
Bond University
Research Repository

An Introduction to Temporal Optimisation using a Water Management Problem

Randall, Marcus; Montgomery, James; Lewis, Andrew

Published in:
Journal of Computational Science

DOI:
10.1016/j.jocs.2020.101108

Licence:
Other

Link to output in Bond University research repository.

Recommended citation(APA):
Randall, M., Montgomery, J., & Lewis, A. (2020). An Introduction to Temporal Optimisation using a Water
Management Problem. Journal of Computational Science, 42, Article 101108.
https://doi.org/10.1016/j.jocs.2020.101108

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository
coordinator.

Download date: 29 Apr 2024

https://doi.org/10.1016/j.jocs.2020.101108
https://research.bond.edu.au/en/publications/18d0ebe3-1a9e-482d-a0f1-8d050c08eb45
https://doi.org/10.1016/j.jocs.2020.101108


An Introduction to Temporal Optimisation using a
Water Management Problem

M. Randall∗

Bond Business School, Bond University, Queensland, Australia

J. Montgomery∗

School of Technology, Environments and Design, University of Tasmania, Tasmania, Australia

A. Lewis∗

Institute for Integrated and Intelligent Systems, Griffith University, Queensland, Australia

Abstract

Optimisation problems usually take the form of having a single or multiple ob-
jectives with a set of constraints. The model itself concerns a single problem for
which the best possible solution is sought. Problems are usually static in the sense
that they do not consider changes over time in a cumulative manner. Dynamic
optimisation problems to incorporate changes. However, these are memoryless
in that the problem description changes and a new problem is solved – but with
little reference to any previous information. In this paper, a temporally augmented
version of a water management problem which allows farmers to plan over long
time horizons is introduced. A climate change projection model is used to predict
both rainfall and temperature for the Murrumbidgee Irrigation Area in Australia
for up to 50 years into the future. Three representative decades are extracted from
the climate change model to create the temporal data sets. The results confirm the
utility of the temporal approach and show, for the case study area, that crops that
can feasibly and sustainably be grown will be a lot fewer than the present day in
the challenging water-reduced conditions of the future.
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1. Introduction

All aspects of life, work and industry are driven by change. Change itself is
dependent on the changes that have preceded it. This is far more than being dy-
namic, which implies a set of random changes without connection or a narrative
between them. However, most optimisation problems are presented as static mod-
els, i.e., quantities are optimised given a single set of unchanging conditions [1].
While still computationally hard in the NP sense, they sometimes fail to ade-
quately capture important aspects of the changing environment in which they op-
erate. This paper therefore concentrates on the systematic incorporation of time
into real world problems.

An excellent vehicle to demonstrate the importance and usefulness of the in-
corporation of temporal components in optimisation, are water resource manage-
ment problems, as this commodity requires careful planning over time. In many
parts of the world, water is a scarce commodity that has a wide variety of uses,
from human and industrial consumption to agricultural and environmental pur-
poses. As such, planning its correct and efficient use over long periods of time
becomes necessary. Given the increasing importance of food security, the particu-
lar form of water resource management studied here is for agricultural (cropping)
purposes [2, 3]. See Kurland and Zell [4] and Singh [5, 6, 7] for an overview and
survey of these, as well as the wide variety and areas that water problems cover.
Given that agricultural environments are subject to frequent change [8] and of-
ten involve long term considerations, modelling time in an appropriate manner is
very important. Some examples of agricultural-oriented literature in which time is
modelled with computational simulation are: Pluchinotta, Pagano, Giordano and
Tsoukiàs [9], Tijskens, Ramon, and De Baerdemaeker [10] and Dent [11].

In this paper, a temporal framework for optimisation problems is developed.
Using a temporally augmented crop planning problem, the performance of the
problem and hence the framework is analysed using the well-known and tested
optimisation approach, Differential Evolution (DE). This performance is tested
on three decade-long data sets that have been produced using a known climate
change model [12]. This will inform future temporal modelling efforts, not only
in this domain, but others as well.

The remainder of this paper is organised as follows. Section 2 examines how
the dimension of time has been used in optimisation problems and their modelling,
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with a focus on dynamic and water management problems. Section 3 presents a
way to add a temporal component to one particular model. Section 4 describes the
general principles of DE and how it is applied to the temporal oriented problem.
For the problem under consideration, these concepts are tested empirically across
decade long data sets in Section 5 with the multi-objective differential evolution.
In Section 6 the implications of this work and future projects arising from it are
discussed.

2. The Dimension of Time in Optimisation Problems

It has already been mentioned that time is an important factor in agricultural
planning. The traditional construction of optimisation models, however, has con-
cerned the issues of objectives (single, multiple or many), constraints and solution
representations. The problems themselves in general require solvers (be they exact
or heuristic based) to find the best possible solution, or set of trade-off solutions,
in some computational time bound. The objectives may be linear or non-linear,
but are not generally considered to have any temporal component, whereby an
earlier part of the solution (at an earlier time period) could affect later decision
making in the same solution vector. Such modelling is difficult as it requires one
to project potential conditions into the future, which has a degree of uncertainty
about it.

In this section, the closest analogue to temporal optimisation problems, namely
the dynamic optimisation, is examined. Given the nature of water resource man-
agement issues, many problems in this domain consider time. This is done in an
ad-hoc and non-systematic manner. As such, some of the more pertinent examples
are considered here. From both of these groups, a working definition of temporal
optimisation problems is developed.

