordingly at the 

initiation and planning phase of the project as discussed in sub-section 4.1 and shown in Fig. 

2. This also shows how a risk in an execution phase, for example a change order, is linked 

with other risks (i.e. unclear project scope, poor owner and consultant managerial 

performance, and infeasible DPP) in the initiation and planning phase. This cause-effect 

analysis of the risks can facilitate good risk management by finding the root causes of the 

project cost overrun at the preliminary phases of the project. 
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Fig. 10. Updating beliefs in the networks and studying the posterior probabilities 
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For a future project, BPDB can appoint a highly skilled PM who can contribute to make 

the project scope very clear, prepare a quality DPP, and appoint a competent consultant to 

improve the owner�¶�V��managerial performance. The results are likely to help reduce the 

changes in design and specification of equipment. The PM team can easily update this 

information in the model and observe the changed scenario for informed, proactive decision 

making. For example, if the owner-related risks were to reduce by up to 0%, the probability 

of a change order will likely also reduce to 0%, with the resulting probability of cost overruns 

down to 30%, which essentially means that the cost performance outcome is improved by up 

to 70%. The responsibility then rests with the PM team and the contractor to act in good faith 

and leverage a sound project execution plan, and cost monitoring and control mechanisms 

into action. The proposed model can assist the PM team to track how the effects of different 

risks propagate and enable them to be controlled.  

The proposed model is a dynamic, project phase-based risk identification approach to 

assess and manage project cost overrun risks. In a situation of cost overrun at the execution 

phase of the project, the PM team will have to re-assess the root causes of the project cost 

overrun and their cost impact(s) on corresponding dependent risk(s). For the risks that have 

occurred, their probability of occurrence will be 100% and the corresponding cost impact 

being determined accordingly. The probabilities and the cost impact of other risks will also 

be revised as appropriate. The model has the flexibility to deleting the initial risks that are no 

longer relevant as well as adding newly identified risks in the risk networks. To add or delete 

any risk into the network, a clear understanding of the risk-network development process and how to 

run the model using the proposed FCM is necessary. For deleting any risk in the network, the user 

(i.e. the PM team) has to assign �µzero�¶ value to the probability of occurrence for that risk. And for 

adding a risk (i.e. an independent risk) in the network, the user needs to identify the immediate 

dependent risk and the following dependent risk/s propagating through the network to causing cost 

overruns. The PM team uses the revised risk network and the information about the 
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probability and cost impact of the associated risks to further plan and control the project as 

the project progresses. 

Overall, this real-life case study has provided some useful insight on the application of the 

developed model for proactively managing critical risks to similar future projects as well as 

other construction projects. This case study demonstrates that project document study and 

�H�[�S�H�U�W�V�¶�� �R�S�L�Q�L�R�Q�� �F�D�Q�� �E�H�� �O�H�Y�H�U�D�J�H�G�� �W�R�� �V�\�V�W�H�P�D�W�L�F�D�O�O�\�� �P�R�G�H�O�� �F�R�V�W���R�Y�H�U�U�X�Q�V�� �U�L�V�N�� �I�D�F�W�R�U�V�� �D�Q�G�� �W�R��

determine their frequency of occurrence and significance on project cost. The model also 

shows the flexibility to experiment with different risk scenarios and varying risk-probabilities 

of some critical risks into the risk-networks, which could be a great asset to the project 

management team. The case project clearly shows that risks associated with the earlier phases 

(e.g., design, procurement) of the project propagate and influence the risks in the following 

phases of construction and commissioning to producing cost overrun. It demonstrate the 

ability to find the root causes of the cost overrun through the back-propagation technique to 

the risk-networks, update the risk-probabilities (i.e. posterior probabilities) and observe the 

changed risk-scenario in the network for proactively managing risks. The systematic 

procedure for cost overruns risk assessment and management developed in this research can 

�E�H�� �D�S�S�O�L�H�G�� �I�R�U�� �F�R�Q�V�W�U�X�F�W�L�R�Q�� �S�U�R�M�H�F�W�V�� �R�W�K�H�U�� �W�K�D�Q�� �W�K�H�U�P�D�O�� �S�R�Z�H�U�� �S�O�D�Q�W�� �S�U�R�M�H�F�W�V�� �Z�K�H�U�H�� �H�[�S�H�U�W�V�¶��

knowledge and experiences are critical in the whole risk assessment process. 

