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Financial Applications of Semidefinite Programming:  
A Review and Call for Interdisciplinary Research 

 
 

Abstract 
Optimization problems in finance commonly have non-linear constraints for which 

previous solutions have required unrealistic assumptions. However, many of these can be 
efficiently solved as Semidefinite Programming (SDP) problems, which have less 
restrictive assumptions. Through review of the literature that uses SDP in finance, two 
major research streams are identified: portfolio optimization and option pricing. 
Nevertheless, many finance researchers are unaware of SDP. One possible reason is that 
this research is often published in non-finance journals. This paper aims to better 
integrate the SDP research to promote wider use of current findings and further 
interdisciplinary research, particularly in environmental finance. 
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1 Introduction 

There are numerous optimization problems in finance such as portfolio asset allocation, 
option pricing, risk management and equilibrium analysis. These problems commonly have non-
linear constraints for which previous solutions have required strong, often linear, assumptions in 
order to find solutions. Traditional methods for solving these problems abound and are diverse – 
recent examples include modelling asymmetric dependence in portfolio formulation using copula 
functions (Low, 2017; Hartherley and Alcock, 2007), pricing options allowing for stochastic 
volatility utilising Lévy processes (Li et al., 2017), analysing foreign equity bias in mutual funds 
using Bayesian and other approaches (Mishra, 2016), and portfolio optimization in the presence of 
transactions costs (Suh, 2016). Smith and Walsh (2013) provide an important review of the 
CAPM approach that underpins much of the portfolio optimization research, highlighting the 
important implication that there is an infinite number of ex post efficient portfolios.  

Many of these optimization problems can be cast as SDP problems, which have less 
restrictive assumptions while still being able to be solved efficiently. By reviewing the literature 
that uses SDP in finance, two major research streams are identified: portfolio optimization and 
option pricing.  

There are an abundance of problems in finance that can be characterized as optimization 
under uncertainty. These problems are known mathematically to be NP-hard problems and include 
examples such as maximizing portfolio returns subject to specified constraints, optimal multi-
period investment strategies subject to given conditions (such as cardinality constraints), as well 
as computing bounds on options prices. In option pricing, SDP may also be used as an alternative 
to the classic Black-Scholes framework (Kwon and Li, 2016). In the research reviewed below, 
SDP has been used to either solve problems that traditional finance methods cannot, or to extend 
the mathematical limitations of existing approaches to produce near optimal solutions in a 
reasonable computation timeframe. 

Semidefinite programming (SDP) is less commonly known as semidefinite optimization 
(SDO) and is essentially an extension of linear programming (LP). SDP has been studied as far 
back as the 1940s under various names, such as linear matrix inequalities (LMIs) and linear 
optimization with matrix variables (Wolkowicz et al., 2000). The study of the cone of semidefinite 
matrices even predates LP (Pardalos and Wolkowicz, 1998a). However, because of the lack of 
efficient solution algorithms SDP has had a slow and scattered history unlike the rapid growth 
experienced by LP. The discovery of efficient algorithms to solve SDP problems, coupled with 
their diverse range of application areas, was the major factor behind the growth of SDP in the 
1990’s (Helmberg, 2000). Although SDP is a growing field, LP models are still more widely used 
than SDP models. 

Even though SDP has been considered a standard optimization tool in some fields for many 
years, it still remains largely unknown to finance researchers. A major cause of this is believed to 
be a lack of introductory papers, and this paper helps address that gap. 

The objectives of this paper, which are addressed in order, are to 
• provide an introduction and brief review of the general field of SDP for a finance audience. 
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• Present an overview of the algorithms and software to solve SDP problems. 
• Review the research that applies SDP to financial optimization problems. 

Although this paper is directed at finance experts who are not familiar with SDP, it does 
require the reader to be somewhat familiar with linear algebra. Appendix A provides a brief 
overview of the underlying concepts in SDP.  When setting up a finance problem to be solved via 
SDP, one needs to establish the optimisation function and the semi-positive definite constraints.  
For specific references, Appendix B demonstrates how the problem was formulated within an 
SDP framework. 

2 Introduction to SDP 

SDP involves optimizing a linear objective function subject to linear constraints, where the 
objective function is optimized over the closed convex cone of semidefinite matrices. The general 
form for an SDP problem is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑡𝑡ℎ𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀𝑜𝑜𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀 𝑓𝑓𝑓𝑓𝑀𝑀𝑜𝑜𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀  𝐶𝐶 • 𝑋𝑋 𝑠𝑠𝑓𝑓𝑜𝑜𝑜𝑜𝑀𝑀𝑜𝑜𝑡𝑡 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑀𝑀 𝑜𝑜𝑜𝑜𝑀𝑀𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑡𝑡𝑠𝑠 
𝐴𝐴𝑖𝑖 • 𝑋𝑋 = 𝑜𝑜𝑖𝑖   𝑓𝑓𝑜𝑜𝑐𝑐   𝑀𝑀 = 1, … ,𝑀𝑀 
𝑐𝑐𝑀𝑀𝑎𝑎 𝑡𝑡ℎ𝑀𝑀 𝑝𝑝𝑜𝑜𝑠𝑠𝑀𝑀𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀 𝑜𝑜𝑜𝑜𝑀𝑀𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑡𝑡 𝑋𝑋 ≽ 0. 

where 𝑋𝑋 is a 𝑀𝑀 × 𝑀𝑀 variable matrix of the free parameters, 𝐶𝐶 and the 𝐴𝐴𝑖𝑖′𝑠𝑠 are given 𝑀𝑀 × 𝑀𝑀 
symmetric matrices1 of problem-specific real coefficients, and the 𝑜𝑜𝑖𝑖′𝑠𝑠 are given problem-specific 
real scalars and 𝑀𝑀 is the number of linear equality constraints. 

Interestingly, if all the given matrices (𝐶𝐶,𝑋𝑋,𝐴𝐴𝑖𝑖 ’𝑠𝑠) in an SDP problem were diagonal then the 
SDP problem would reduce to an LP problem, where the variable vector 𝑥𝑥 is formed by the 
diagonal of 𝑋𝑋 (Freund, 2004; Wright, 2004). Consequently, it is not surprising that many parallels 
exist between LP and SDP (Wolkowicz et al., 2000). However, SDP possesses some subtle, yet 
interesting differences and is far more generalizable than LP. SDP can solve many integer LP and 
non-linear optimization problems efficiently. SDP encompasses LP, quadratic programming (QP), 
quadratically constrained quadratic programming (QCQP) and second-order cone programming 
(SOCP) as special cases (de Klerk, 2002; Wolkowicz, 2002). Thus, SDP offers a common way to 
represent these convex optimization problems, which allows unified analysis of properties and 
solution algorithms (Vandenberghe and Boyd, 1996). 

2.1 Duality for SDP problems 

Duality is the concept that an optimization problem can be viewed as either a primal 
problem or dual problem (Vandenberghe and Boyd, 1996). This ability to view problems in 
different ways can assist in finding solutions, particularly for SDP. First recognised by Bellman 
and Fan (1963), much of the theory of duality extends from LP to SDP. The differences between 
LP and SDP duality are detailed by Ramana (1997) and Ramana et al. (1997). SDP has an elegant 
theory of duality very similar to LP, but the theory is decidedly more complex as the cone of 
semidefinite matrices is not polyhedral like the feasible region of an LP problem (Helmberg, 
                                                        
1 Since 𝑋𝑋 is symmetric there is no loss in generality in assuming that 𝐶𝐶 and the 𝐴𝐴𝑖𝑖′𝑠𝑠 are symmetric (Freund, 2004). 

https://doi.org/10.1111/acfi.12543
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2000; Wright, 2004). As with LP it is easy to switch between the primal and dual2 forms of SDP 
problems. 