2.1. Dynamic Optimisation Problems
The nearest analogues to optimisation problems that consider time are the

dynamic optimisation problems [13]. According to Hendtlass, Moser and Ran-
dall [14] these are defined as having “an initial problem definition and a series of
‘events’ that change it over time. An event defines some change either to the data
of the problem or its structural definition while the problem is being solved.” (pp.
79-80). As such, these types of problems, while having a temporal component,
are memoryless (i.e., they do not consider previous states in the determination of
new states). New versions of the problem are progressively solved at various inter-
vals. However, these are not built on in any cumulative way. This is an important
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point that will be elaborated on in the next section. The following briefly gives
illustration to these points. Note that general surveys of dynamic optimisation and
its applications may be found in Branke [13], Yang, Jiang and Nguyen [15] and
Hendtlass, Moser and Randall [14].

The memoryless nature of dynamic optimisation is demonstrated by the fol-
lowing two typical works. Guntsch and Middendorf [16] use a population based
ant colony optimisation (ACO) approach to solve dynamic versions of the travel-
ling salesman problem (TSP) and quadratic assignment problem (QAP). For these
two problems, the distance and flow data matrices change every t iterations by
allowing the insertion and deletion of c cities/facilities. Both control variables
are given a number of different values in independent runs of the ACO. When a
change in problem definition occurs, ACO is required to find new solutions that
satisfy and optimise the problem at hand. There is no memory of the previous
problem or solutions.

Like the previous paper, Branke, Kaußler, Schmidt and Schmeck [17] develop
techniques for adapting previous solutions to suit the new version of the prob-
lem. In their case, they use heterogeneous micro populations within a forking
genetic algorithm to solve a benchmark dynamic problem, namely Moving Peaks.
These micro populations, which they call “Self Organizing Scouts”, track how
potentially promising peaks move across the search landscape over time. Their
approach significantly outperformed a standard genetic algorithm on the problem.

In contrast to the above, rather than the whole problem changing from one
version to another, Mitra, Deb and Gupta [18] have a chemical quantity change
in a continuous fashion. Particularly, they seek to minimise reaction time and
the quantity of an undesirable compound, while the concentration of a monomer
varies. This is part of a process to produce industrial quantities of nylon.

2.2. Temporally Oriented Water Resource Management Problems
Water, as a resource for agricultural purposes, often needs to be considered

over extended time frames [19], with many papers referring to this issue. One
work, Blanco, Fonseca and Flichman [20], puts forward some tentative notions
concerning “inter-temporal” optimisation for natural resource problems. In this,
they consider the effect of adjacent time periods in a cumulative manner. More-
over, their work considers individual decisions that then influence the decisions
made later on. At each time step, the solver makes a decision between using
stochastic dynamic programming or discrete stochastic programming.

The difference of this approach to the methods outlined in this paper is that
the system and solver presented here make all of the temporal decisions simulta-

4



neously, i.e., all crop areas and crop allocations are made across the entire plan-
ning horizon. It is anticipated that this will allow the solver greater latitude to
find novel solutions that may have been excluded due to a staged approach. In
other words, some solutions may have crop and water allocations in certain years
that will temporarily make the objective values worse, only to potentially realise
greater returns later on.

Other works considered here tend to fall into two categories of single and mul-
tiple time slices. For the former category, historical data are available. These usu-
ally concern water flows and availability over time. However, of all the data that
are available, only a single time slice is analysed. Reed, Kollat and Devireddy [21]
present a problem in which monitoring stations need to be optimally placed. They
chose to use the data from eight years after a plume event. Naadimuthu, Raju and
Lee [22] used a similar idea on an irrigation problem, except that they used a time
differential between the sample time and the crop emergence time.

The category of multiple time slices builds on the above by considering a
number of time slices in an historical data set, which are analysed separately. An
example of this is by Rana, Khan and Rahimi [23] where different groundwater
readings in both time and space were considered as part of the optimisation model.
Again relationships are restricted to neighbouring slices and not in a holistic man-
ner such as demonstrated herein.

2.3. Temporal Optimisation Defined
From the preceding discussions, certain characteristics of temporal optimisa-

tion problems should become evident. In many cases, a potential definition of
temporal optimisation is informed by what has not been captured in prior related
work. As such, an initial definition would be along the lines of “an optimisation
problem in which all relevant temporal data is considered, as well as the interac-
tions and cumulative effects of these data”. In addition, one may wish to add that
these problems would often take the form of predicting conditions into the future,
given some measure of uncertainty. Indeed, the problem presented below is a case
in point, as its data is based on climate change projections into the future.

3. Temporal Optimisation using a Water Management Problem

A variety of water resource management problems have been modelled and
optimised in the literature. These range from groundwater management to crop
planning [24, 25]. It is the latter that is of primary concern here. Given the recent
increases in global population and the subsequent shortages of adequate resources,
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any increase in the efficiency and the efficacy of crop production is of vital con-
cern. One of the largest components of this is how water is used across various
crops, and which crops should be planted to maximise some measure of utility
(such as profit or social needs) while making sure that sufficient water is returned
to the environment.

Prior to a description of the models on which the temporal framework is built,
a discussion of the necessary modifications that need to be made is given. From
these and the base problem (which only considers individual years), the develop-
ment of the full temporal model is described.

