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An Integrated Regression Analysis and Time Series Model for 

Construction Tender Price Index Forecasting 

Abstract: 

Clients need to be informed in advance of their likely future financial commitments and cost 

implications as the design evolves.  This requires the estimation of building cost based on 

historic cost data that is updated by a forecasted Tender Price Index (TPI), with the reliability 

of the estimates depending significantly on accurate projections being obtained of the TPI for 

the forthcoming quarters.  In practice, the prediction of construction tender price index 

movement entails a judgemental projection of future market conditions, including inflation.  

Statistical techniques such as Regression Analysis (RA) and Time Series (TS) modelling 

provide a powerful means of improving predictive accuracy when used individually.  An 

integrated RA-TS model is developed and its predictive power compared with the individual 

RA or TS models.  The accuracy of the RA-TS model is shown to outperform the individual 

RA and TS models in both one and two-period forecasts, with the integrated RA-TS model 

accurately predicting (95% confidence level) one-quarter forecasts for all the 34 holdout 

periods involved, with only one period not meeting the confidence limit for two-quarter 

forecasts.   

Keywords: Cost estimate, integrated forecasting model, tender price index forecast, time 

series modelling, regression analysis 
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INTRODUCTION 

 

The majority of contracts for construction work are let by competitive tender when the design 

is sufficiently advanced for tenders to be compiled.  Prior to this, reasonably accurate 

predictions of the likely tender prices have to be made, as clients need to be informed in 

advance of their likely future financial commitments and cost implications as the design 

evolves.  This requires the estimation of building cost based on historic cost data that is 

updated by a forecasted Tender Price Index (TPI) (Tysoe, 1981; Smith, 1995), with the 

reliability of the estimates depending significantly on accurate projections being obtained of 

the TPI for the forthcoming quarters (Fitzgerald and Akintoye, 1995) – the degree of 

accuracy of the projections being determined by their use and form, time horizon and data 

availability (O’Donovan, 1983; Bowerman and O’Connell, 1987).  This is often difficult to 

do in practice, and entails a highly subjective prediction of future market conditions and 

inflation (Akintoye, 1991; Akintoye and Fitzgerald, 2000).   

 

The need for more objective methods, and the benefits of quantitative predictive cost models 

in general, in the construction industry has been recognised for some time (e.g. Skitmore, 

1985; Al Khalil, 1999; Al-Tabtabai et al, 1999; Ferry and Brandon, 1999; Li and Love, 1999; 

Li et al, 1999; Yin, 1999).  As a result, a diversity of cost models of varying complexity have 

been devised by researchers.  Apart from the fuzzy sets (Chang et al, 1997; Mason and Kahn, 

1997) and artificial neural network approaches (Williams, 1994; Fang and Tam, 1999), 

statistical methods have also been extensively applied in TPI prediction, with Regression 

Analysis (RA) being the most popular approach (Boussabaine and Elhag, 1999).  Univariate 

Time Series (TS) modelling has also received favourable attention.  For instance, TS models 

have been developed to forecast the behaviour of property prices (Chin and Mital, 1998) and 
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building costs (Taylor and Bowen, 1987) – later extended by Fellows (1991) for predicting 

movements in the TPI.  Most recently, Ng et al (2000) adopted discriminant analysis for 

predicting TPI directional changes.  

 

Following Granger and Newbold (1986), researchers (e.g. Granger, 2001) have suggested 

that the integration of techniques might further enhance the predictive ability.  In TPI 

prediction, the RA and TS models are the most highly developed, with RA establishing the 

relationship between the TPI and predominant economic indicators (e.g. McCaffer et al, 

1983; Runeson, 1988; Fellows, 1991; Hoptroff et al, 1991; Fitzgerald and Akintoye, 1995; 

Akintoye et al, 1998; Chau, 1998), while TS estimates the index trend through historic TPI 

data.  The objectives of this paper are to outline the procedures for integrating the RA and TS 

models and to examine the reliability of the resulting model in generating TPI forecasts for 

Hong Kong construction projects. 

 

 

DATA SET 

 

The RA variables comprised the TPI and nine exogenous economic indicators identified in 

Ng et al’s (2000) similar previous Hong Kong study (see Appendix I).  The period covers a 

total of 76 quarters starting from 1980Q1 to 1998Q4.  Despite a constant increase in the TPI, 

the construction tender price during that time was heavily affected by world recession (in 

1982), the Gulf War (in 1991) and Asian Economic Turmoil (in 1997).  Clearly, therefore, 

using this duration for subsequent analysis could help determine the extent to which an 

integrated RA-TS model will be influenced by volatile conditions.  The required data was 
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acquired from the relevant sources and publications of the HKSAR government (HKCSD, 

1999).  