The primal form of the SDP problem refers to the original SDP problem, which can be 
stated in various ways. Similarly, there are various forms in which the dual problem can be stated; 
most commonly, the dual problem is defined as 

𝑀𝑀𝑐𝑐𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑀𝑀 𝑡𝑡ℎ𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑀𝑀𝑜𝑜𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀 𝑓𝑓𝑓𝑓𝑀𝑀𝑜𝑜𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀 

�𝑜𝑜𝑖𝑖𝑦𝑦𝑖𝑖

𝑚𝑚

𝑖𝑖=1

    𝑤𝑤ℎ𝑀𝑀𝑐𝑐𝑀𝑀 𝑦𝑦 ∈ ℝ𝑛𝑛     (𝑜𝑜𝑐𝑐 𝑐𝑐𝑎𝑎𝑡𝑡𝑀𝑀𝑐𝑐𝑀𝑀𝑐𝑐𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀𝑎𝑎𝑦𝑦 𝑤𝑤𝑐𝑐𝑀𝑀𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀 𝑐𝑐𝑠𝑠 𝐵𝐵 • 𝑌𝑌) 

𝑠𝑠𝑓𝑓𝑜𝑜𝑜𝑜𝑀𝑀𝑜𝑜𝑡𝑡 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑀𝑀 𝑜𝑜𝑜𝑜𝑀𝑀𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑡𝑡 

𝑆𝑆 + �𝑦𝑦𝑖𝑖𝐴𝐴𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 𝐶𝐶 

𝑐𝑐𝑀𝑀𝑎𝑎 𝑡𝑡ℎ𝑀𝑀 𝑝𝑝𝑜𝑜𝑠𝑠𝑀𝑀𝑡𝑡𝑀𝑀𝑜𝑜𝑀𝑀 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀 𝑜𝑜𝑜𝑜𝑀𝑀𝑠𝑠𝑡𝑡𝑐𝑐𝑐𝑐𝑀𝑀𝑀𝑀𝑡𝑡 𝑆𝑆 ≽ 0. 

That is, its dual is a maximization problem where the matrix 𝐶𝐶 − ∑ 𝑦𝑦𝑖𝑖𝐴𝐴𝑖𝑖𝑚𝑚
𝑖𝑖=1  must be positive 

semidefinite. Hence, the dual problem is also an SDP problem.  SDP duality is weaker than that of 
LP (Freund (2004) and Wright (2004) present a proof of this) as strong duality only holds under 
certain constraints. This weak duality does not guarantee that there is a dual equivalent for every 
primal problem (and vice-versa) nor that the duality gap is zero at optimality, but it is still known 
that 
• The duality gap is nonnegative at all feasible solutions (𝐶𝐶 • 𝑋𝑋 − 𝐵𝐵 • 𝑌𝑌 ≥ 0) 
• If the duality gap is zero then optimality has been achieved, but a non-zero duality gap is 

possible at optimality (duality gap = 0 ⇒ optimality). 

The SDP dual is often more practically useful; it is often easier to handle as the variables in 
the constraints and the objective function are the same (Freund, 2004). This is different from LP, 
where the primal LP problem is preferred to the dual in most practical situations.  For more 
information on duality in SDP, the summary paper by Vandenberghe and Boyd (1996) contains a 
detailed introduction. 

3 Algorithms to Solve SDP problems 

The semidefinite constraint is a non-linear convex constraint. In fact, Freund (2004) presents 
an elegant proof that the set of semidefinite matrices is a closed convex cone (see Appendix A.3) 
within the set of symmetric matrices. The ramifications of this are that the feasible region of an 
SDP problem is convex which in turn means that there is one optimal point on the boundary of the 
feasible region. 

The convex feasible region of an SDP problem may contain curves, which means that the 
basic feasible solution (BFS) comprises the finite number of vertices as well as an infinite number 
                                                        
2 To be precise, we are referring to the Lagrangian dual throughout this section. 
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of points along all curves. Consequently there is no simple or practical Simplex algorithm for 
SDP. It is also not yet possible to determine (in)feasibility of an SDP problem in a finite number 
of iterations (tests). Nevertheless, exact complexity bounds have been found by Porkolab and 
Khachiyan (1997, 1998) who show that many SDP problems are solvable (or determined to be 
infeasible) in polynomial time. Furthermore, problems that are not exactly solvable in polynomial-
time can be solved to a predefined level of precision in polynomial-time (Grötschel et al., 1988; 
Wolkowicz,  2002).  Grötschel et al. (1988) used the ellipsoid algorithm to show that SDP 
problems can be solved to any fixed precision in polynomial time, but again the algorithm is 
practically inefficient and more efficient Interior-Point (IP) algorithms are preferred (Laurent and 
Rendl, 2002; Vandenberghe and Boyd, 1996; Wolkowicz, 2002). 

These algorithms for solving SDP problems (including discrete versions) are discussed in 
more detail in the following subsections, along with references to software packages that 
implement SDP algorithms. 

3.1 Interior-Point (IP) Algorithms 

The breakthrough for the SDP field came when Nesterov and Nemirovskii (1988, 1990a,b, 
1994) presented efficient polynomial-time, IP algorithms for general convex optimization 
problems and then specifically for SDP problems and was a major reason for its growth in 
popularity. Independently, Alizadeh (1991, 1992) and Kamath and Karmarkar (1992, 1993), also 
generalized the existing LP interior-point algorithms to SDP. 

IP algorithms search for the optimal solution by going through the middle of the feasible 
region, rather than around the edge as the Simplex algorithm does. The algorithm essentially 
follows a smooth curve through the feasible region, commonly known as the central path, by 
using the Newton method. The central path passes through the analytic centre of the feasible 
region and converges upon the optimum point. Vandenberghe and Boyd (1996), Helmberg (2000, 
section 4.1) and Gärtner and Matoŭsek (2012, p. 99–118) provide excellent treatments of the 
concepts of analytic center and central path, which are based upon barrier functions. When using 
IP algorithms, the optimal point is identified by a duality gap of zero, and thus IP algorithms 
assume strong duality. The importance of duality in these IP algorithms is the reason they are 
more accurately called primal-dual IP algorithms. It is also assumed that the constraints are 
linearly independent. For more information, Wright (2004), Laurent and Rendl (2002) and Freund 
(2004) also provide excellent introductions to IP algorithms in SDP. 

3.2 Algorithms for Discrete Problems 

In the same way cutting plane algorithms can be used in LP to solve integer IP problems 
(see Appendix A.6), cutting plane algorithms have more recently been explored to solve some 
SDP problems with discrete variable constraints. Cutting plane algorithms, based on IP 
algorithms, are presented by Helmberg and Weismantel (1998), who use the max-cut and 
quadratic 0-1 knapsack problems as examples. However, the IP algorithm’s computation time 
dramatically increases with the number of cutting planes added, as each additional inequality 
increases the computation time of the IP algorithm. Thus, IP cutting plane algorithms are limited 
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to small problems. This is the main reason given by Helmberg (2000) for the rarity of cutting 
plane techniques in SDP applications, despite their positive theoretical results for practically 
useful problems. 