3.1. Agricultural Simplifying Assumptions
While the model developed by Xevi and Khan [2] and then later refined and

updated by Lewis and Randall [3] (as discussed next) contains many aspects of
agricultural concern, there are other real agronomic issues that would need to be
addressed for it to be used as part of a realistic planning tool for farmers or regional
decision-makers. Bearing in mind that the stated aim of this work is to explore
the dimension of time in optimisation problems, the following considerations will
not be presently modelled:

• Crop Rotation – Broad-acre crops, such as cotton, rice, wheat, require pe-
riodic agronomic crop rotation as soil pathogens (like nematodes) and dis-
eases build up, and therefore the land needs to be rested, or have a different
crop sown. It must be noted as well that the model used in the previous
papers and this one does not assign a crop to a specific geographical area.

• Growing Conditions of a Particular Crop – This includes sowing date, va-
riety and irrigation strategy. Different options available as part of each of
these will lead to different overall results, particularly depending on water
availability. For the case study region, the Murrumbidgee Irrigation Area
(MIA), these details are presented in Dunn and Gaydon [26] and Gaydon,
Meinke and Rodriguez [27].

• Ground Conditions – The area under consideration, the MIA, is very large.
This study and previous consider approximately 120,000 ha. Within this
area, there are a variety of soil types and elevations that make them suitable
for different crops. For example, broad-acre crops prefer large flat areas,
whereas vines for wine grapes may ideally be placed on a slope of a hill.

At the present time, parallel work is proceeding in the incorporation of the
above in an enlarged model.
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3.2. Base Problem
As mentioned above, the problem considered in this paper concerns the allo-

cation of land to a subset of potential crops so as to maximise overall net revenue,
while minimising the environmental flow deficit of the available water resources
(from the surface and aquifers). The following reviews the development of the
model.

Lewis and Randall [3] extended the work on Xevi and Khan [2] in the de-
velopment of an optimisation model for this problem. Each crop had varying
revenue potential, as well as watering requirements and variable costs. The au-
thors extended the original work in two main ways: a) by extending and enhancing
the underlying mathematical model and b) by applying a true multi-objective ap-
proach to produce a number of trade-off solutions. In terms of the former, the main
enhancements were to: precisely model surface water versus ground water allo-
cation; incorporate the variable costs into the net revenue objective; adding an ob-
jective for maintaining sufficient downstream flows for environmental purposes;
limiting total groundwater pumping; and putting sensible planting area limits on
perishable (and highly profitable) crops so that as much is being produced as the
market for these crops can accept. Results of the model were realised through the
use of the standard Non-Dominated Sorting Genetic Algorithm-II [28].

The Lewis and Randall [3] (pp. 181–182) model is reproduced in Equations 1-
7. Using this, an examination of its components to determine the temporal aspects
necessary to allow for planning across a number of years is undertaken.

Maximise NR =
C

∑
c=1

TCI(c)×X(c)

−Cw×
M

∑
m=1

((
C

∑
c=1

WREQ(c,m)×X(c)

)
−P(m)

)

−Cp×
M

∑
m=1

P(m)

−
C

∑
c=1

V cost(c)×X(c)

(1)

Minimise EFD =
M

∑
m=1

(Tenv f (m)−Env f (m)) · [Env f (m)< Tenv f (m)] (2)
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s.t.

M

∑
m=1

P(m)≤ 50GL (3)

C

∑
c=1

X(c)≤ Tarea (4)

X(c)≤ Y (c) 1≤ c≤C (5)

Allocation(m) = In f low(m)−Env f (m) (6)

P(m) =

(
C

∑
c=1

WREQ(c,m)×X(c)

)
−Allocation(m) (7)

Where:

NR is the net revenue,

C is the number of crops,

TCI(c) is the total crop income for crop c,

X(c) is a decision variable which is the area of crop c (in hectares),

Cw is total cost of water per unit volume $/ML,

M is the number of months, i.e., 12,

WREQ(c,m) is the water required for crop c in month m (in ML),

P(m) is the groundwater pumped in month m,

Cp is the cost of groundwater pumping and delivery (in $/ML),

V cost(c) are all other variable costs associated with crop c,

EFD is the deficit in environmental flow,

Tenv f (m) is the target environmental flow for month m,

Env f (m) is a decision variable that is the environmental flow for month m,
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TArea is the total cropping area available,

Y (c) is a the maximum allowable area for crop c,

Allocation(m) is the amount of surface water available for irrigation of
crops in month m and

In f low(m) is the total surface (river) water available in month m.

So far, this model is the basis of three other works. Lewis, Randall, Capon
and Jackwitz [29] refined the model and data to more tightly and appropriately
control water flow releases back to the environment. Montgomery, Fitzgerald,
Randall and Lewis [30] also used this model to a test a Differential Evolution
technique using various solution representation methods. Lewis, Randall, Elliot
and Montgomery [31] coupled it with climate change prediction models in order
to determine the types of crops that could still be grown in the next five decades,
given changed water conditions.

3.3. A Temporal Model for Water Management
The model above assumes that there is only one year of planting. In reality

however, some crops (i.e., the perennials) exist for a number of years. For exam-
ple, fruit-bearing trees are grown over a number of years, reaching full maturity
and yield after several seasons. Consequently, the problem should be solved over
a longer planning horizon. To transform this existing model into one consistent
with the definition of temporal optimisation given in Section 2.3, the objectives
in the first instance need to determine the commercial value of the crops across
all years, as well as the impact on water resources and hence the environment.
Equation 8 remodels the net revenue calculations so that it ranges across different
plantings of different crops in a defined planning horizon.
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Max. NR =
C

∑
c=1

(
max(x(c))

∑
h=1

Y

∑
y=1

{
i = 0 if h > x(c,y),
i = i+1 otherwise. TCI(c,y)×S(i)

)

−
Y

∑
y=1

(
Cw(y)×

M

∑
m=1

(
C

∑
c=1

(
WREQ(c,m,y)×X(c,y)