 

To determine the relevancy of the suggested candidate indicators, a Pearson correlation 

analysis between the TPI and each of the nine indicators (with various degrees of leading and 

lagging) was carried out.  With the exception of BLR and UR, there are strong positive 

correlations, indicating the trend of the TPI to be highly correlated with most of the indicators 

used.  This is in line with previous research, except for BLR (interest rate) which has been 

found previously in the UK to have a strong positive correlation with the TPI (Fellows, 

1988).   

 

By comparing the correlation coefficients under different time lags, it was also found that the 

BLR movements led TPI movements by three quarters, GDP and GDPC by two quarters, 

with HSIAV, IGDPD and BCI leading by one quarter.  CCPI, M3 and UR on the other hand, 

had no apparent leading or lagging effects. 

 

 

REGRESSION ANALYSIS 

 

RA has been widely used for the prediction of tender trends (e.g. McCaffer et al, 1983; 

Fellows, 1988; Runeson, 1988; Akintoye and Skitmore, 1990, 1993, 1994).  Regression 

models provide accurate predictions of TPI movements when price levels are steady, e.g. 

moving constantly upward or downward (Ng et al, 2000).  In this study, a multivariate RA 

with an automated stepwise procedure was adopted to eliminate those factors with negligible 
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effects on the TPI and provide a subset whose estimated equation produces the best fit, i.e. 

the minimum residual sum of squares or the maximum coefficient of determination, R
2
.  

 

Table 1 summarises the stepwise procedure of the multivariate RA.  Variables are added or 

removed from the regression model step by step.  The partial R
2
 indicates the partial potential 

contribution of variables to the whole regression model, i.e. the greater the partial R
2
, the 

greater the significance of the variable.  In this analysis, the most important variable was BCI 

(partial R
2
 = 0.9753) with the least important variable being M3 (partial R

2
 = 0.0003).  GDP, 

GDPC and IGDPD were automatically eliminated as they provided a negligible potential 

contribution to the regression function (partial R
2
 < 0.0001). 

 

< Table 1 > 

 

The RA model was fitted to the lagged exogenous variables by forward stepwise variable 

entry, the resulting multivariate regression function being: 

 

HSIAVMUR

CCPIBCIBLRTPI

XXX

XXXY

00215.00932.07375.2

3117.04746.06115.16274.66

3 −+−

−++=
 [1] 

 

Before Eqn. 1 can be used for forecasting, the future values of exogenous variables (i.e. BCI, 

CCPI, BLR, UR, M3 and HSIAV) have to be determined.  These future values can be derived 

by the growth rate of the historic periods of each exogenous variable and then extrapolated 

for the next two quarters.  For instance, if the general growth rate of exogenous variable BLR 

from 1980Q1 to 1989Q4 was 4% per quarter, then the estimated BLR for 1990Q1 and 

1990Q2 would be 1.04 and 1.04
2
 times of BLR1989Q4 respectively.  Based on Eqn. 1 and the 
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projected exogenous variables for the forthcoming one and two quarters, the TPI for the 

coming quarters can be forecasted.  

 

 

TIME SERIES MODEL 

 

The simplest TS approach is exponential smoothing.  This is a forecasting method that is not 

based on the analysis of the entire historical TS.  Rather it uses a weighted moving average as 

the forecast, with the assigned weights decreasing exponentially for periods further into the 

past.  Simple exponential smoothing is most effective as a forecasting method when cyclical 

and irregular influences comprise the main effects on the time series values.  However, the 

exponential smoothing method was considered inadequate to provide an accurate model for 

TPI prediction, as it assumes that errors are uncorrelated, which in turn implies that the 

observations are uncorrelated.  In practice, this assumption can rarely be met, as serial 

correlation is usually expected when data is collected sequentially in time.  

 

A stochastic TS modelling technique known as Auto-Regressive Integrated Moving Average 

(ARIMA), however, can represent a variety of correlation structures (Yin, 1999).  While 

Auto-Regressive (AR) estimates the stochastic process underlying a TS where the TS values 

exhibit non-zero autocorrelation (autocorrelation being the way observation in a TS is related 

to each other), Moving Average (MA) estimates the process where the current TS value is 

related to the random errors from previous time periods. 