3.3 Software to Solve SDP 

SDP solvers are available in a variety of software packages and many of them are freely 
available. The increasingly popular, open source R programming language offers interfaces with 
multiple SDP solvers. Rcsdp (Bravo, 2016) and Rdsdp (Zhu and Ye, 2016) offer interfaces to two 
open source SDP solvers, CSDP (Borchers, 1999b) and DSDP (Benson et al., 2000) respectively. 
Both SDP solvers use IP algorithms on both primal and dual problems, and both take advantage of 
sparsity. A user guide is available for CSDP (Borchers, 1999a), which has a variant that is able to 
exploit multiple CPUs/cores for parallel computing (Borchers and Young, 2007). SDPA 
(Yamashita et al., 2012) is an open source alternative that uses an IP algorithm. While SDPA is 
written in C++, program variants are available that offer interfaces for Matlab and Python, as well 
as for enabling parallel computing. 

In contrast to the more popular IP algorithms, the open source Splitting Conic Solver (SCS) 
(O’Donoghue et al., 2016a,b) uses a first-order algorithm for solving SDP and other optimization 
problems. As mentioned above, this approach scales to extremely large optimization problems 
better than IP algorithms. Inferfaces for SCS are available in R, as well as Python, Java, C, C++, 
Matlab, Julia and Scala. 

A commercial alternative is MOSEK, which can be used for a variety of linear and non-
linear optimization problems including SDP. MOSEK offers multiple algorithms to solve these 
problems, most notably IP algorithms. It also detects infeasible solutions, supports parallel 
computing and comes with all the support typically expected of commercial products. MOSEK 
can be accessed from a variety of interfaces including C, C++, Java, .NET, MATLAB, Python and 
R. Koenker and Mizera (2014) provide an introduction to convex optimization in R including the 
Rmosek package that interfaces with MOSEK. Although it is a commercial product, it is 
important to note that academic licences for research and education are available at no cost. 

4 SDP in Finance 

SDP has been successfully used to solve a variety of finance-specific problems. There are 
many optimization problems in finance that have non-linear constraints, for which previous 
solutions have required strong assumptions in order to find solutions. Consequently, it is desirable 
to find semidefinite relaxations for these problems to avoid these unrealistic assumptions while 
still being able to solve the problems efficiently. 

A systematic approach has been followed to collect publications for inclusion in this review 
of SDP in finance. First, the Scopus database was used to search the title, abstract and keywords 
of publications for those that contained both [(‘semidefinite’ AND ‘programming’) OR ‘sdp’] and 
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(‘finance’ OR ‘portfolio’)3. This initial search returned many engineering articles and so the 
results were filtered to exclude the subject area ‘engi*’. A total of 50 papers resulted as of October 
2017. Next, articles that merely mentioned the potential for financial applications of SDP without 
actually addressing them were removed and additional references were added by searches of cited 
references, ISI Web of Science and Google Scholar. The process resulted in a total of 36 journal 
and 2 conference publications. Working papers, technical reports and textbook chapters were also 
identified and are cited in future sections, but these are not included in the following summary 
analysis. 

The vast majority of publications are in Operations Research or Optimization outlets, as 
shown in Figure 1. Given that finance academics are less likely to follow these two bodies of 
literature, this is one possible reason for SDP being relatively unknown in finance. Furthermore, 
although Finance outlets account for the same number of publications as Optimization outlets, the 
majority of publications in Finance outlets are older; of the 20 ‘SDP in finance’ publications from 
2012 onwards, only one has been in a Finance outlet. This review paper contributes to bridging 
the gap between these two bodies of literature by making the findings more accessible to finance 
academics. 

 
[insert Figure 1 approximately here] 
 
[insert Table 1 approximately here] 
 
An analysis of the citation information from Scopus reveals three top publications; no others 

had either more than 100 citations or an average greater than seven per year. The top papers are 
listed in Table 1 and it is interesting to note than none of them are published in Finance outlets. 

The publications were also categorized by the authors according to their main research 
focus. This process revealed two main research streams being portfolio optimization and option 
pricing, which will be discussed in the next two subsections. Following that, the one publication 
that did not fall into either stream is discussed, before future research opportunities are identified. 

4.1 Portfolio Optimization 

Portfolio optimization involves allocating capital over a set of available assets to maximize 
return while minimizing risk. Portfolio optimization problems involving VaR are well known to 
be typically computationally intractable and the complexity becomes NP-hard when the portfolio 
contains derivatives (Zymler et al., 2013). This task is further complicated by the many available 
measures of risk. The best known mathematical model and the most famous portfolio optimization 
approach, now known as modern portfolio theory, was developed by Markowitz (1952, 1959). 
Markowitz’s work brought about important advances in the asset allocation and asset pricing 
fields of finance. This approach has since been extended to tracking-error optimization (Roll, 
                                                        
3 The term portfolio was included because, in the authors’ experience, papers in this area of finance do not always use 
the term finance prominently. 
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1992), as the success of professional portfolio managers is commonly determined by the excess of 
their portfolio returns over a specified benchmark portfolio. 

Markowitz’s model is a quadratic programming problem, which is also referred to as the 
mean-variance model, because the variance of portfolio returns is used as the measure of risk. 
Despite the strong theoretical contribution of the Markowitz Mean-Variance model (MMV) it has 
been highly criticized in practice. The main disadvantage of the model stems from the high 
sensitivity to its parameters, especially the expected return (mean) of individual assets. Parameters 
such as the expected return of assets are usually estimated from noisy historical data, and 
consequently cannot be estimated with precision. This concern provides the impetus for studying 
techniques that consider both the uncertainty modelled by the parameters and the uncertainty of 
the parameters themselves. 

Many techniques have been suggested to reduce the parameter sensitivity of portfolio 
optimization models; Goldfarb and Iyengar (2003) provide a list of these approaches including 
references to relevant research. Robust versions of the portfolio optimization problem 
acknowledge the uncertainty of the input parameters and aim to systematically combat the 
sensitivity of the optimal portfolio to errors in the estimates of the inputs4. This is done by 
imposing the model’s constraints over the set of plausible values of the parameters, rather than the 
single most likely value. The new robust optimization problem is then solved assuming the worst-
case behaviour within the plausible set of the parameter values (Lutgens and Sturm, 2002). 

Costa and Paiva (2002) addressed the tracking-error extension of the robust portfolio 
optimization problem, using variance as the measure of risk. They showed that the error tracking 
formulation problems were SDP problems. Their empirical testing on a small amount of São 
Paulo Stock Exchange data revealed that using SDP is useful, especially when minimizing the 
amount of future portfolio re-balancing and transaction costs are important. 

Since these early published works involving recasting portfolio optimization into a 
framework that can be solved using SDP there has been a steadily increasing number of 
publications in this area. The later publications have successfully extended both aspects of 
recasting the optimization problem as well as introducing further complexity into the fundamental 
portfolio optimization problem itself. For example, El Ghaoui et al. (2003) addressed the robust 
portfolio optimization problem by analysing VaR figures. They assume that only upper and lower 
bounds to the input parameters are known. Finding the portfolio with the optimized worst-case 
VaR is then shown to be an SDP problem. 