)
−P(m,y)

))

−
Y

∑
y=1

(
Cp(y)×

M

∑
m=1

P(m,y)

)

−
Y

∑
y=1

C

∑
c=1

V cost(c,y)×X(c,y)

−
Y

∑
y=1

C

∑
c=1

{ (
X(c,y)−X(c,y−1)

)
×E(c,y) if X(c,y)> X(c,y−1)

0 otherwise

−
Y

∑
y=1

C

∑
c=1

{ (
X(c,y−1)−X(c,y)

)
×R(c,y) if X(c,y−1)> X(c,y)

0 otherwise

(8)

Note that Y is total number of years. As can be seen from Equation 8, quite
a few changes and additions are necessary to account for time, and particularly
potential crop changes over the years. These new elements mainly concern the
planting and removal of crops from year to year, which not only attracts a di-
rect cost, but can also result in differing yields as crops mature. The first line of
Equation 8 calculates the crop income dependent on the levels of planting over
the planned time horizon. This is due to crops maturing at different rates cou-
pled with the different land areas that can be assigned to them over time. To this
end, the term S(c,k) is the proportion of the return for crop c in the kth year af-
ter it has been planted (0 ≤ S(c,y) ≤ 1). This means that for a crop like vines,
an income may only be gained after a certain number of years. For example, if
S(Vines) = {0,0,0,0,1} a vineyard’s produce would be ready for harvest (and
hence potentially for sale) in the fifth year after planting. An annual plant such as
lucerne [32], would have consistent values of 1 of course. Other crops like citrus
may be at say half capacity after a number of years have elapsed, hence a value
of 0.5 would be used. Another way of thinking about this is that S is essentially
the discount factor and applies to the correct land areas as they change over time.
For example, if for a particular crop, there are 80 hectares in the first year and 100
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in the second year, S = (0.1,0.5) and TCI = (100,120), the calculations would
become:

Year 1
80×0.1×100 = 800

Year 2
(100−80)×0.1×120 = 240

+80×0.5×120 = 4800
Total = $5840

For the purposes of this first instantiation of the temporal model, and as a
simplifying assumption, in the case that a crop size decreases from one year to the
next, the removed part of the crop is assumed to be the newest planted.

Lines 2 to 4 of Equation 8 simply add in the extra dimension of time to these
parts. However, monetary values such as Cw(y) and Cp(w) can now change with
factors like inflation. Lines 5 and 6 calculate the establishment and removal costs
respectively. These costs will vary according to the crop and again apply to the
perennials. For example, removing well established grape vines is a very costly
exercise, whereas planting spring vegetables is relatively cheap. In these lines,
costs are relative to the amount being established (or removed) from a particular
year. This helps to explain the nature of the X decision variable which now allows
a crop’s land area to vary dynamically over a set number of years. Note that
X(c,0) = 0,∀C,1 ≤ c ≤ C as planting starts in year 1 and it is assumed, for the
sake of simplicity, that only bare land exists beforehand.

Min. EFD =
Y

∑
y=1

M

∑
m=1

(Tenv f (m,y)−Env f (m,y)) · [Env f (m,y)< Tenv f (m,y)]

(9)
The constraints vary less dramatically than the objectives and simply require

the extra dimension of time to be added to each. However, by doing this, it allows
the model to cater for variations across the years. Consider, for example, Con-
straint 11, which allows planners to vary the available groundwater pumping from
year to year, based on future projections.

X(c,y)≤ L(c,y) ∀c,1≤ c≤C ∀y,1≤ y≤ Y (10)

M

∑
m=1

P(m,y)≤ Pt(y) ∀y,1≤ y≤ Y (11)
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C

∑
c=1

X(c,y)≤ Tarea ∀y,1≤ y≤ Y (12)

Allocation(m,y) = In f low(m,y)−Env f (m,y) ∀m,1≤m≤M ∀y,1≤ y≤Y
(13)

P(m,y) = max

((
C

∑
c=1

WREQ(c,m,y)×X(c,y)

)
−Allocation(m,y),0

)
∀m,1≤ m≤M ∀y,1≤ y≤ Y (14)

Where:

TCI(c,y) is the total crop income for crop c in year y,

X(c,y) is a decision variable which is the area of crop c in year y (in
hectares),

WREQ(c,m,y) is the water required for crop c in month m of year y (in
ML),

Cw(y) is total cost of water per unit volume $/ML in year y,

Cp(y) is the cost of groundwater pumping and delivery $/ML in year y,

V cost(c,y) are all other costs associated with crop c in year y,

Env f (m,y) is a decision variable that is the environmental flow for month
m in year y,

S(c,y) is the proportion of the return for crop c in the yth year after it has
been planted 0≤ S(c,y)≤ 1,

E(c,y) is the establishment cost of crop c per hectare in year y,

R(c,y) is the removal cost of crop c per hectare in year y,

Tenv f (m,y) is the target environmental flow for month m in year y,

P(m,y) is the groundwater pumped in month m in year y,
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Pt(y) is the pumping target (in gigalitres) for year y. In the previous study
this was set as 50GL.

In f low(m,y) is the total surface (river) water available in month m in year
y,

Allocation(m,y) is the amount of surface water available for irrigation of
crops in month m of year y and

L(c,y) is the maximum area that crop c is limited to in year y.

