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Abstract  

Iron plays a significant role in the body, and is specifically important to athletes, since it is a 

dominant feature in processes such as oxygen transport and energy metabolism. Despite its 

importance, athlete populations, especially females and endurance athletes, are commonly 

diagnosed with iron deficiency, suggesting an association between sport performance and iron 

regulation. Although iron deficiency is most common in female athletes (~15-35% athlete 

cohorts deficient), approximately 5-11% of male athlete cohorts also present with this issue. 

Furthermore, interest has grown in the mechanisms that influence iron absorption in athletes 

over the last decade, with the link between iron regulation and exercise becoming a research 

focus. Specifically, exercise-induced increases in the master iron regulatory hormone, 

hepcidin, has been highlighted as a contributing factor towards altered iron metabolism in 

athletes. To date, a plethora of research has been conducted, including investigation into the 

impact that sex hormones, diet (e.g. macronutrient manipulation), training and environmental 

stress (e.g. hypoxia due to altitude training) have on an athlete’s iron status, with numerous 

recommendations proposed for consideration. This review summarises the current state of 

research with respect to the aforementioned factors, drawing conclusions and 

recommendations for future work. 
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Abbreviations 

Change in Hemoglobin Mass (ΔHbmass) 
Divalent Metal Transporter 1 (DMT-1)  
Duodenal Cytochrome b (DCytB) 
Erythroferrone (ERFE) 
Erythropoietin (EPO) 
Follicle Stimulating Hormone (FSH) 
Gastro-Intestinal (GI) 
Hemoglobin (Hb) 
Hemoglobin mass (Hbmass) 
Hypoxia-Inducible Factor (HIF) 
Interleukin-6 (IL-6) 
Intravenous (IV) 
Iron (Fe) 
Iron Deficiency (ID) 
Iron Deficiency Anemia; IDA 
Iron Deficient Non-Anemia (IDNA) 
Live High, Train Low (LHTL) 
Low Carbohydrate, High Fat (LCHF) 
Low Energy Availability (LEA) 
Luteinising Hormone (LH),  
Maximal Oxygen Uptake (VO2max) 
Messenger RiboNucleic Acid (mRNA) 
Oral Contraceptive Cycle (OCC) 
Oral Contraceptive Pill (OCP) 
Recommended Dietary Intake (RDI) 
Relative Energy Deficiency in Sport (RED-S) 
Soluble Transferrin Receptor (sTfR) 
Transferrin Receptor (TfR) 
Transferrin Receptor-2 (TfR-2) 
Velocity at Peak Oxygen Uptake (vVO2peak) 
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Introduction  

Iron is a fundamental mineral used by the body for numerous processes such as oxygen 

transport and energy production at a cellular level (Beard 2001). Clearly, these processes are 

imperative in the support of athletic pursuit, hence, the provision, utilisation and storage of iron 

is extremely important to an athlete. Despite the biological importance, iron deficiency (ID) is 

a widely reported issue in athlete populations, with the documented prevalence reported at ~15-

35% of female and ~3-11% of male athletes (Fallon 2008, 2004; Malczewska et al. 2001; Parks 

et al. 2017). However, smaller cohort studies report higher rates of compromised iron stores 

across a variety of sports settings, with the prevalence reported as >50% in female, and up to 

30% in male athletes (Koehler et al. 2012, Tan et al., 2012). 

Of note, female athletes tend to experience a greater incidence of ID (Beard and Tobin 

2000), potentially a result of increased iron demand to account for menses (Pedlar et al. 2018). 

However, low energy intake, vegetarian diets and endurance exercise have also been proposed 

as potential factors impacting both male and female athletes’ iron stores (Castell et al. 2018). 

The symptoms of compromised iron status include lethargy, fatigue and negative mood states 

(Pasricha et al. 2010; Patterson et al. 2001; Nielsen and Nachtigall 1998), with more severe 

cases (i.e. iron deficiency anemia; IDA) also compromising work capacity (Woodson et al. 

1978). Such symptoms may impact the athlete’s ability to train appropriately and to produce 

competitive performances (Garvican et al. 2011). Consequently, it is important that the iron 

status of an athlete is routinely monitored, and that appropriate action is taken should correction 

of a deficiency be required. However, to assess an athlete’s iron status, and to determine an 

appropriate course of action, an understanding of the mechanisms that influence iron absorption 

is needed, since contemporary research has established a clear link between iron regulation and 

exercise. Furthermore, numerous research papers have explored the impact of diet, training and 

environmental stress on an athletes iron status over the past decade, with many 

http://dx.doi.org/10.1007/s00421-019-04157-y
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recommendations proposed for consideration. Therefore, this review will attempt to summarise 

the current state of play with respect to the aforementioned factors of interest, drawing 

conclusions and recommendations for future work in this area. 

 

How do we define an iron deficiency in athletes? 