In an interesting article, Ndaiye et al. (2006) proposed an SDP program with dual convex 
algorithms for correlation matrices that develops a global risk model.  This global risk model is 
formed by adopting a bottom-up approach which begins with a set of local market covariances as 
well as capturing the cross correlation between the local markets. This research has shown that 
SDP holds strong potential for developing robust risk management models for applied users. 
Later, Lobo et al. (2007) examined ways to optimize a portfolio when linear and fixed transaction 
                                                        
4 The general theory of robustness, which means handling uncertainty, within SDP is discussed by Ben-Tal et al. 
(2000, 2009). 
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costs are included. The incorporation of transaction costs captures the effect of financial frictions 
on the optimal allocation of resources. Similarly, Leibfritz and Maruhn (2009) generate a robust 
portfolio strategy against model errors as a worst-case design. They show how the resulting 
problem can be solved using SDP sequentially. 

The following sub-section presents more recent (post 2010) articles - some are discussed in 
more detail to highlight recent publications that take a particularly novel approach. 

4.1.1 Post 2010 

Minami (2013) used SDP for portfolio optimization to directly address the issue that the true 
variance and covariance values can never be observed as they can only be estimates from sample 
data. Minami used SDP to calculate the maximum value of variance to avoid the sampling error 
issue. 

Chen et al. (2011) study the problem of robust portfolio selection. They demonstrate an 
efficient procedure for this problem despite the non-robust version being known to be NP-hard in 
the general case. Sheng-zhi and Fu-sheng (2011) examine higher order moments in portfolio 
selection and the effectiveness of SDP relaxation via an empirical analysis. In examining a similar 
problem, Ye et al. (2012) rewrite the robust Markowitz mean-variance portfolio selection problem 
within the SDP formalism and empirically demonstrate that the resultant portfolios are not as 
sensitive to input errors as the classic mean-variance portfolios. Using a different approach of 
applying the Lagragian relaxation to the primal problem, Gao and Li (2013) show that geometric 
symmetry exists which can be mathematically exploited. In making use of various geometric 
schemes, they are able to develop efficient polynomial time implementations for the 
corresponding dual problem. This permits an SDP formulation, using branch-and-bound 
trimming, which generates high-quality feasible solutions. 

By elevating vector variables to positive semidefinite matrix variables, Ling et al. (2014) 
reformulate robust tracking portfolio models within the SDP framework. They find that compared 
to the variance tracking error portfolio model, and an equally weighted strategy, their models are 
more stable and exhibit higher accumulated returns and Sharpe ratios when tested on the SSE50 of 
the Shanghai Stock Exchange in the majority of observed instances. 

Given the known issue with finding the near-optimal solutions for returns on portfolio 
models in realistic time frames, Gotoh and Fujisawa (2014) propose a time efficient fractional 
model wherein the ratio of two convex functions is maximized. Their computational results 
utilized both local and global search algorithms. This approach is similar to earlier work of Yao et 
al. (2006) which tracked a continuously compounded rate of growth or a stock market index from 
the dynamic management of a small number of market traded stocks. 

Boyd et al. (2014) use SDP to develop a numerical bound on the optimal performance for 
problems where an optimal policy cannot be determined. The model built captures many features 
of real multi-period portfolio optimization problems and provides a nearly optimal trading policy 
along with an upper bound on how suboptimal it can be. The article considers a dynamically 
traded asset portfolio in a finite time horizon with the goal being to maximize the portfolio returns 
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while respecting given constraints. The total expected revenue function not only accounts for real-
world factors such as transaction costs and other fees, but it also compares when all the costs were 
convex-quadratic with the general nonquadratic case. One of the strengths of this work is that the 
study contains details of an approximate dynamic programming heuristic that determines the 
trades to be carried out at each discrete step of the finite portfolio time horizon. In particular, the 
multi-period investment problem is formulated as a stochastic control problem. 

Kim et al. (2016) investigate a subset of the general issue of sparse tangent portfolio 
selection via semi-definite relaxation and propose an approach to resolve the cardinality problem. 
The problem is that the mean-variance model determines optimal portfolios with high cardinality, 
thus potentially preventing the model being used in practice because of high transaction costs and 
management fees. This paper shows an application of the semidefinite relaxation method to a 
cardinality constrained Sharpe ratio maximization problem. The validity of this method is 
demonstrated through an empirical test with historical stock returns. Numerical analyses confirm 
that by solving the relaxed SDP problem, investors are able to effectively construct sparse tangent 
portfolios. The importance of this is that the resultant portfolios now have reduced cardinality and 
investors are able to benefit from diversification at a lower cost.  By employing an innovative 
scheme using an adaptive approximation algorithm, Tian et al. (2016) develop a fully positive 
programming formulation of the cardinality constrained portfolio selection problem. Their work is 
important because their numerically derived results produce higher quality feasible solutions than 
other methods discussed in prior literature. 

Xu et al. (2017) use a hybrid genetic algorithm to solve the NP-hard problem with the goal 
of maximizing the excess return for both passive and active fund management strategies with 
chance and cardinality constraints. They employ an SDP approximation for the model subject to 
different sets of potential distribution functions. Their numerical experimentation on real datasets 
shows that their model and the solution techniques provide good out-of-sample excess returns 
with a high level of robustness. 

Fonseca and Rustem (2012a); Fonseca et al. (2011a, 2012) examined how multi-period 
international portfolios can be optimized. The development of solutions to these types of applied 
problems has previously been limited by their exponential complexity. The interaction between 
local market conditions, foreign exchange rates and multiple-time periods can result in an 
intractable model. The authors applied an SDP approach which contains the uncertain return in a 
non-linear (ellipsoidal) set. A further contribution of their papers is to combine portfolio 
optimization with VaR.  This reflects the increased importance of risk in the post Global Financial 
Crisis (GFC) period. 

Fonseca et al. (2011b) examined how SDP can be applied to currency portfolios. The 
authors examined currency investment strategies where the portfolio is composed only of different 
currencies. Since currencies are traded as pairs optimal portfolio formation can be more complex. 
Fonseca et al. used SDP to optimize the allocation of different investments into several different 
currencies with different patterns of risk and return. The authors also showed how currency 
options can be laid over the baseline strategy to reduce risk. 
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A key component of portfolio modelling is strategies for the reduction of risk. The non-
linear nature of risk provides substantial scope for the application of SDP. Fonseca and Rustem 
(2012b) applied a robust optimization approach which specifies a minimum value that the 
portfolio must be worth in the future. This approach is commonly used by endowments, pension 
funds, insurance companies and government agencies that have known obligations in the future. 
The problem is formulated as an SDP problem that combines a set of uncertain outcomes with the 
objective function. 

Yang et al. (2014) propose a distributionally robust return-risk optimization model based on 
risk control of conditional VaR. They show that using an SDP framework the models can be 
solved in polynomial time. 

Using a two stage portfolio optimization formulation, Ling et al. (2017) analyse the 
stochastic linear optimization problem where the recourse function is risk-averse as opposed to 
risk-neutral. They show that the first stage is equivalent to an SDP problem, and consolidate the 
VaR objective function in the second stage demonstrating that the second problem is NP-hard. 
Their numerical experiments show that their approach can produce solutions of good quality 
whilst accounting directly for risk. 

4.2 Option Pricing 

The most common option5 is a single asset option where there is one underlying asset, such 
as a defined number of shares in a listed public company (stock option). The price of these options 
can be found using the famous Black-Scholes option pricing model (Black and Scholes, 1973), 
which makes the assumptions that there are no-arbitrage opportunities, and that the underlying 
asset (stock) follows a log-normal distribution (geometric Brownian motion). However, the latter 
assumption is usually violated, which often biases the price. Consequently, there has been 
research into pricing models that do not have the underlying log-normal distribution assumption, 
and it has been shown that bounds on the option prices can be derived from only the no-arbitrage 
assumption (Lo, 1987). SDP has been used to derive these bounds based on the moments of the 
underlying asset price6. There has also been research into models that assume distributions other 
than log-normal; Han et al. (2005) list the major models. 