4. Using Differential Evolution as the Optimisation Engine

DE has been a highly successful evolutionary algorithm1 across a range of
problems and has been applied to the single year version of this problem previ-
ously [30, 31]. In terms of the single year problem [30], it showed that it was
able to outperform platforms like NSGA-II (see, e.g., [28]). It uses a population
of solutions to optimise over a number of generations. Like genetic algorithms,
crossover and mutation are responsible for the manipulations in the algorithm.
However, they are used in quite a different way to other evolutionary algorithms.
Mutation is typically not a simple operation in which a single solution component
is changed, but one based on often complex recombination between a number of
solution vectors. DE’s naming convention DE/a/b/c denotes a DE algorithm for
which a and b describe how mutation is carried out and c is for the crossover type.
One of the most common variants, that used herein, is DE/rand/1/bin (see, e.g.,
Price, Storn and Lampinen [33] for details).

The multi-objective DE used here is based on that used by Montgomery, Ran-
dall and Lewis [34] for RFID antenna design that uses the mutation mechanism
of DE coupled with the non-dominated sorting routine from NSGA-II. The search
begins by creating a population of solution vectors. At every generation, each
solution vector is recombined (mutated) and crossover is performed using DE so-
lution mutation mechanisms. In DE/rand/1/bin, three other members are chosen to
be recombined with the current member. A solution component of a child vector
is probabilistically generated from all these vectors according to Equation 15. A

1Note that evolutionary algorithms do not guarantee that the optimal solution will be obtained,
or for multi-objective optimisation, that the true Pareto front will be reached. They will, however,
find good solutions or attainment surfaces for non-convex problems in reasonable amounts of
computational time, which is why they are used in this work.
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solution component is each separate value in the solution vector. For the problem
used in this paper, the assignment of an area of land (in hectares) to a particular
crop in a particular year as well as a water allocation per month per year, represent
single components.

child j = xr3 j +F
(
xr1 j− xr2 j

)
(15)

Where:

child j is the jth component of the child vector,

xab is the bth component of population member a,

r1...3 are three solution vector indexes defining the other members with
which the solution is to be recombined, and

F is the scaling factor.

F governs the amount of diversity that is introduced. A high value (around
1) corresponds to a large diversity and visa-versa. Equation 15 is invoked from a
probabilistic rule with its associated parameter value CR (the crossover rate). If
it is not used, the original solution component is directly added to the child. Oc-
casionally, the computed value may fall outside the problem defined boundaries.
The boundary checking rule is given in Equation 16.

child j =


xi j+lbi

2 if child j < lbi
xi j+ubi

2 if child j > ubi
child j otherwise

(16)

Where:

i is the index of the parent solution vector,

lbi is component i’s lower bound and

ubi is component i’s upper bound.

In the case of multi-objective optimisation, such as for this problem, a child
is kept if it dominates any solution in the archive.2 The final membership of the
archive is used to produce the attainment surfaces that will be given in Section 5.

2The archive is a set of non-dominated solutions that are updated across the generations of the
search. The size of this is set as the population size.
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4.1. Producing Initial Solutions
For all iterative based optimisation algorithms, such as DE, an initial solution

(or multiple if it is a population technique) needs to be generated. Of course, for
any particular problem, there are multiple ways in which this can be done. For
this work, land areas for the crops under consideration are generated at random.
Approximately half are left at zero (so not selected) to help ensure that land is not
over allocated. Thus, the areas, as close as possible, sum up to Tarea.

5. Computational Experiments

To determine how the previously described material and ideas work in prac-
tice, appropriate data sets are constructed and then tested using the described opti-
misation framework. From the results gained the effects of time are drawn out and
compared to solutions gained in the previously published single year studies. One
of the key points of interest will be to see the difference in crop mixes between
them.

5.1. Constructing Decade Long Data Files
Given that this paper proposes a new form of problem class, considerable ef-

fort is required to develop appropriate test problems that will adequately explore
the model. In order to extend the existing data files, as used in Lewis and Ran-
dall [3], so that they have a temporal component, five major issues need to be
addressed:

1. Water Requirements – These depend on both rainfall and temperature val-
ues. Modelling these, even in the short to medium term, is difficult given
the various methods of climate change prediction. Nonetheless, Evans, Ji,
Lee, Smith, Argüeso and Fita [12], develop 12 different climate models for
the regions of New South Wales and the Australian Capital Territory. This
is referred to as NARCliM. The 12 models are themselves ensembles of
four Global Climate Models (GCMs) and three Regional Climate Models
(RCMs). The GCMs and RCMs are chosen for overall effectiveness, and
GCMS are downscaled by the RCMs. The models are then used to generate
predicted rainfall and temperature over an area of interest (for this paper this
is restricted to the MIA). The time boundaries that it is able to provide, that
best serve this paper are between the years 1990 and 2070. The 12 mod-
els therefore give 12 scenarios over which to potentially run the temporal
model. As in the work of Lewis, Randall, Elliot and Montgomery [31], the
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model delivering results closest to the mean of the ensemble of the NAR-
CLiM models, CCMA3.1-R3, will be used to generate the different WREQ
values over time. An additional consideration is the cost of pumping wa-
ter from underground aquifers. This price varies according to whether a
year is considered to be wet, average or dry, as detailed in the note on Year
Classification in item 5 below.

2. Establishment and Removal costs – Depending on the biological nature and
complexity of the crop, these costs will vary considerably. For example,
vegetables will typically be planted by scattering or the use of planting ma-
chines, whereas grape vines require expensive root stocks. For annual crops,
such as cotton, canola and vegetables, the establishment costs are incorpo-
rated into the variable costs (V cost in the temporal model) so are effectively
$0. Similarly, the removal costs correspond to harvesting and also are set at
$0. Approximate costings for the three perennial crops were sourced from
Verdegaal, Klonsky, and de Moura [35], Hansen [36], Morgan and Olm-
stead [37], IFTA [38], TreeFruit [39],Van den Ende [40], DPIPWE [41] and
O’Connell et al [42].