Debate currently exists as to the most appropriate haematological variables (and their 

cut-off values) that should be measured in the assessment of an athlete’s iron status; however, 

the reader is directed to a succinct summary of these various measures by (Clenin et al. 2015). 

Despite a plethora of variables available to practitioners, the current (minimum) routine clinical 

assessment of ID includes analysis of the blood markers; ferritin, hemoglobin concentration 

(Hb), and transferrin saturation. In an attempt to classify the various stages of ID using these 

three hematological variables, Peeling et al. (2007) proposed the following for athletic 

populations: 

• Stage 1 - Iron deficiency (ID): Iron stores in the bone marrow, liver, and spleen are depleted 

(ferritin <35 μg/L, Hb >115 g/L, transferrin saturation >16%). 

• Stage 2 - Iron-deficient non-anemia (IDNA): Erythropoiesis diminishes as the iron supply 

to the erythroid marrow is reduced (ferritin <20 μg/L, Hb >115 g/L, transferrin saturation 

<16%). 

• Stage 3 - Iron-deficient anemia (IDA): Hb production falls, resulting in anemia (ferritin 

<12 μg/L, Hb <115 g/L, transferrin saturation < 16%).   

Additionally, serum soluble transferrin receptor (sTfR) levels of 2.5 mg/L could be 

considered a reasonable threshold for identification of IDA (Koulaouzidis et al. 2009). Of note, 

it appears that depleted iron stores (Stage 1) may have a minimal impact on physical 

performance; however, early correction of iron depletion is likely to prevent the issue from 

further progressing into Stages 2 and 3. For example, despite unchanged Hb concentration in 

http://dx.doi.org/10.1007/s00421-019-04157-y
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IDNA, training and performance outcomes may be compromised (DellaValle and Haas, 2011). 

Furthermore, Garvican-Lewis et al (2016a) reported that supplementing athletes with low pre-

altitude iron stores (<35 µg/L) with 210 mg supplemental iron per day over 3 weeks of 

moderate altitude exposure was associated with an increased hematological response compared 

to no supplementation; suggesting an essential role of iron in the adaptation process. 

Regardless, as noted by Clenin et al. (2015), a number of limitations are associated with the 

use of ferritin as a marker of iron status, such as its role as an acute phase protein, and the fact 

that ferritin levels are increased during periods of inflammation and after intensive exercise. 

Furthermore, measures of Hb are also affected by shifts in plasma volume, which when 

unaccounted for, may present issues such as pseudo-anaemia (see Bartsch et al. 1998): also 

commonly referred as sports anaemia (Sim et al. 2013), which does not appear to have any 

negative effects on performance. Considering training and/or heat adaptions can induce 

hypervolemia (Taylor. 2014; Voss et al. 2014), these factors should be considered to avoid 

underestimating the concentrations of plasma iron and red cell parameters. Additionally, blood 

collection standardisation is imperative prior to assessing an athlete’s iron status, and 

consideration must be given to the time of day, the hydration state of the athlete, and their prior 

activity levels leading into the blood assessment (Castell et al. 2018). Of note, muscle damaging 

exercise (e.g. eccentric) should not be performed in the 2-3 days prior to the assessment, since 

this type of activity can induce high levels of systemic inflammation (Peake et al., 2005), which 

may impact on the blood picture captured. Ultimately, blood screening for such purposes 

should be collected in the morning, with the athlete in a rested (i.e. 24+ h post-training) and 

hydrated state (preferably assessed via waking urinary specific gravity of <1.025; Armstrong 

et al., 2010) after an overnight fast (Figure 1).  
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What are the contributing factors to iron deficiency in athlete populations? 

Given the high incidence of ID reported in athletes, it is likely that exercise, and/or 

dietary/energy availability, can influence iron metabolism in this population. Previous reviews 

exploring the underlying mechanisms of iron deficiency in athlete populations have considered 

prospects such as hemolysis exacerbated by ground impact forces (e.g. foot strike; Telford et 

al. 2003) and muscle contraction (e.g. eccentric muscle damaging exercise; Theodorou et al. 

2010), hematuria, gastro-intestinal (GI) bleeding, sweating, and inflammatory/iron regulatory 

hormone (hepcidin) responses (for review see Peeling et al. 2008). Over the past decade, a 

strong focus of the literature has been placed on this latter mechanism, with numerous papers 

showing that exercise has a transient impact on increasing levels of the master iron regulatory 

hormone, hepcidin (for 3-6 h post-exercise); likely a result of the well-documented exercise-

induced inflammatory response and associated increases in the cytokine interleukin-6 (IL-6) 