 

According to Fellows (1988), stochastic TS should be satisfactory in modelling tender price 

movements, as it can model the changing process and provides a class of models of the 
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stationary stochastic processes.  Therefore, the ARIMA models were adopted for model 

building, and Box-Jenkins identification-estimation-checking iterative procedure (Box and 

Jenkins, 1976) was followed when devising the TS model (see Appendix II for details of 

ARIMA and Box-Jenkins iterative procedure).  Taylor and Bowen (1987) and Fellows (1987) 

have used this technique and found it to be satisfactory in modelling TPI movements. 

 

The data series were found to be stationary after the first differencing (p=0.06849) and the 

Ljung modification of the Box-Pierce Qstatistics indicated the residuals to be reasonably random 

(t=–4.032, p>0.05).  Maximum likelihood parameter estimates were obtained.  To determine 

the best-fit model, all models were examined by diagnostic checking.  First, the estimation 

model with highly significant parameters (see [a] in Figure 1 for t-value), such as AR1, AR2, 

MA1, MA2, etc., were selected.  If the absolute value |
 
t
 
| of the last (highest order) parameter 

estimation (see [b] in Figure 1) is close to 1 or greater than 1, it is possible that the process is 

non-stationary. 

 

< Figure 1 > 

 

Next, the residual was checked by examining the p-values of the Q-statistics (see [e] in 

Figure 1).  In addition, as the residuals should be uncorrelated to each other, large residual 

autocorrelations (i.e. those very close to 1) may indicate problems with the fit of the model.  

The remaining candidate models was further examined by the checking the goodness-of-fit 

criteria through variance estimates – AIC & SBC (see [c] & [d] in Figure 1).  The MA(2) 

model shown in Eqn. 2 below provided the best fit to the data, and the low autocorrelations 

(see [f] in Figure 1) confirm that the residuals to be random.   
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Yt – Yt-1 = εt + 0.73125 εt-1 + 0.47 εt-2 [2] 

 

where:   εt =   a random error term uncorrelated over time, typically called white noise 

              Yt =   value of TPI time series in current time period t 

             Yt-1 =   value of TPI time series in previous time period t –1  

 

Eqn. 3 shows the MA(2) model with the backshift notation (see [g] in Figure 1), i.e. the 

lagged value of the time series variable. 

 

(1 – B
1
) Yt = (1 + 0.73125 B

1
 + 0.47 B

2
) εt [3] 

 

where:  B
1
 is actually B**(1), which represents a first order backshift operator, e.g. B

1
Yt = 

Yt-1, while B
2
Yt = Yt-2 

 

Forecasts were made based on its own historic data.  For example, for forecast made in one 

quarter ahead, let’s say forecasting TPI of 01/10/96, historic data from 01/01/80 to 01/07/96 

was used.  

 

 

INTEGRATED REGRESSION TIME SERIES MODEL 

 

The RA and TS models were integrated by linear combinations by considering the forecasts 

made by RA and TS as f1 and f2 respectively.  From this, a new forecast of these quantities 

can be produced by:  

 

f3 = λf1 + (1 – λ)
 
f2 [4] 
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where:  λ is the weighting which is restricted to the range (0,1) 

 

Goodness-of-fit statistics assist in assessing the fit of a model.  These statistics can be 

compared across competing models, and typically the model with goodness-of-fit statistics 

closest to zero provides the best fit.  The Mean Square Error (MSE) and its positive square 

root (RMSE) are often used to evaluate the fitness of models, as the MSE minimises the sum 

of the variance and the square of the bias. 

 

The weightings were derived by iteration (Figure 2).  As illustrated in Table 2, the weight 

column represents the weighting for the RA model, while the MSE and RMSE are used as the 

goodness-of-fit statistics for comparing models.  Since both the MSE and RMSE reach the 

minimum at a weighting of 0.5, further investigations within the range of 0.4 to 0.6 were 

performed to identify a weighting scheme that could generate a smaller residual, i.e. the 

goodness-of-fit statistics closest to zero.  