3. Crop Maturity Rates – This is somewhat related to the previous point. For
the three perennial crops, it will take a number of years before they are fully
mature, and will only produce a proportional amount of fruit, usually after
an initial period. This corresponds to the S variable in the temporal model.
For grape vines, according to Verdegaal, Klonksky and de Moura [35], most
wine grapes will start to bear fruit from three years with a yield of about 3–4
t/ha. This will increase to approximately 8 t/ha at around seven years and up
to 12 t/ha at age 30. Using these points, a logarithmic regression equation
can be formed as y = 3.3954ln(x)+0.7046, where y is the yield per hectare
and x is the year after planting. For example, after five years, the vines will
reach approximately 70% of their fruit bearing capacity. For most stone
fruit, it takes at least three years to realise a full harvest [43].

4. Inflation – Any economic related system that has a temporal component
must account for inflation. For ease of comparison in Section 5.3, all figures
are expressed in 2020 Australian dollars. In the first instance, the figures
used by Xevi and Khan [2] and Lewis and Randall [29] must be brought
forward to this year. These were quoted in 2005 Australian dollars. This
was done using Consumer Price Index (CPI) figures from the Reserve Bank
of Australia [44]. CPI is set to the average of the years since 2005 which
equates to 2.5%. All monetary figures used by the model are indexed by
this amount on an annual basis until 2020. Establishment and removal costs
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will be calculated relative to the publication dates where the values were
sourced.

5. Year Classification – In order to determine the Cp values, each year needs to
be classified as either wet, average or dry. This is dependent on the predicted
rainfall. The rationale is that pumped water will be more expensive in a dry
year than it would be in a wet or average year, and vice versa. The amount
of rainfall in the target area of the MIA also depends on the stream inflow
coming from the nearby Snowy Mountains region. As such, the predicted
rainfall across the two regions for all months was summed for each year.
These were then summed and ranked. The lowest decile corresponded to
the driest years, while the top decile were seen as wet years. The rest were
classified as average. This approach is consistent with the method used by
Xevi and Khan [2].

The three decade-long data files, as well as a template file, are available on
request from the first author.

5.2. DE Parameters
In line with the work conducted by Montgomery et al. [30] and Lewis et

al. [31], the following values have been given to the DE specific values: popu-
lation size = 100, F = 0.5 and Cr = 0.8, with iterations = 30,000 (based on the
common heuristic of allowing 10k ·D function evaluations, where D = 280 is the
number of decision variables). The algorithm was run for 21 randomised trials on
each problem instance.

5.3. Computational Results and Analysis
Figure 1 summarises the search progress for selected trials for the three decade-

long problem instances, presenting the attainments surfaces from the initial pop-
ulation and at 10k, 20k and 30k iterations (as noted in the figure). The trials were
selected as having a final attainments surface (i.e., iteration 30k) with median gen-
erational distance (GD) [45] (measured against an artificial Pareto front created
by taking the non-dominated solutions across all 21 trials for each instance).3 Al-
though not easily discernible due to the scale of the charts, the best solutions in the
initial population include some with NR < $0, indicating that while the solutions
are feasible they are far from optimal. The charts show that the algorithm makes

3The distance calculation involves rescaling objective values to lie in the unit interval so that
changes in each objective are the same magnitude.
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Figure 1: Attainment surfaces from representative trials by iteration for each problem. Note that
the surfaces for iteration 0, the initial population, contain only 3, 2 and 2 solutions, respectively.
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Decade

Iteration 1990–99 2020–29 2060–69

0 [0.397, 0.465] [0.390, 0.454] [0.314, 0.357]
10,000 [0.014, 0.019] [0.016, 0.020] [0.008, 0.011]
20,000 [0.007, 0.010] [0.008, 0.011] [0.004, 0.007]
30,000 [0.004, 0.007] [0.005, 0.008] [0.003, 0.005]

Table 1: 95% confidence intervals on generational distance measure by instance and iteration

substantial progress during the first third of its search, with continuing, slower
progress for the remainder of its allowed runtime. Table 1 presents the 95% con-
fidence intervals on the calculated GD by problem and iteration sample point, and
confirms that the typical performance of the search approaches the combined best
performance (the mean GD values approach 0). Taken together this suggests that
the search is converging to an approximation of the true Pareto front (which longer
runs or the application of local search could then find).

Figure 2 presents the final attainment surfaces produced for the three decade-
long problem instances for the selected trials, overlaid to allow for comparison
between decades. For all decades, the attainment surfaces include at least one
solution with the minimum achievable EFD given actual or predicted inflows per
month and the fixed target of 100,000 GL environmental flow in each month. Evi-
dently, the forecast conditions for the 2060–69 decade mean target environmental
flows will rarely if ever be met, even if planting very little (the lowest EFD solu-
tion in the selected solution set leaves 48% of the area unallocated). Further, these
results indicate that 2060–69 is likely to be significantly less profitable than what
is achievable now and in the recent past.

Table 2 presents the crop allocations across decades for the minimum and
maximum NR solutions for each decade for the selected solution sets (the crop
allocations are of greater interest than details of the environmental flows across
each month). Also included are details for: solutions from the selected 1990 and
2020 attainment surfaces nearest where they cross in objective space (labelled B
and F in Figure 2, respectively); and the solution from the 1990 solution set with
equivalent NR to the maximum NR in the selected 2020 solution set, but with
clearly superior EFD performance (labelled C).