 

7. Conclusions 

The risks involved in infrastructure projects are non-linear, complex, and 

interdependent. In this study, we developed a fuzzy canonical model (FCM) for the cost 

overrun risk assessment of power plant projects. The novelty of the developed model is such 

that it combines an FGDMA and the canonical model (i.e. a modified BBN) to address the 

complexity of the risk assessment process in large, complex projects. We applied and 



ACCEPTED MANUSCRIPT

ACCEPTE
D M

ANUSCRIP
T

 

47 
 

validated the proposed FCM to the assessment of cost overrun risks for thermal power plant 

projects, with particular attention to the construction and commissioning phase.  

The existing fuzzy-based expert systems such as fuzzy-AHP, fuzzy-ANP, fuzzy-

FMEA, fuzzy-TOPSIS and fuzzy-BBN have some basic limitations discussed in Section 2. 

For instance, fuzzy-AHP cannot handle the causal relationship between the risks at the same 

phase and the impact of risks in different phases, and the pair-wise comparison of AHP 

approach is tedious for a large number of risks involved in the assessment process. Although 

the fuzzy-ANP overcomes some of these issues, however, similar to AHP, this approach also 

requires an enormous number of subjective judgment-based pairwise comparisons among the 

risks. While the fuzzy-FMEA is a suitable expert system, this approach does not address the 

causal relationships between the risks and disregards the relative importance among the risk 

assessment variables. Fuzzy-TOPSIS is another tool for risk evaluation; however, the method 

does not consider the correlation between the risks and has challenges to weight the attributes 

a�Q�G�� �N�H�H�S�� �F�R�Q�V�L�V�W�H�Q�F�\�� �L�Q�� �H�[�S�H�U�W�V�¶�� �M�X�G�J�P�H�Q�W�V���� �%�H�V�L�G�H�V���� �D�O�O�� �W�K�H�V�H�� �P�H�W�K�R�G�V�� �K�D�Y�H�� �D�� �F�R�P�P�R�Q��

limitation, in that they are not dynamic systems, to be updated with new information as the 

project progresses, for proactive risk monitoring and control. While the fuzzy-BBN can 

represent the causal relationships between the risks and it has such advantages as simplicity 

and increased level of accuracy under limited data set, the existing fuzzy-BBN methods 

however have some limitations to handle the subjectivity, which originates from varying 

judgment abilities of the experts in a group, and aggregating the qualitative responses of the 

domain experts for risk assessment. The fuzzy-BBN also has data elicitation difficulties for 

complex risk-networks. In particular, eliciting large probability data set for dependent risks 

with many parent risks in a fuzzy state (very low to extreme) is a daunting and tedious task 

for domain experts. As such it limits the practical application of the existing FBBN models 

for the risk assessment of complex and uncertain construction projects.  
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The proposed FCM theoretically contributes to the existing body of knowledge by 

addressing these limitations with the combination of a modified fuzzy group decision-making 

approach (FGDMA) and the canonical model (a modified form of BBN). The FGDMA 

overcomes the limitations of fuzzy logic-based risk assessment methods by incorporating the 

�H�[�S�H�U�W�V�¶�� �M�X�G�J�P�H�Q�W�� �D�E�L�O�L�W�L�H�V���� �G�D�W�D�� �F�R�Q�V�L�V�W�H�Q�F�\�� �D�Q�D�O�\�V�L�V���� �D�Q�G�� �D�� �T�X�D�Q�W�L�W�D�W�L�Y�H�� �U�L�V�N�� �D�J�J�U�H�J�D�W�L�R�Q��

process for risk ranking. The canonical model addresses the limitations associated with the 

existing FBBN models. The application of the canonical model as the Noisy-Or method has 

some significant advantages since it requires fewer probability parameters, describes the 

conditional probability distributions well, and requires less model building efforts, all without 

compromising the reliability of the outcome. Although a conditional probability table fits the 

actual distribution better than a Noisy-Or, the latter certainly fits better than uniform 

distribution when there is insufficient data to construct a conditional probability distribution 

���2�Q�L���N�R�� �H�W�� �D�O������ ����������. Moreover, it enables the domain experts to fine-tune the probability 

distribution based on initial learning, which is a great advantage in using the Noisy-Or model. 