(Peeling et al. 2008; Roecker et al. 2005; Newlin et al. 2012). Increases in hepcidin activity 

result in a decrease in iron absorption and recycling from the gut and scavenging macrophages, 

respectively. As such, it is likely that there exists a transient window of altered iron metabolism 

after exercise where nutrition strategies could be exploited to manipulate the outcome (i.e., 

strategic feeding times to avoid the window of decreased iron absorption). Regardless, it is 

understood that the function of hepcidin is homeostatic in nature, and therefore, it has been 

noted that the hepcidin response to exercise is attenuated in iron deficient athletes (Peeling et 

al. 2014; Peeling et al. 2017), likely a result of the body signalling an increased iron need. The 

problem exists that exercise-induced elevations in the hormone response are evident in athletes 

with ‘healthy’ iron stores, including those that present with values at the borderline of the 

abovementioned cut-off values (i.e. ferritin 30 µg/L). Therefore, athletes that tend to sit on the 

verge of having compromised iron stores seem to be in a vicious cycle of being unable to ‘get 

http://dx.doi.org/10.1007/s00421-019-04157-y
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on top’ of their iron status. As such, strategies to rapidly increase iron stores may be required 

to overcome this issue (discussed further in the supplement strategies section below). 

In addition to these core mechanisms, there is also a likely link to the Relative Energy 

Deficiency in Sport (RED-S) concept (Mountjoy et al. 2014), whereby overall low energy 

availability (LEA) and energy intake in athlete populations may relate to either an overall 

deficit in dietary iron intake and/or dysfunction in its subsequent absorption. Such events may 

reduce an athlete’s chance of meeting the increased iron demands, where an additional ~1-2 

mg iron/day may be required to replenish exercise-related iron losses (Nielsen and Nachtigall 

1998). Finally, there exists the added burden of menstrual blood losses in female athletes 

(Pedlar et al. 2018) and the decreased iron bioavailability in vegetarian diets (Venderley and 

Campbell 2006) that can add to the cumulative effect of compromised iron stores in athlete 

populations. As such, it is essential that practitioners are aware of, and assess, the multitude of 

factors that contribute towards ID when working with athletes who struggle to maintain iron 

balance. Furthermore, future research is required to explore these interactions and the best 

approaches to improving the iron status of athletes that struggle to maintain optimal iron stores.  

 

How does iron deficiency impact athletic performance? 

Iron-dependent metabolic pathways involve (i) Hb and myoglobin for oxygen transport 

to the exercising skeletal muscle; and (ii) the oxidative production of adenosine triphosphate 

at the electron transport chain that is highly reliant on non-heme iron sulfur enzymes and heme-

containing cytochromes (Beard and Tobin 2000). Iron deficiency is typically associated with 

impaired aerobic power, with the magnitude of the expected performance reduction related to 

the severity of the ID. Specifically, aerobic performance is likely to be most severely affected 

when iron stores are depleted and Hb production is compromised (e.g. IDA; Stage 3 of ID) 

(Myhre et al. 2016). Consequently, reduced oxygen transport to the exercising skeletal muscle 

http://dx.doi.org/10.1007/s00421-019-04157-y
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may place higher demands on anaerobic metabolism (Gardner et al. 1977), which could 

negatively influence performance (e.g. lower blood pH, depletion of muscle glycogen). Given 

the reliance on aerobic metabolism and high prevalence of ID in endurance athletes, this 

population is often studied (Rubeor et al. 2018).  

Despite the importance of iron, supplementing iron to athletes without ID does not 

appear to improve endurance performance (Garvican et al. 2014; Powell and Tucker 1991; 

Tsalis et al. 2004). Furthermore, evidence for the negative influence that IDNA (Stage 1 and 

2) has on endurance performance is also equivocal, with both no effect and negative effects 

reported (Rubeor et al. 2018; Burden et al. 2015a). Specifically, as oxygen transport capacity 

is unchanged in IDNA (Stages 1 and 2), any negative influence that IDNA has on endurance 

performance may be associated with impaired function of oxidative enzymes and respiratory 

proteins (Haas and Brownlie 2001). However, as we cannot exclude other potential negative 

effects that IDNA has on health, preventing further declines to iron status must be prioritised. 

A combination of regular screening tests alongside dietary assessments should be scheduled 

periodically throughout the year to identify the need for iron supplementation (discussed in 

other sections). Such propositions have led research to investigate the role of iron supplements 

on endurance performance in IDNA athletes. For instance, in 165 IDNA female rowers (Hb 

>120 g/L), lower ferritin stores (<20 µg/L vs. ≥20 µg/L) was retrospectively associated (2-3 

months prior) with slower (~21 s) 2 km rowing TT ergometer performance (DellaValle and 

Haas 2011). In a follow-up randomised controlled trial conducted in a similar population (n=31, 

IDNA female rowers), despite unchanged 4 km rowing TT performance, daily iron 

supplements (100 mg/d) over 6 weeks were shown to decrease energy expenditure and increase 

energy efficiency during the TT (Dellavalle and Haas 2014). The authors hypothesised that 

physiological adaptions (e.g. increase in oxidative enzymes, red cell volume) typically 

associated with endurance training may only be maximised in the presence of adequate iron 

http://dx.doi.org/10.1007/s00421-019-04157-y
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stores. For example, greater iron bioavailability may favour adaptations leading to better 

exercise economy. However, such propositions remain to be confirmed by future research. 