The summary allocation data presented in Table 2 shows that, regardless of
decade or position within the attainment surface, certain crops are favoured by the
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Figure 2: Representative attainment surfaces produced for each decade, selected as being the
closest to the median Generational Distance across trials.

Table 2: Selected crop allocations from median attainment surfaces, rounded to the nearest
1000 ha. Values represent the total area in kha allocated across the decade-long planning hori-
zon. IDs refer to labelled points in Figure 2.

Total area allocated across decade (kha)

ID NR EFD R W B M Ca O S WP SP L V WV SV Ci SF Co unalloc.

Decade: 1990–99
A $1.97B 276.0 TL 57 34 19 3 355 119 8 19 9 17 7 22 6 8 5 178 28%
B $2.34B 292.5 TL 51 34 21 4 372 129 4 8 9 10 4 21 8 8 3 268 20%
C $2.63B 464.1 TL 52 41 17 5 356 122 4 13 8 5 3 22 9 8 3 371 13%
D $2.84B 826.4 TL 55 25 17 4 300 112 6 11 9 6 3 22 9 9 3 481 11%

Decade: 2020–29
E $1.78B 183.2 TL 13 77 40 11 312 265 8 28 18 14 4 21 8 8 5 85 24%
F $2.34B 297.4 TL 22 36 25 5 381 306 4 9 10 7 2 22 10 8 3 202 12%
G $2.64B 816.7 TL 30 12 17 4 340 257 4 4 8 7 4 22 10 7 2 352 10%

Decade: 2060–69
H $1.27B 448.6 TL 9 101 33 3 278 123 3 5 8 8 3 22 7 8 2 8 48%
I $2.11B 1.4 PL 23 119 34 3 449 169 7 14 7 8 4 22 8 9 2 134 16%

Crops are (R)ice, (W)heat, (B)arley, (M)aize, (Ca)nola, (O)ats, (S)oybean, winter pasture (WP), summer pasture (SP),

(L)ucerne, (V)ines, winter vegetables (WV), summer vegetables (SV), (Ci)trus, stone fruit (SF) and (Co)tton
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solver: cotton, canola, oats in the highest quantities, then barley and wheat, with
rice occasionally being included. (The low NR solution from 2060–69 set is an
exception, with very little cotton.) As in prior work [30] the key environmental
trade-off is how much area is allocated to cotton, given its higher water require-
ment than the other high-value crop canola. Looking across the three planning
decades, as water availability diminishes and average temperatures increase, the
solver must reduce both the total area planted and the amount allocated to cotton,
although canola, oats and wheat are still planted in relatively large quantities.

The crops with upper bounds applied (vines, winter and summer vegetables,
citrus and stone fruit) are planted in highly similar proportions regardless of the
planning decade. Vines are planted in very small quantities (typically only 3%
of its upper bound), stone fruit typically one third its upper bound, and citrus
and summer vegetables approximately 55–60% their limit. Winter vegetables are
consistently planted near their upper limit, which is likely due to the anticipated
inflow of water during winter months.

As DE is a stochastic solver there is variability in the final solution sets pro-
duced. For example, in the best of the produced attainment surfaces (details not
included for simplicity of presentation), the solver produces less diverse crop allo-
cations that strongly favour canola, but with consistent allocations of cotton in the
1990–99 and 2020–29 problems. The best trial for the 2060–69 decade follows
this pattern but also includes a substantial amount of barley. Allocations of the
bounded crops are almost identical to those in the selected exemplar results.

The 10-year planning horizon in the instances studied here means that crop
allocations for vines, citrus and stone fruit in one year influence the expected
return in subsequent years (these crops also have high planting and removal costs,
particularly citrus trees). Although initial solutions allocate these crops with 50%
probability in any year, with no consideration of the year-on-year impact of those
decision, the solver should take this into account. Figure 3 plots the areas allocated
to these crops for selected solutions from the ‘median’ trial (left column) and best
performing trial (right column). The plots suggest that the solver is able to arrive
at relatively stable allocations for these crops in some cases, particularly citrus
(which has the highest removal cost of all), indicating it is adapting to the temporal
nature of the problem. However, there is still some degree of variability that could
be further refined.

Those crops planted in the largest quantities (cotton, canola and oats), which
have low planting and removal costs and which are at 100% yield within one
season, tend to vary more between years, with average changes in allocated area
20–30% of the available space. In contrast, citrus and stone fruit tend to change
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Figure 3: Annual area allocated to crops with variable productivity for maximum NR solutions
from the selected exemplar trials and the best performing trial, by decade
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only by 10% of their respective upper bounds.

5.4. Discussion
The results presented above illustrate two impacts of time on the solutions

obtained to this crop allocation and water management problem: climate factors
change the general setting for a planning decade, impacting on which crops, in
what quantities can be planted, while the variable returns on certain crops require
the solver to maintain those crops at relatively stable levels over time.

In all three decade instances, the solver is able to find at least one solution
with EFD equal to the minimum achievable value, given water inflows. However,
across trials different solutions may be found that achieve this but with differing
NR, which suggests that longer algorithm runs (or multiple independent runs)
are required to properly explore the large search space produced by the 10-year
planning horizon.