Lo (1987) derived a distribution-free upper bound on a single call option given the mean and 
variance of the underlying asset price. Extending this result, Boyle and Lin (2003) demonstrate 
that this type of option is of practical use in the finance industry and show that the upper bound 
can be obtained using SDP given the first two moments of the joint distribution of returns (means 
and covariance matrix of the underlying asset prices), which they solve using an IP algorithm. 
Empirical testing of the SDP solution revealed success with many bounds markedly close to the 
true values. 

                                                        
5 In this paper, the term option specifically refers to European options that can only be exercised at maturity, unlike 
American options that can be exercised at any time until maturity. 
6 Only call options have been researched, because put options can be easily calculated from call options. 
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Bertsimas and Popescu (2000, 2002) also extended the research by Lo (1987) and used SDP 
to develop a distribution-free tight upper bound on a standard single asset option, given the first 𝑀𝑀 
moments of the underlying asset price. Bertsimas and Popescu (2002) extended their work to 
incorporate transaction costs. Gotoh and Konno (2002) then further extended the work of 
Bertsimas and Popescu, again using SDP to establish a tight lower bound for a single asset option. 
They showed that these upper and lower bounds are extremely close to the actual option price, 
especially as the number of moments becomes large (𝑀𝑀 ≥ 4).  In addition, Gotoh and Konno 
(2002) presented a tailored algorithm to calculate the bounds of a single asset option in real-time7, 
for 𝑀𝑀 ≤ 4, which includes the largest meaningful problem in practice. 

Han et al. (2005) generalized the previous research also using SDP to find the upper bound 
of multi-asset or basket options (as done in part by Boyle and Lin) by using the first 𝑀𝑀 moments of 
the underlying assets (as done by Bertsimas and Popescu, and Gottoh and Konno). As was the 
case with the previous research, empirical results were positive, but only a small data set was used 
and consequently more thorough empirical testing would be beneficial. Independently, 
d’Aspremont (2002a, 2003) also conducted research into basket options, specifically swaptions, 
which are an option in the interest rate market. He determined that swaptions could be priced as 
basket options. In addition, for this specific case it was shown that the basket option representing 
the swaption had underlying assets that were log-normally distributed. Hence, the Black-Scholes 
option pricing model assumptions were not violated. Consequently, d’Aspremont extended the 
single asset Black-Scholes model to cater for basket options and found that the resulting problem 
could be solved efficiently using standard SDP algorithms. 

Using SDP, Lasserre et al. (2006) examined an array of exotic options including fixed strike, 
arithmetic average Asian and down-and-out barrier call options. Their pricing method was to 
identify derivative prices with an infinite-dimensional linear programming problem involving the 
moments. By then applying SDP, the problem is transformed into a finite dimension problem. 
Numerical results were found with a small number of sample moments. 

Li and Kwon (2012) applied SDP techniques to derivative problems. They examined convex 
risk measures based on the market prices of derivative instruments, motivated by the work of Lo 
(1987) who considered a semi-parametric approach. The authors incorporate infinite families of 
distributions to provide a distribution free-optimization approach. Li and Kwon were able to show 
theoretically and empirically that reformulating the measurement of options’ risk measures as 
SDP problems which can be solved efficiently and be regarded as distribution free. This is an 
important advancement as a limitation of several well-known finance theories in that they require 
distributional assumptions that do not hold empirically. 

In his second PhD thesis, d’Aspremont (2002b) addressed the problem of determining the 
presence of arbitrage opportunities with basket options (such as swaptions). Specifically, the 
following problem was addressed: ‘Given a set of basket options, what are the possibilities for 
arbitrage?’. Bertsimas and Popescu (2002) had previously shown that this problem was NP-hard, 

                                                        
7 The bounds were calculated in less than 0.1 seconds on a now old computer (Pentium III   500MHz). 
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and consequently that there is no efficient method for finding all arbitrage opportunities. 
Therefore, d’Aspremont focused on detecting economically significant arbitrage opportunities 
with low computational cost by calculating price bounds for the basket options based on other 
related basket options. However, the following unrealistic assumptions were made: no transaction 
costs, and arbitrage opportunities were limited to trading on the day of analysis and at maturity. 
Nevertheless, increasingly tight bounds were able to be obtained by solving progressively larger 
and more complex SDP problems. This technique was not tested on real market data. Zymler et al. 
(2013) explicitly captured the nonlinear risk of a portfolio of derivatives by applying a worst case 
VaR approach. They developed two conservative approximations for VaR and empirically 
demonstrated via numerical experiments the benefits of incorporating SDP to capture the non-
linear risk of a derivative portfolio. A key advantage of this semidefinite approach to risk 
management is that it does not require knowledge of the underlying option pricing models. 

Cuturi and D’aspremont (2013) present several techniques for examining paths of 
multivariate stochastic processes and show that many of these optimization processes can be 
solved exactly using SDP. They discuss how these methods can be used to isolate statistical 
arbitrage opportunities. 

In a more recent article, the problem of computing bounds on option pricing under regime 
switching is tackled by Kwon and Li (2016). This problem arises from the desire to find an 
alternative to the standard geometric Brownian motion in the Black-Scholes framework as it often 
results in pricing biases. Prior research conducted by Bertsimas and Popescu (2000, 2002) had 
shown that the problem of finding the tightest bounds can be cast as an SDP problem. This study 
extends on this result by incorporating a regime-switching model for the underlying asset in 
computing bounds for European-style call options, where the regime-switching framework is able 
to capture changing volatility in asset returns. This research is important as it compares and 
contrasts SDP to classic finance techniques. Kwon and Li show that by incorporating a finite-state 
Markov chain regime-switching process, a discrete lattice is generated for computing the option 
bounds. The two-stage simple stochastic SDP with a recourse model aims to find a current (first-
stage) bound for an option price via the semidefinite model of Bertsimas and Popescu as well as 
obtaining second-stage option bounds through SDP. The optimal solution is then found through 
sorting the option pricing bounds. The stochastic SDP models developed allow the computation of 
a bounded price for European call options. The striking feature of the modelling is that by using a 
stochastic programming technique, the bounds can be calculated in a straightforward manner 
where those bounds are controlled through penalty parameters that explicitly include risk 
aversion. The empirical performance of the calculated robust bounds is investigated through rather 
extensive numerical experiments using S&P500 stock index options. The results suggest such a 
stochastic approach is more flexible when determining the pricing bounds, as opposed to the use 
of deterministic models. This is also an effective approach in that the models are tractable and 
controllable through the penalty parameters. 
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4.3 Future Research Directions 

This section considers future research opportunities within the existing streams of portfolio 
optimization and option pricing. Opportunities to apply SDP to new areas are also presented, 
including worst-case optimizations in finance contexts and environmental finance. Other areas of 
future research include risk management, asset and liability management and market equilibrium 
analysis. 

4.3.1 Existing Streams of Portfolio Optimization and Option Pricing 

Researchers have recently been investigating portfolio optimization under three criteria (see 
e.g. Qi et al., 2017), instead of the standard two criteria of mean and variance.  For example, using 
skewness as the third criterion, Briec et al. (2013) develop a polynomial-based solution to the 
problem of maximizing the return and skewness optimization. The authors assumed unit variance, 
but point out that this is always achievable through rescaling. SDP could be used to add 
robustness and scalability to these problems. 