 

< Figure 2 > 

< Table 2 > 

 

Table 3 reveals that both the MSE and RMSE reach the minimum at a weighting of 0.51 (for 

the RA component), and hence further investigations within the range 0.50 to 0.52 was 

carried out, with an interval of 0.01, to obtain an optimal weighting.  The results of iterative 

looping using a 0.001 interval indicate that the weightings of 0.512RA
 
:
 
0.488TS for a TPI 

forecast of one quarter in advance (RA-TSQ1) yield the closest-to-zero values for both MSE 

and RMSE.  That means the RA-TSQ1 model is almost equivalent to the average of the RA 
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and TS forecasts.  For the TPI forecast in two quarters ahead (RA-TSQ2), the weightings of 

0.647RA
 
:
 
0.353TS result in the closest-to-zero values for both MSE and RMSE.  Unlike the 

RA-TSQ1 model, the weighting of the RA component is virtually twice as much as that for the 

TS part in the RA-TSQ2 models, indicating that the RA results are more significant in 

improving the accuracy of the two-quarter forecast.  

 

< Table 3 > 

 

 

BACKCAST TESTING 

 

The holdout samples between 1/1/1990 and 1/4/98 were fitted into the RA-TSQ1 and RA-

TSQ2 to examine the forecasting accuracy.  Figures 3 and 4 show the actual TPI as compared 

to the results of the one and two-quarter forecasts based on different models, while the part 

results of the two-quarter forecasts are summarised in Table 4.  The upper and lower 95% 

confident limits were used to determine the model accuracy, and the forecasts would be 

considered correct should the actual TPI value is within the confidence limits of the 

corresponding quarter.  With the RA-TSQ1 model, no actual TPI value falls beyond the 

confidence limit, representing a 100% accuracy.  More than 75% were within ± 1 of the 

standard deviation (3.1845).  As for the RA-TSQ2 model, out of the 34 holdout samples, only 

1 quarter (i.e. 1997Q3) has the actual TPI value outside the prediction interval, which implies 

that 97% of test data lies within the prediction interval.  

 

< Figure 3 > 

< Figure 4 > 
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< Table 4 > 

 

Percentage deviations were calculated by comparing the deviation to the half-forecast range.  

The actual value is out of the forecasting range if the percentage deviation is greater than 100.  

The smaller the percentage, the more accurate the forecast is.  Tables 5 and 6 highlight the 

quarters with percentage deviations exceeding 100 when using the RA, TS and RA-TS 

models.  The forecasting accuracy between the RA and TS models is similar when used for 

one-quarter TPI forecast, as both models have two inaccurate predictions (i.e. 1991Q2 & 

1997Q4 for the RA model, and 1994Q4 & 1997Q2 for the TS model).  However, the 

forecasts for these periods were improved (i.e. percentage deviation < 100) when RA-TSQ1 

model was adopted.  For two-quarter TPI forecast, the RA model was the most accurate, 

while the TS model was the worst (with four inaccurate predictions: 1992Q1, 1997Q2, 

1997Q3 & 1998Q2).  Using the RA-TSQ2 model improves the forecasting accuracy by 

leaving only one inaccurate prediction (i.e. 1997Q3).  The over-estimation of TPI between 

1991 and 1992 may be caused by the launching of democratic reforms in Hong Kong at that 

time, resulting in sudden economic and political shocks.  The under-estimation in 1997 may 

be due to an over-optimistic expectation for the economic prospect after the sovereignty of 

the HKSAR was returned to China.  The effects of these economic and political shocks are 

reflected through the pattern changes of some exogenous economic indicators, such as GDP 

(dropped from 1998Q3), IGDPD (dropped from 1998Q3), UR (rose from 1997Q4), etc.  

 

< Table 5 > 

< Table 6 > 
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CONCLUSIONS 

 

An integrated model is described for forecasting construction TPI movement.  The model was 

derived by amalgamating the analytical power of both the RA and TS models.  Hong Kong 

data pertinent to exogenous and endogenous variables were collected and used for model 

building.  A multivariate regression function was derived using the five exogenous variables 

which have significant effects on the regression function, i.e. BLR, BCI, CCPI, IGDPD and 

HSIAV.  The forecasting power of the RA was considered exceptional, with only two 

quarters exceeding 95% confidence limit (when used for one-quarter forecast).  Therefore, in 

the absence of any sophisticated analytical model, the RA should provide a reasonably 

reliable indication as to the TPI movement.  

 

The derivation of the TS model was based on the stochastic ARIMA approach.  Guided by 

the Box-Jenkins procedure for TS model development, the data was first checked for 

stationarity, and models with different parameters were then checked to establish the best-fit 

TS model.  The MA(2) model was considered most suitable for the TS prediction.  However, 

the predictive ability of the TS model alone is not as good as the RA.  The percentage 

deviations revealed six quarters to have been inaccurately predicted by the MA(2) model (i.e. 

two and four for one and two-quarter forecast respectively).  The TS model, therefore, may 

not adequately provide an accurate forecast when used in isolation with these data.  