Although the total water inflow across the 1990 decade is 4% higher than that
in the 2020 decade, a number of exceptionally dry months in the 1990 decade
means target environmental flows were unachievable, and thus its lower bound
on EFD is higher than that for the 2020 decade (276,028 versus 183,213). This
allows for more profitable solutions at lower EFD in the 2020 decade. However,
this decade also sees generally higher temperatures, leading to higher rates of
evapotranspiration, and crop water requirements, thus only achieving the highest
NR with correspondingly higher EFD than in the 1990 decade.

The results obtained in our earlier work [31] relied on the classification of the
year under study. Markedly different outcomes could be observed if a year was
“wet”, “average” or “dry”, and to draw conclusions and make plans over longer
time frames, some determination of the statistical distribution of these classifica-
tions over a decade was necessary. The extension described here removes this
necessity, as the distribution is part of the problem parameters.

Furthermore, considering the results illustrated in Figure 2 in comparison with
the limited “snapshots” presented by the analyses based on individual years [31]
demonstrates the shortcomings of such an approach. For example, a wet year
in the 2020 decade was able to equal the maximum NR achieved in a comparable
year in the 1990 decade but, over the course of the whole decade, maximum NR in
the 1990 decade exceeds that achievable in the 2030 decade (cf. Figure 2 points D
and G.) From this we may conclude that more reliable predictions can be made on
general profitability of agriculture in the MIA under changing climate conditions
using the temporal modelling, and the means of achieving these outcomes.
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The temporal modelling has exposed trends in changing optimal cropping
strategies over the future scenarios under climate change. It can be seen in Table 2
that crops with summer growing seasons, e.g. cotton, rice and, to a lesser extent,
maize, soybean and summer vegetables, have significantly reduced cultivation in
the near and far future scenarios, being replaced by winter crops. Investigation of
other crops with compatible water needs and improved market access for perish-
able winter crops, possibly allowing their increased cultivation, may form a key
part of developing climate change adaptation strategies for the region. However,
there is also a general trend toward less of the land being cultivable over time,
given reduced water availability and higher evapotranspiration.

It should also be noted that the current model does not yet incorporate sus-
tainable extraction limits on river water taken for irrigation. Allowed free rein,
the optimisation algorithm can, and sometimes does, reduce downstream flows
to zero. This is obviously nonviable and incorporating such limits, in line with
changing regulatory conditions, is an important part of future model refinement.
The practical implication is that high NR achieved by allowing high EFD (por-
tions of attainment surfaces adjacent to points G and I in Figure 2) will not be
possible. This may significantly impact decisions on future profitability and farm-
ing practices in this region.

Finally, while the solutions discovered do achieve some degree of smoothness
in the year-on-year area allocated to crops with high planting and removal costs
and time-varying return, it is likely that these can (and should) be refined. The
results also imply that the end of the finite planning window results in decisions
to remove such crops in the final planning year, an effect that will be investigated
in future work over longer planning times.

6. Conclusions

Time permeates every facet of life, yet its treatment in optimisation problems
has been limited. Temporal optimisation is a potential way to systematically in-
corporate time into a range of problems. In this paper, a model has been pro-
posed that extends a crop planning and water management problem over a num-
ber of years. It allows farmers and regional planners to evaluate sustainable crop
choices given projected changes in precipitation and temperature. Using specifi-
cally created decade-long data files that incorporate climate change data from the
NARCLiM project, and the temporal optimisation approach, long term outcomes
become more clearly discernible. This work applied a multi-objective DE to this
problem and found that while climate factors determine the general setting for a
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planning decide, the variable return on certain crops require the solver to maintain
their allocation of land at relatively stable levels over time. The results indicates
that into the future it will no longer be sustainable to grow crops that are readily
grown now, such as cotton and rice, nor to grow crops in the same quantities.

This work has the potential to be taken much further in two broad directions.
Firstly, the notion of temporal optimisation needs to be extended to other problems
and domains. An obvious example would be extended vehicle routing and roster-
ing problems. In both of these, schedules could be constructed over a number of
days or weeks and allow for constraints such as employees only being allowed
to work for a number of days at a time. Inherent, and evident from Section 5.3,
is the need for the development a set of tools that will be able to analyse multi-
time period results effectively. In a similar manner, it will be interesting to use
other evolutionary algorithms, apart from DE, on temporal models. NSGA-II in
particular, will be applied to these.

Secondly, in terms of the case study, as temporal models such as this rely
on predictions into the future (in this case temperature and precipitation levels),
uncertainty in the outcomes must be minimised. This essentially means that a
wide variety of input data should be considered simultaneously and only solutions
that have minimal deviation across these input data sets (and even in crop area size
changes from one year to the next), would be considered as viable. This is in the
area of robust optimisation [46, 47]. Tentative ideas and algorithms are already
being pursued in this direction.

The case study model itself also requires further examination. At the present
time, crops may be planted anywhere within the total area. In reality, that is not
the case; certain crops require certain conditions (such as flat areas for broad acre
crops like cotton while hillsides may be suitable for vines). Thus, the approach be-
ing considered is to divide the area up into a number of regions. Each region will
contain characteristic information (such as soil type, elevation and slope) and will
only be allowed to have one crop type planted at a time. Such an extended model
will allow for realistic planning mechanisms such as crop rotation. More detailed
topographic information will also allow for a realistic treatment of overland flows,
notably lacking at present. Further refinement is also needed to incorporate spe-
cific factors relating to climate changes, such as alterations in crop yields and
soil chemistry, which become additional temporal factors for a solver to consider.
Another consideration is the development of evidence-based objectives for envi-
ronmental flows, perhaps cast in terms of maximising sustainable biodiversity in
downstream ecosystems, rather than arbitrary flow targets.
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