The development and use of SDP within the options research space is more embryonic. Han 
et al. (2005) demonstrated the power of SDP in robustly handling large datasets. An area of 
further research interest would be comparing SDP with other approaches. For example, the 
efficiency of Alcock and Smith’s (2017) unique non-parametric approach to value American 
options using Cressie-Read divergences, could be compared to an SDP solution. 

4.3.2 Worst-Case Optimization 

Problems involving worst-case linear optimization (WCLO) under uncertainties abound in 
finance. In a strongly mathematical analysis, Peng and Zhu (2015) show that worst-case linear 
optimization (WCLO) relaxation applications, with uncertainties in their constraints, belong to the 
NP-hard problem set. By presenting a coarse semidefinite relaxation for WCLO, the study details 
a numerical technique involving an iterative procedure to sequentially refine and tighten the 
relaxation model. It is then demonstrated that this sequence will converge to a non-linear SDP 
problem. This resulting problem is resolved through a bi-section search algorithm, and global 
convergence of the algorithm is established. The authors show that their preliminary experimental 
results demonstrate that the proposed algorithm finds very tight bounds for the original WCLO 
and is also able to locate an exact global optimal solution for most tested instances. This result is 
important as the method developed is applicable to many optimization problems in finance 
including applications in systemic risk estimates and stochastic optimization. 

4.3.3 Environmental Finance 

Environmental finance has recently been identified as an important, emerging, 
interdisciplinary field in Asia-Pacific finance (Linnenluecke, 2016, 2017). Linnenluecke et al. 
(2017) encouraged researchers to be more open to use new methodologies.  SDP is a technique 
that is well suited to contribute to research in this field, particularly considering the additional 
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nonlinear environmental constraints that do not occur in non-traditional portfolio optimization and 
real option valuation problems. 

Using SDP Costa et al. (2017) find a solution to an electricity energy mix that reconciles 
CO2 emission, risk and associated costs under uncertainty for the electricity portfolio optimization 
problem that exists in Brazil. In showing this, they are able to use their approach to solve three 
separate energy portfolio problem formulations successfully. Investigating the same fundamental 
problem set in the European Union, Eckhause and Herold (2014) employ a real options 
framework to determine optimal project selection and funding solutions to achieve an operating 
full-scale CO2 capture, transport and storage plant by a target year of 2020. They achieve this by 
casting and solving a model using SDP and demonstrate that they achieve an improved risk 
reduction considering sensitivity to budget flexibility whilst optimizing overall budget 
expenditure. 

It would be interesting to contrast the results above with Emissions Trading Schemes (ETSs) 
developed for Australia and NZ (see, for example, Bui et al. (2017) and Chapple et al. (2013) for 
an analysis of these ETSs). Furthermore, it would be interesting to extend the comparisons to 
include non-SDP solutions. 

A yet unexplored area is to examine the applications of SDP in the area of real options for 
natural resource investments - an area pioneered by the seminal paper of Brennan and Schwartz 
(1985). The limiting factor is the number of assets that can be considered using extensions of 
Brennan and Schwartz’s approach; currently finding a solution typically involves simulation or 
solution techniques such as finite differences (see Kelly (2017) for a recent example). SDP allows 
problems with many assets to be solved more efficiently than other techniques. This is of 
particular interest given the widespread interest in renewable, sustainable assets. Linnenluecke et 
al. (2017) explain that renewables represent valuation challenges and that new methods along the 
lines of real options would prove valuable. 

4.3.4 Other Areas 

Risk Management: option pricing is NP-Hard. d’Aspremont (2002a) has extended prior 
work in option pricing to develop hedging strategies using options for risk management. Yamada 
and Primbs (2002) have also shown that option hedging strategies can be represented in part by 
moment problems, which have been solved successfully using SDP. 

Asset and Liability Management: very difficult optimization problems related to maximizing 
the growth of a company whilst managing its risks and conforming to regulatory requirements 
exist in this area. A common example of an industry affected by this is banking. Banks are 
affected across several dimensions, including interest rates, liquidity and solvency. Linear 
programming has been used on simplified problems with few constraints suggesting that SDP 
could be used to address more complex problems with more (non-linear) constraints. 

Market Equilibrium Analysis: finding the conditions for which the market is in equilibrium. 
SDP would be useful within this application domain as special cases of market equilibrium are 
convex optimization problems. Furthermore, many market equilibrium problems can be solved by 
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similar techniques to that of portfolio optimization (Nagurney, 2002), which is a major financial 
application of SDP. 

5 Conclusion 

This review has demonstrated the benefits of using SDP in a finance context is that it is 
more robust than MMV modelling, is able to handle more complex, non-linear constraints and 
deal with portfolios with a larger number of assets. For example, the Markowitz Mean-Variance 
model (MMV) is often criticized in practice because it is highly sensitive to the mean return of the 
underlying assets, but SDP provides more robust estimates and can also incorporate higher 
moments such as skewness and kurtosis. 

Overall, SDP has been successfully applied to many financial optimization problems with 
particular success in forming optimal robust portfolios including multi-period strategies and 
pricing options without restrictive distributional assumptions. Using SDP, it would be possible in 
these areas to use larger data sets.  

SDP is a standard optimization technique, but its use in finance appears to have been 
restricted by a lack of introductory papers and publications in finance journals. This paper aims to 
bridge this gap by providing an overview of the SDP literature and drawing attention to existing 
financial applications of SDP with a view to encouraging interdisciplinary research in this area. 

A solid platform of SDP theory has been established and efficient algorithms exist to solve 
SDP problems. Research focus is now needed into the applications of SDP, which can often be 
identified as those found too complex to be represented as linear programs. Applications in 
finance such as portfolio optimization and option pricing are a prime example. Opportunity also 
exist for future research in worst-case optimization and the emerging area of environmental 
finance, particularly SDP approaches to optimization of energy assets and real option valuation 
approaches for renewable resources. 

In other areas of finance that have traditionally relied on linear programming for solutions, 
SDP could potentially play a role where the true constraints are non-linear. An example of this is 
in capital budgeting when there is uncertainty associated with input parameters, which means they 
are stochastic rather than constant, and traditional linear programming techniques are unsuitable. 
SDP could also play a role in developing models that are free from traditional assumptions of the 
distribution of asset returns. 
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Appendix A – Explanation of some background concepts 

For further background material, Horn and Johnson (1985, 1991) contain excellent 
treatments of matrix analysis and matrix algebra and Anton and Rorres (2000) have written an 
excellent textbook on linear algebra with many example problems. A more concise review of 
linear algebra pertinent to SDP is given by Helmberg (2000, ch. 1). 