 

The RA and TS models were then linearly combined based on the weightings of 0.512RA
 
:
 

0.488TS for RA-TSQ1, and 0.647RA
 
:
 
0.353TS for RA-TSQ2.  The results of backcast testing 

confirmed that the integrated RA-TS model outperforms both the individual RA or TS 

forecasts.  Only one quarter has the actual TPI value exceeding the confidence limit (based on 
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RA-TSQ2), indicating that 97% of test data lies within the prediction interval.  The integrated 

RA-TS model should, therefore, have a high potential of improving the forecasting accuracy 

of TPI movement even under a rapidly changing economic environment.  While the study 

presented in this paper was based on the Hong Kong data collected within a finite period of 

time, the findings should help improve our understanding on the possible problems and 

techniques when a predictive model for TPI forecast is developed in future.    
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APPENDIX I: DATA 

 

Tender Price Index (TPI):   TPI measures both the trend of contractors’ pricing strategies and 

the inflation of labour, plant and materials.  This indicator has received empirical attention in 

several notable studies (e.g. Runeson, 1988; Tysoe, 1981).  

 

Besides the TPI, nine economic factors were chosen to test their relevancy with TPI and, in 

turn, for forecasting the movement of TPI.  These candidate indicators were selected 

according to literature review (e.g. Akintoye et al, 1998; Fellows, 1998); the relationship 

between the TPI movement and the cyclical movement of each economic indicator 

(Akintoye, 1991); and their availability in HK (Ng et al, 2000).  The reasons for eliminating 

some important exogenous indicators from the HK studies can also be found in Wong (2001).  

Out of the nine chosen factors, four are domestic economic factors, three are banking sector 

indicators, and the remaining two are construction-related factors.  These should provide a 

comprehensive description of the economic condition of the HK. 

 

Domestic Economic Indicators 

 

Composite consumer price index (CCPI):   CCPI provides a measure to reflect changes in the 

price level of consumer goods and services generally purchased by households.  The change 

in CCPI is an important indicator of inflation affecting households.  CCPI also relates to 

inflation of consumer goods and services affecting households. 

 

Gross domestic product (GDP):   GDP could be used for analysing different aspects of 

economic performance.  GDP refers to the net output of all producing units in an economy 
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and is related to production activities within the economy, such as employment, productivity, 

industrial output, investment in equipment and structure. 

 

Implicit gross domestic product deflator (IGDPD):   IGDPD measures the level of inflation, 

but different from CCPI, It considers inflation for the economy as a whole. 

 

Unemployment rate (UR):   It compares the number of unemployed to the number of people 

in the work force.  It is directly affected when the economy is deteriorating. 

 

Banking Sector Indicators 

 

Best lending rates (BLR):   In normal situations, as the Hong Kong dollar is pegged to the US 

dollar; whenever the Federal Reserve moves its Federal Fund rate, HK will move its best 

lending rate. 

 

Money supply definition (M3):   This includes the Hong Kong dollar in circulation and all 

kinds of deposits.  It measures the HK dollar deposit in banking sector. 

 

Hang Seng Index 100 Days Moving Average (HSIAV):   This is a barometer of the Hong 

Kong stock market.  The constituent stocks are grouped under Commerce and Industry, 

Finance, Properties and Utilities sub-indexes.  HSI currently comprises 33 constituent stocks 

that are representative of the market.  The aggregate market capitalisation of these stocks 

accounts for about 70% of the total market capitalisation on the Stock Exchange of Hong 

Kong Limited – an indicator of stock market performance.  In this study, a 100 days moving 

average was used to avoid daily fluctuations. 

This is an Accepted Manuscript of an article published in 2004 by Taylor & Francis in Construction Management and Economics, 
available online: https://doi.org/ 10.1080/0144619042000202799



 

22   

 

Construction Related Indicators 

 

Building cost index (BCI):   Referred as Consolidated Labour & Material Index (CLMI) in 

HK, this is a combination of 45% of the Labour Index and 55% of the Material Index.  

Whereas the Material Index and Labour Index are compiled according to the average prices 

of material and wages of labour figures.  It is often a major indicator of building cost level. 