As the model needs fewer probability parameters to build the probabilistic relationships in the 

complex risk-networks, it significantly reduces the time and effort involved in data collection, 

reduces the computational load on the model, and facilitates quick decision making for risk 

assessment and cost control of complex power plant and other similar projects. This approach 

also allows for adding or deleting the risks/variables in the networks as much as required to 

assess the project risk according to the experts involved in risk assessment and management, 

which is a significant advantage of FCM over the existing FBBN models. 

To demonstrate the applicability of this model to the industry, this study first 

thoroughly developed causal risk-networks for different project phases to understand the cost 

overruns using the knowledge of experts working in Bangladeshi power plant projects. It also 

elicited the fuzzy probabilities of the independent risks and determined the degree of 
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causality between pairs of risks using the domain �H�[�S�H�U�W�V�¶��knowledge. Commercially 

available software, Netica, was used to produce the conditional probability tables (CPTs) for 

the dependent risks based on the one-to-one causal relationships between the risks. The study 

found that complexity in heavy equipment lifting operation is a very critical risk. Other 

notably critical risks in the construction phase of power plant projects are an inadequate 

inspection and testing plan, inadequate soil investigation, lack of resources in the local 

market, the �F�R�Q�W�U�D�F�W�R�U�¶s poor planning and scheduling, and delay in decision making, 

complex government bureaucracies, the �J�R�Y�H�U�Q�P�H�Q�W�¶�V�� �F�X�V�W�R�P�� �S�R�O�L�F�\�� �D�Q�G�� �F�R�P�S�O�H�[�L�W�\����

inadequate communication between the parties, unavailability of special site consumables, 

and the �R�Z�Q�H�U�¶�V�� �S�R�R�U�� �V�L�W�H�� �P�D�Q�D�J�H�P�H�Q�W���� �7�K�H�� �R�Y�H�U�D�O�O�� �U�L�V�N�� �D�Q�D�O�\�V�L�V�� �X�V�L�Q�J�� �W�K�H�� �S�U�R�S�R�V�H�G�� �)�&�0��

shows that Bangladeshi thermal power plant projects have a high cost overrun risk, with the 

sensitivity analysis showing that construction delay, inadequate soil investigation, change 

orders, inflation, and changes in design specifications are the most sensitive risks involved.  

These identified risks and their causal relationships established in this study can be 

used to estimate a realistic, more accurate, cost contingency amount in preliminary project 

budgeting. The project managers can use these causal relationships between the risks and 

their probabilistic level of significance to help control project costs by making a strategic risk 

management plan in advance. The contractors can also use the model for risk assessment and 

to determine the project mark-up during the bidding stage. The model�¶�V�� �D�S�S�O�L�F�D�W�L�R�Q��was 

demonstrated and validated for the assessment of cost overrun risks in the construction and 

commissioning phase. However, the model and the underlying concepts (such as the 

assessment of probabilistic causal relationships between pairs of risks, CPTs distributions, 

and the risk propagation process to find the probability of the dependent risks) are equally 

applicable to assess the risks in other phases of power plants. This equally applies to similar 

infrastructure projects that have highly interrelated activities in different phases, phase 
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overlaps, multi-stage contracting systems, and sheer level of uncertainty. The developed 

FCM model has the potential for project delay risk analysis, cost analysis under uncertainty 

(Khodakarami & Abdi, 2014), alternative project selection (Chiang & Che, 2010), bid 

evaluation by multi-criteria decision-making, and human reliability analysis for improving 

project safety (Martins & Maturana, 2013; Zhang et al., 2016).  