A.1 Inner Product of Symmetric Matrices 

Similar to the inner product of vectors, the inner product of symmetric matrices is a way to 
multiply two symmetric matrices (𝐶𝐶,𝑋𝑋) to produce a scalar. In fact, the inner product of 𝐶𝐶 and 𝑋𝑋, 
denoted 𝐶𝐶 • 𝑋𝑋 or  〈𝐶𝐶|𝑋𝑋〉, is a linear function that equals 

��𝐶𝐶𝑖𝑖,𝑗𝑗 × 𝑋𝑋𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 

where 𝐶𝐶𝑖𝑖,𝑗𝑗 (or 𝑋𝑋𝑖𝑖,𝑗𝑗) is the element in matrix 𝐶𝐶 (or 𝑋𝑋) at row 𝑀𝑀 and column 𝑜𝑜. 𝐶𝐶 • 𝑋𝑋 is also 
equivalent to the trace (sum of diagonal elements) of the matrix product of 𝐶𝐶 and 𝑋𝑋, denoted 
𝑇𝑇𝑐𝑐(𝐶𝐶𝑋𝑋) 

A.2 Positive Semidefinite and Positive Definite Matrices 

The first requirement of a positive semidefinite matrix is that it is symmetric. For the 
symmetric matrix 𝑋𝑋 to also be positive semidefinite, all the eigenvalues of 𝑋𝑋 must be nonnegative 
real numbers. That is, 𝑘𝑘 ≥ 0 for all solutions of 𝑋𝑋𝑋𝑋 =  𝑘𝑘𝑋𝑋, where 𝑘𝑘 is a scalar and 𝑋𝑋 is a 𝑀𝑀 × 1 
dimensional vector in ℝ𝑛𝑛. 

There are also alternative ways of defining a positive semidefinite matrix. The other two 
common definitions for a positive semidefinite matrix are a symmetric matrix (𝑋𝑋) for which: 
• 𝑋𝑋𝑇𝑇𝑋𝑋𝑋𝑋 ≥ 0 for any 𝑀𝑀 × 1 dimensional vector 𝑋𝑋 in ℝ𝑛𝑛. Note that 𝑋𝑋𝑇𝑇 denotes the transpose of 

the vector 𝑋𝑋, and is the convention used to denote transpose in this paper. 
• The determinants of all the principal submatrices are nonnegative. The principal submatrices 

of 𝑋𝑋 are formed from the first 𝑐𝑐 rows and 𝑐𝑐 columns of 𝑋𝑋 for 𝑐𝑐 = 1,2, … ,𝑀𝑀. 

Positive semidefinite constraints (also referred to as linear matrix inequalities (LMI)) are 
represented as 𝑋𝑋 ≽ 0, which means that the matrix 𝑋𝑋 is positive semidefinite. Furthermore, a 
common expression in the SDP field is 𝐴𝐴 ≽ 𝐵𝐵 that means 𝐴𝐴 − 𝐵𝐵 is a positive semidefinite matrix. 

A positive definite matrix (𝑌𝑌) is a symmetric matrix with the following equivalent 
conditions: 
• All the eigenvalues of 𝑌𝑌 are positive, 
• 𝑋𝑋𝑇𝑇𝑌𝑌𝑋𝑋 > 0 for any 𝑀𝑀 × 1 dimensional vector 𝑋𝑋 in ℝ𝑛𝑛, and 
• The determinants of all the principal submatrices are positive. 

Hence, positive definite constraints are represented as 𝑌𝑌 ≻ 0, which means that the matrix 
𝑌𝑌 is positive definite. Note that a positive definite matrix is also a positive semidefinite matrix. 
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A.3 Closed Convex Cone 

𝐾𝐾 is a closed convex cone if both  
• 𝐾𝐾 is a convex cone, which means that taking any two points 𝑤𝑤, 𝑥𝑥 ∈ 𝐾𝐾 then 𝛼𝛼𝑤𝑤 + 𝛽𝛽𝑥𝑥 ∈ 𝐾𝐾 for 

all nonnegative scalars 𝛼𝛼 and 𝛽𝛽; 
• 𝐾𝐾 is a closed set (in a topological sense), in that 𝐾𝐾 includes all its boundary points. 

Closed convex cones are of interest as the set of positive semidefinite matrices, denoted 𝑆𝑆+𝑛𝑛, 
is a closed convex cone. This is demonstrated by taking 𝑊𝑊,𝑋𝑋 ∈ 𝑆𝑆+𝑛𝑛 and two nonnegative scalars 𝛼𝛼 
and 𝛽𝛽, where, for any 𝑋𝑋 ∈ ℝ𝑛𝑛 

𝑋𝑋𝑇𝑇(𝛼𝛼𝑊𝑊 + 𝛽𝛽𝑋𝑋)𝑋𝑋 = 𝑋𝑋𝑇𝑇𝑊𝑊𝑋𝑋 + 𝑋𝑋𝑇𝑇𝑋𝑋𝑋𝑋 ≥ 0. 
The above expression is ≥ 0 as 𝑋𝑋𝑇𝑇𝑊𝑊𝑋𝑋 and 𝑋𝑋𝑇𝑇𝑋𝑋𝑋𝑋 are both ≥ 0 by definition because 𝑊𝑊 and 

𝑋𝑋 are semidefinite matrices. This has shown that 𝛼𝛼𝑊𝑊 + 𝛽𝛽𝑋𝑋 ∈ 𝑆𝑆+𝑛𝑛, and consequently that 𝑆𝑆+𝑛𝑛 is a 
convex cone. In addition, 𝑆𝑆+𝑛𝑛 is also closed as it includes its boundary points, indicted by the 
greater than or equal to nature of its definition. On the other hand, the set of positive definite 
matrices, denoted 𝑆𝑆++𝑛𝑛 , is also a convex cone, but is not closed. 

A.4 (Basic) Feasible Solutions 

For a given problem, a point in the constraint set (that is, satisfies the constraints) is a 
feasible solution and the collection of all these points is the feasible region or feasible set. The 
vertices of a convex8 feasible region without any curves are termed basic feasible solutions (BFS), 
and one of the BFS will satisfy the optimality condition. For convex feasible regions that include 
curves, the BFS is comprised of the number of vertices and the infinite number of points along all 
curves. 

A.5 Simplex Algorithm 

The Simplex algorithm is a common algorithm used to solve an optimization problem with 
a polytope feasible region, such as a linear programming (LP) problem. The algorithm has 
exponential-time complexity, but it is generally polynomial-time or better in practice. It is an 
improvement over the algorithm to test all BFS of the convex feasible region and then choose the 
optimal BFS. It does this by arbitrarily selecting an initial vertex and then iteratively moving to 
an adjacent vertex, such that the objective function is improved. This algorithm still guarantees 
that the optimal point will be discovered9 and only in the worst-case scenario will all vertices be 
tested. A complete treatment of the Simplex algorithm is unnecessary here considering the scope 
of this paper; for a more complete treatment refer to any LP text such as Dantzig (1997); Hadley 
(1969). However, it is important to note that the revised Simplex algorithm, first proposed in 
1953, is preferred to the initial Simplex algorithm. The advantages of the revised Simplex 
algorithm are listed by Dantzig (1997), the creator of the Simplex algorithm. 

                                                        
8 A region is convex if the line between any two points in the region is fully contained within the region. 
9 In the case of an optimal point not existing, the algorithm will determine that the problem is infeasible. 
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A.6 Cutting Plane Algorithms 

Along with the Branch and Bound technique10, cutting plane algorithms are commonly used 
to solve discrete optimization problems. In the case of LP, cutting plane algorithms can be used to 
solve LP problems limiting variables to integer values, known as integer linear programming 
(ILP) problems. Cutting plane algorithms have been extremely successful in solving ILP 
problems. 

Cutting plane algorithms deal with discrete optimization problems without the discrete 
variable limitation. The search area of the continuous variable problem is continually refined until 
the solution is also a discrete variable solution: this solution is the optimal discrete solution. As 
the name suggests, the method used for refinement is adding new constraints (termed cutting 
planes) to the continuous variable problem that cut away some of the feasible region. The way 
these new constraints are formed is a non-trivial implementation issue; there are various ways, 
often problem-specific, and consequently there are numerous cutting plane algorithms. 
Furthermore, the algorithm will still take exponential-time in the worst-case scenario. 
  