 

Gross domestic product construction (GDPC):   This is the same as GDP but only considers 

net construction-related output. 
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APPENDIX II: AN OVERVIEW OF STATISTICAL TECHNIQUES USED 

 

Regression Analysis 

 

The basic assumptions of regression analysis are: 

o the independent variables are not intercorrelated; 

o the predictor or independent variables are known without error;  

o the prediction errors or residuals are assumed to be independent, identically normally 

distributed random variables and with a mean of zero; 

o there is minimum autocorrelation; and 

o the effect of the independent variables on the dependent variable is linear, i.e. additive 

and proportional to the value of each independent variable, and thus the procedure used 

is to solve a linear equation of the form: 

 nnvvvy αααα ++++= K22110  

where y represents the dependent variable, v1 etc represent the independent variables and 0α  

etc represent the regression coefficients, or weights attached to each independent variable 

 

There is a huge literature on RA and very many text books, including introductory texts.  For 

absolute beginners, a good starting point for the practical application of RA to business 

problems is Mendenhall and Sinich (1993) 

 

Auto-Regressive Integrated Moving Average 

 

Simple Exponential Smoothing assumes that observations are uncorrelated.  However, serial 

correlation can be expected if the data are collected sequentially in time.  As a result, models 
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that include the correlation structure have to be considered, and a special class of stochastic 

models called the Auto-Regressive Integrated Moving Average (ARIMA) models are used.  

ARIMA implies a variety of different correlation structures.  Once the correlation structure 

has been appropriately modelled, it is straightforward to obtain predictions.  ARIMA models 

can represent many stationary and non-stationary stochastic processes.  A stationary 

stochastic process is characterised by its mean, variance, and autocorrelation function.  

Transformation of non-stationary data series with changing means into stationary series 

before time series forecast should, therefore, be carried out.  Readers are recommended to 

refer to Janacek (2001) for the concept of ARIMA. 

 

The Box-Jenkins Procedure 

 

The procedure suggested by Box and Jenkins (1994) for applying ARIMA models to time-

series analysis, forecasting and control is selected for carrying out stochastic time-series 

modelling in the study.  The Box-Jenkins procedure not only adequately models the changing 

process, but also provides a class of models of stationary stochastic processes.  The main 

advantage of this procedure is its generality, as it can handle virtually any time-series data, 

partly owing to its strong theoretical foundations, and also due to its success in empirical 

comparisons, which have been found to be as accurate as many complex econometric models.  

It also allows for a wide range of possible models for the data and provides a strategy for 

selecting a model from that class which best represents the data.   

 

The Box and Jenkins procedure is primarily an iterative approach of identifying a possible 

useful model from a general class of models.  The model building strategy consists of three 

key stages namely: (i) model specification, (ii) parameter estimation, and (iii) diagnostic 
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checking.  The model chosen would then be checked against the historical data to see whether 

it accurately describes or fits the series properly.  Model presenting a good fit when the 

residuals between the forecasting model and the historical data are small, randomly 

distributed and independent.  If the specified model is not satisfactory, the process is repeated 

until a satisfactory model (i.e. the best-fit model) is identified.  Further details of the Box-

Jenkins procedure can be found in standard statistical texts, such as Box and Jenkins (1994) 

or Hamburg and Young (1994). 

This is an Accepted Manuscript of an article published in 2004 by Taylor & Francis in Construction Management and Economics, 
available online: https://doi.org/ 10.1080/0144619042000202799



 

26   

LIST OF CAPTIONS 

 

 

Figure 1:  Results of fitting the MA(2) model by SAS 

 

Figure 2:  Iterative loop to determine the best weighting combination 

 

Figure 3:  Actual TPI and forecast generated by various models – one-quarter forecast 

 

Figure 4:  Actual TPI and forecast generated by various models – two-quarter forecast 

 

 

Table 1:  Summary table of the stepwise procedure of multivariate regression 

 

Table 2:  MSE and RMSE for different weighting 

 

Table 3:  MSE and RMSE for weightings from 0.4 to 0.6 at an interval of 0.01 

 

Table 4:  Forecast made two-quarter ahead by RA-TSQ2 model 

 

Table 5:  Part results of percentage deviation for one-quarter forecast 

 

Table 6:  Part results of percentage deviation for two-quarter forecast 

 

This is an Accepted Manuscript of an article published in 2004 by Taylor & Francis in Construction Management and Economics, 
available online: https://doi.org/ 10.1080/0144619042000202799



 

27   

 

 

 

 

 

 

Figure 1:  Results of fitting the MA(2) model by SAS 
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