 

8. Limitation s and future research 

Although we have attempted to develop comprehensive causal risk-networks for 

different project phases based on expert knowledge, the application of the model is 

nevertheless restricted to the construction and commission phase. The causal relationships 

between the risks are not always absolute, but can change depending on the project context 

and the �G�H�F�L�V�L�R�Q���P�D�N�H�U�V�¶��level of knowledge and experience (Han & Diekmann, 2004). Thus, 

the networks presented may need some modifications (i.e., addition or deletion of the risks in 

the developed risk-�Q�H�W�Z�R�U�N�V�����W�R���V�X�L�W���W�K�H���U�H�T�X�L�U�H�P�H�Q�W�V���R�I���W�K�H���G�H�F�L�V�L�R�Q���P�D�N�H�U�V���D�Q�G���W�K�H���S�U�R�M�H�F�W�¶�V��

contextual environment. The risk networks in this research were established based on the 

knowledge of experts working in Bangladeshi thermal power plant projects, and therefore the 

project characteristics and country-specific conditions may have introduced some biases in 

the development of the networks and the resulting risk assessment outcomes. Some level of 

care and judgment is therefore needed in the further implementation of the derived risk-

networks. Finally, the scope of this study was limited to assessing the project risks in the 

construction and commissioning phase. The other risk factors beyond this phase, for instance, 

planning and initiation, engineering and procurement were not considered for demonstration 

of the model due to time and data collection constraints. Besides some external factors like 

electricity price or alternative sources (i.e. solar or nuclear) of energy for power production, 

which may have significant effects on project cost overruns or project choice, were 
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disregarded in this study. Further study should consider these and other macro-economic 

factors in project appraisal. In that case, the developed risk-network needs to be revised 

�D�F�F�R�U�G�L�Q�J�O�\���X�V�L�Q�J���H�[�S�H�U�W�V�¶���M�X�G�J�P�H�Q�W���E�H�I�R�U�H���D�S�S�O�\�L�Q�J���W�K�H���P�R�G�H�O��  

The challenges of such models are commonly addressed as subjective bias and 

knowledge gap in developing risk-networks, providing probabilistic inputs (prior 

probabilities and conditional probabilities) for the risks involved in the networks, proactive 

decision making based on the risk assessment outcomes and updating the probabilities of the 

risks with project progress for monitoring and control of the risks. While the proposed model 

is incapable of providing a crisp cost overrun percentage value and required contingency 

amount, the main benefit of the model is in providing support and guidance to the decision 

maker. We used a completed project to demonstrate the applicability of the model. Its use 

with live projects would provide more valuable insights into its ease of use and the level of 

flexibility needed for model construction and updating.  

Some additional points in relation to the modelling software, Netica are worthy of 

mention. In our case, one condition was that the Noisy-Or node must be Boolean (i.e. true or 

false). Thus, instead of fuzzy triangular probabilities, the defuzzified probabilities for 

independent risks and causal relationships between the risks were given as inputs. Otherwise, 

three separate inputs are needed for �W�K�H�� �µ�O�R�Z�H�U��least �O�L�N�H�O�\�¶, �µmost likely�¶, and �µupper least 

likely�¶ values for the prior and conditional probabilities, and the model needs to run in three 

different states in order to identify the fuzzy outcomes of the project cost overrun risks. The 

proposed FCM is also of limited use in decision making if the experts have insufficient 

knowledge to evaluate the risks. The fuzzy-Delphi technique may be more suited to 

consolidating the differences in expert opinions, particularly when they have limited 

knowledge and experience and only a vague understanding of the project (Nasirzadeh, 

Khanzadi, & Rezaie, 2014).  
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Appendix A.  