                                                        
10 Branch and Bound is out of scope of this paper, but most linear programming or operations research books will 
discuss this simple technique. 
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Appendix B – SDP Formulations of Selected References 

Leibfritz, F., and J. H. Maruhn, 2009, A successive SDP-NSDP approach to a robust optimization 
problem in finance, Computational Optimization and Applications 44(3), 443–466. 
 

Leibfritz and Maruhn (2009) set up the following SDP formulation to boost the robustness 
of a previously published trading strategy. In formulating the optimization problem, they set up 
the financial instrument as a barrier option (up-and-out call), noting that if the stock price 
(𝑆𝑆𝑡𝑡)0≤𝑡𝑡≤𝑇𝑇 hits the barrier 𝐷𝐷(0 < 𝑆𝑆0 < 𝐷𝐷) at some time 𝑡𝑡 ϵ [0,𝑇𝑇] (knock-out), the option expires 
without value.  Denoting the financial instruments in the hedge portfolio as 𝐶𝐶1, … ,𝐶𝐶𝑛𝑛 with values 
𝐶𝐶𝑖𝑖(𝑡𝑡, 𝑆𝑆𝑡𝑡) at time 𝑡𝑡, then the units invested in product 𝐶𝐶𝑖𝑖are 𝛼𝛼𝑖𝑖, and the value of the hedge portfolio 
at time 𝑡𝑡 will be given by:  

∏(𝑡𝑡,𝛼𝛼) = �𝛼𝛼𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡, 𝑆𝑆𝑡𝑡).
𝑛𝑛

𝑖𝑖=1

 

Hence the optimization problem of finding the cheapest trading strategy guaranteeing a 
payoff greater than or equal to the up-and-out call in all states of the economy is given by 
(Leibfritz and Maruhn, 2009): 

min
𝛼𝛼𝛼𝛼ℝ

∑ 𝛼𝛼𝑖𝑖𝐶𝐶𝑖𝑖(0, 𝑆𝑆0)𝑛𝑛
𝑖𝑖=1   

𝑠𝑠. 𝑡𝑡.   ∑ 𝛼𝛼𝑖𝑖𝐶𝐶𝑖𝑖(𝑡𝑡,𝐷𝐷) ≥ 0𝑖𝑖:𝑇𝑇𝑖𝑖≥𝑡𝑡  for all times t the barrier might be hit, 
∑ 𝛼𝛼𝑖𝑖 max(𝑆𝑆𝑇𝑇 − 𝐾𝐾𝑖𝑖, 0) ≥ max(𝑆𝑆𝑇𝑇 − 𝐾𝐾, 0)𝑖𝑖:𝑇𝑇𝑖𝑖=𝑇𝑇   if the barrier is not hit at all. 
 
 

Ye, Kai, P. Parpas, and B. Rustem, 2012, Robust portfolio optimization: a conic programming 
approach, Computational Optimization and Applications 52(2), 463–481. 

 
The MMV model is well known to be sensitive to the mean and covariance of the returns, 

resulting in numerical instability when fund managers attempt to optimize their portfolios. Ye, 
Parpas and Rustem (2012) establish an SDP formulation of this problem which is robust to these 
input parameters. They establish the robust portfolio optimization problem as the following SDP 
problem: 

min
X,x

〈𝐴𝐴0,𝑋𝑋〉 + 2𝑜𝑜0𝑇𝑇𝑥𝑥 + 𝑜𝑜0 

𝑠𝑠. 𝑡𝑡.  〈𝐴𝐴1,𝑋𝑋〉 + 2𝑜𝑜1𝑇𝑇𝑥𝑥 + 𝑜𝑜1 ≤ 0 

�𝑋𝑋 𝑥𝑥
𝑥𝑥 1� ≽ 0 

where, 

𝑋𝑋� = �𝑥𝑥�𝑥𝑥�
𝑇𝑇 𝑥𝑥�

𝑥𝑥�𝑇𝑇 1
� 

Here, they use the following portfolio quadratic matrix variable for the above matrix 𝑋𝑋�, 
where 𝑤𝑤 𝜖𝜖 𝑊𝑊are the weights of a portfolio. 
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𝑊𝑊� = �𝑤𝑤𝑤𝑤
𝑇𝑇 𝑤𝑤

𝑤𝑤𝑇𝑇 1
� 

The interested reader is referred to their paper for the specification of the symmetric 
matrices 𝐴𝐴𝑖𝑖, 𝑀𝑀 = 0, 1 and 𝑜𝑜𝑖𝑖 𝜖𝜖 ℝ𝑛𝑛, 𝑜𝑜𝑖𝑖 𝜖𝜖 ℝ.  

 
Lobo, M. S., M. Fazel, and S. Boyd, 2007, Portfolio optimization with linear and fixed transaction 
costs, Annals of Operations Research 152(1), 341–365. 

 
As a specialized subset of SDP, it is interesting to note that a second-order cone problem 

formulation of the base problem of optimizing portfolios that are linear and have fixed 
transactions cost is well explain by Lobo, Fazel and Boyd (2007), wherein they formulate the 
portfolio selection problem as: 

 
Maximize:  𝑐𝑐�𝑇𝑇(𝑤𝑤 + 𝑥𝑥) 
Subject to 𝟏𝟏𝑇𝑇𝑥𝑥 + 𝜙𝜙(𝑥𝑥) ≤ 0 
𝑤𝑤 + 𝑥𝑥 ϵ 𝒮𝒮  
 
Where 
𝑐𝑐� ϵ 𝐑𝐑𝑛𝑛   is the vector of expected returns on each asset, 
𝑤𝑤 ϵ 𝐑𝐑𝑛𝑛   is the vector of current holdings in each asset, 
𝑥𝑥 ϵ 𝐑𝐑𝑛𝑛   is the vector of amounts transacted in each asset, 
𝜙𝜙:𝐑𝐑𝑛𝑛 → 𝐑𝐑 is the transaction cost function, 
𝒮𝒮 ⊆ 𝐑𝐑𝑛𝑛  is the set of feasible portfolios. 
They note that the related problem of minimizing the transaction cost subject to the portfolio 

constraints is written as the following associated minimization problem: 
Minimize 𝜙𝜙(𝑥𝑥) 
Subject to 𝑐𝑐�𝑇𝑇(𝑤𝑤 + 𝑥𝑥) ≥ 𝑐𝑐min   
𝑤𝑤 + 𝑥𝑥 ϵ 𝒮𝒮  
Where 𝑐𝑐min  is the desired lower bound on the returns. 
Interestingly enough, they assume that transaction costs are linearly separable, allowing the 

sum of transaction costs per trade to be written as: 

𝜙𝜙(𝑥𝑥) = �𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖),
𝑛𝑛

𝑖𝑖=1

 

Where 𝜙𝜙𝑖𝑖 is the transaction cost function for asset 𝑀𝑀. 
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Table 

 
Table 1 
Top publications by citations according to the Scopus database. 

 
Authors (Year) Research Stream Journal Category Citations (per year) 
Goldfarb & Iyengar (2003) Portfolio Optimization Operations Research 316 (22.6) 
El Ghaoui, Oks & Oustry (2003) Option Pricing Operations Research 225 (16.1) 
Lobo, Fazel, Boyd (2007) Portfolio Optimization Operations Research 105 (10.5) 
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