The feedback summary of the of focus group discussion: addition or deletion of the nodes or links between the nodes, and risk�V�¶���W�H�U�P�L�Q�R�O�R�J�\���F�K�D�Q�J�H�V 
  

Phase  Node Terminology 
changed  

Shifted to 
other 
phase 

Link Description 
Node name  Added Removed  Added Removed  

Initiation and 
planning  

Inadequate cost 
estimation 

X   Inadequate 
cost-benefit 
analysis 

 X   According to the experts, this factor is responsible for inefficient 
Development Project Profile (DPP) and the changed terminology 
is more befitting with DPP 

Not applying lessons 
learned from previous 
projects 

X    X  This factor is added by the experts as it is responsible for a poor 
feasibility study and infeasible DPP for the future project 

Land acquisition delay    X  X  Shifted from the planning phase to the construction phase  
Public resistance X    X  X  X  Added from the literature and shifted from the planning phase to 

the construction phase 
Lack of risk analysis X     X   This factor is added by the experts as it is responsible for an 

inadequate cost-benefit analysis 
Unclear project 
charter 

X     X   This factor is added by the experts as it significantly influences 
the �R�Z�Q�H�U�¶�V���P�D�Q�D�J�H�U�L�D�O���S�H�U�I�R�U�P�D�Q�F�H�� 

Inadequate 
communication with 
the stakeholders 

X     X   Although this factor was one of top-ranked factors found in our 
previous study, the experts added it to the risk-networks as they 
thought this factor is needed for a better understanding of the 
cost overrun in �W�K�H���³initiation and planning phase�  ́

Ministry of Finance, 
Law, Commerce and 
NBR, Planning 
commission, and 
Power Development 
Board 

X     X   After consulting the experts and their provided project 
documents, these factors are added and linked to explain the 
�³�*�R�Y�H�U�Q�P�H�Q�W�¶�V �E�X�U�H�D�X�F�U�D�F�\�´���L�Q���W�K�H���³initiation and 
commissioning phase�´�� 

�'�R�Q�R�U�V�¶���L�Q�W�H�U�I�H�U�H�Q�F�H��
in contractor selection 

 X     Not significant and rarely happens 

Design error    X  X  �$�F�F�R�U�G�L�Q�J���W�R���W�K�H���H�[�S�H�U�W�V�¶���R�S�L�Q�L�R�Qs, this factor was shifted from 
the initiation and planning phase to the execution phase 

Lack of project 
information  

  Level of 
information 
available  

 X   �7�K�H���W�H�U�P�L�Q�R�O�R�J�\���R�I���W�K�L�V���I�D�F�W�R�U���F�K�D�Q�J�H�G���³inadequate cost-benefit 
analysis�  ́
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Phase  Node Terminology 
changed  

Shifted to 
other 
phase 

Link Description 
Engineering 
and 
procurement 

Low quality 
contractor selection 

 X    X  As many other factors such as contractor�¶s knowledge and 
experience, managerial weakness, poor finance management, 
fund shortage etc. represent the quality of the contractor in a 
more comprehensive way, thus experts requested this factor be 
removed. 

�&�R�Q�W�U�D�F�W�R�U�¶�V���O�D�F�N���R�I��
knowledge and 
experience 

    X   �7�K�L�V���I�D�F�W�R�U���Z�D�V���O�L�Q�N�H�G���Z�L�W�K���W�K�H���F�R�Q�W�U�D�F�W�R�U�¶�V���P�D�Q�D�J�H�U�L�D�O��
weakness and poor finance management, as both are highly 
influenced by the �F�R�Q�W�U�D�F�W�R�U�¶�V���N�Q�R�Z�O�H�G�J�H���D�Q�G���H�[�S�H�U�L�H�Q�F�H���R�I��
working and the successful completion of previous similar 
projects. 

�2�Z�Q�H�U�¶�V��shortage of 
funds and delays in 
making payments  

  �2�Z�Q�H�U�¶�V���G�H�O�D�\��
in advance 
payments 

   At the initial stage of procurement, the �R�Z�Q�H�U�¶�V���D�G�Y�D�Q�F�H��
payment is a more appropriate term, as it can delay the start of 
the procurement process. The previous term befits the 
construction phase because the rest of the procurement cost and 
progress payments are claimed in the construction phase. 

Equipment 
unavailable in the 
local market 

  Resources 
unavailable in 
the local 
market 

   The experts said that not only equipment but also construction 
materials, some special consumables, and skilled labor are also 
unavailable in the local market. Thus, �µresources unavailable�¶ is 
the appropriate term to use.  

Transportation 
difficulties 

  Transportation 
(maritime and 
inland) 
difficulties 

   Adding maritime and inland makes it easier to understand 
transportation difficulties, as it specifies the sources of the 
problem. 

Delay in local credit 
(LC) opening 

X     X   This factor was added after the project document study and 
consultation with the experts as it is also a very important cause 
of delay in the procurement process, which has direct impact on 
cost overruns. 

Inadequate 
communication 
between the key 
stakeholders 

X     X   This factor was added because of �W�K�H���H�[�S�H�U�W�V�¶���V�X�J�J�H�V�W�L�R�Q�V, as it 
has a significant impact on procurement delays as well as in the 
construction phase  

�2�Z�Q�H�U�¶�V���L�Q�W�H�U�I�H�U�H�Q�F�H��
in procurement  

  �2�Z�Q�H�U�¶�V��
interference 
(i.e. corruption) 
in procurement 

   The experts suggested adding �W�K�H���W�H�U�P���³�F�R�U�U�X�S�W�L�R�Q�´, as it is a 
very common problem with capital-based projects in developing 
countries. 

Construction 
and 
commissioning 

Transportation 
difficulties 

  Insufficient 
port facilities 

   As it is more specific to shipping equipment to the project site 

Changes in geological   Inadequate soil    The experts provided this more specific term to understand 
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Phase  Node Terminology 
changed  

Shifted to 
other 
phase 

Link Description 
 site conditions  investigation sources of cost overruns 

�2�Z�Q�H�U�¶�V���L�Q�F�D�S�D�E�O�H��
project manager 

  �2�Z�Q�H�U�¶�V���S�R�R�U��
site 
management 

   This is a more specific influence on such other factors as 
conflicts between the parties and delays in approvals 

Complexity in heavy 
equipment erection 

X     X   The factor is added. Initially it was named �³�W�H�F�K�Q�R�O�R�J�L�F�D�O��
�F�K�D�O�O�H�Q�J�H�V�´���E�\���W�Z�R���H�[�S�H�U�W�V���I�U�R�P���W�K�H���J�U�R�X�S����and then it was 
�Q�D�P�H�G���³�O�D�F�N���R�I���K�H�D�Y�\���H�T�X�L�S�P�H�Q�W���O�L�I�W�L�Q�J���F�U�D�Q�H�´�����D�Q�G���I�L�Q�D�O�O�\��
�F�K�D�Q�J�H�G���W�R���³�F�R�P�S�O�H�[�L�W�\���L�Q���K�H�D�Y�\���H�T�X�L�S�P�H�Q�W���H�U�H�F�W�L�R�Q�´�����7�K�L�V��
factor was linked directly with construction delays. 

Unavailability of 
special consumables 

X     X   This is an important risk added by the experts for construction 
delays. The special consumables are special grease, oil, air 
filters, and welding electrodes, which are the most unavailable in 
the local market and cause significant delays in the construction 
phase. 

Inadequate site 
selection 

    X  This factor was initiated in the planning phase and continued 
in�W�R���F�R�Q�V�W�U�X�F�W�L�R�Q���S�K�D�V�H���W�R���L�Q�I�O�X�H�Q�F�H���³�O�D�Q�G���D�F�T�X�L�V�L�W�L�R�Q���G�H�O�D�\�´�� 

Government 
bureaucracy 

    X  This factor was also initiated in the planning phase and continues 
to the �F�R�Q�V�W�U�X�F�W�L�R�Q���S�K�D�V�H���W�R���L�Q�I�O�X�H�Q�F�H���³�O�D�Q�G���D�F�T�X�L�V�L�W�L�R�Q���G�H�O�D�\�´ 

�2�Z�Q�H�U�¶�V���S�R�R�U��
financial management  

X    X   This factor was added to clearly understand why the �³�R�Z�Q�H�U�¶�V��
funds�´��issue arises in the construction phase 

Infeasible DPP X     X   This factor was initiated in the initiation phase and continues 
into construction phase, claimed to cause the �R�Z�Q�H�U�¶�V��shortage of 
funds. It also has an influence on the �R�Z�Q�H�U�¶�V���D�G�G�L�W�L�R�Q�D�O��
requirements to produce change orders in this phase 

 

 