Similar sentiments to those above were echoed in a meta-analysis reporting that iron 

supplementation in IDNA athletes could lead to improved aerobic performance (Burden et al. 

2015a). Here, Burden et al. (2015a) explored the efficacy of iron treatments (injection or oral 

supplements) on iron status and aerobic capacity (assessed by maximal oxygen uptake; VO2max) 

in IDNA individuals (12 studies, n=443, 82% female). Here, iron treatment had a large effect 

on ferritin, and a moderate effect on both Hb and VO2max. However, no improvements in 

VO2max were reported across eight studies, while the greatest changes in aerobic power were 

observed in studies with less-trained individuals (VO2max <40 mL/kg/min). Another recent 

meta-analysis (18 trials and 2 companion papers, n=1170 individuals) by Houston et al. (2018) 

reported that iron supplementation in IDNA adults (combing both trained and untrained 

populations) did not improve physical capacity (assessed by VO2max and other timed-exercise 

tests) despite improved perceived measures of fatigue. However, such findings may be 

different if only well-trained or elite endurance athletes were considered. Accordingly, Rubeor 

and colleagues concluded in their systemic review (12 studies, n=283 participants, 91% female) 

that 50% of studies found no performance improvements for IDNA athletes after iron 

supplementation (Rubeor et al. 2018). However, unlike the meta-analysis where aerobic power 

was assessed using VO2max, performance was quantified using a range of tests differing in their 

metabolic demands (e.g. shuttle run, 3000 m run, time to fatigue), which complicates the 

interpretation of results. Of note, when ferritin stores are substantially compromised (≤20 µg/L) 

in IDNA athletes, Rubeor and colleagues (2018) reported that iron supplementation can 

improve performance. Collectively, these meta-analyses highlight that a definitive relationship 

between IDNA and compromised performance remains ambiguous in elite athlete populations, 

http://dx.doi.org/10.1007/s00421-019-04157-y
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although it is perhaps the bioavailability of iron (as indicated by ferritin) that is likely to be a 

contributing factor when performance decrements are evident.  

Alternatively, for IDA, the benefits of iron supplements to improve iron status and 

performance are well-documented and widely recognised. IDA is estimated to affect up to 18% 

and 7% of female and male athletes across a variety of sports (See Parks et al. 2017 for review). 

However, the extent of IDA could be higher during intense physical preparation, with 29% of 

elite female soccer players (from a single team) diagnosed with IDA six months prior to the 

FIFA Women’s World Cup (Landahl et al., 2005). Of interest, a case study of an elite female 

endurance athlete (19 years of age) presenting with anemia (ferritin 9.9 μg/L, Hb 88 g/L) found 

that an initial intramuscular injection (100 mg Fe), followed by twice daily oral supplements 

(100 mg, elemental Fe) over 15 weeks substantially improved iron status (ferritin 27.0 μg/L, 

Hb 130 g/L) (Garvican et al. 2011). Here, a marked and rapid increase in absolute hemoglobin 

mass (Hbmass; measured via the carbon monoxide rebreathing method; Schmidt and Prommer, 

2005) was recorded in the first ~2 weeks after the iron injection (389 g to 580 g) and continued 

to rise over the next 13 weeks (710 g). Improved iron status enabled the athlete to gradually 

increase her training load, which likely contributed to a 3000 m personal best run time ~8 weeks 

after iron treatment commenced. Although results from case studies cannot be generalised, this 

work highlights the benefits of a well-devised iron supplementation framework. Under similar 

scenarios, the aforementioned framework should be considered by support staff (i.e. sports 

medicine, nutrition and physiology) when dealing with athletes presenting with IDA.  

In summary, despite a lack of definitive evidence that IDNA compromises 

performance, the iron status of athletes should be monitored consistently throughout the 

training year. Early detection of low iron stores and subsequent supplementation may reverse 

(or limit) further declines in iron status (e.g. the progression to IDA), where a range of other 

negative effects (e.g. compromised immune function, lethargy, weakness) can exacerbate 

http://dx.doi.org/10.1007/s00421-019-04157-y
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performance declines. Furthermore, it is possible that compromised iron stores could have 

other unknown negative influences on numerous training (e.g. enzymes involved in energy 

production, muscle physiology/function) and recovery adaptions in athletes. Such prospects 

require further investigation by future work. Finally, as highlighted in Figure 1, blood 

screening needs to consider a range of factors (discussed subsequently) and should be 

performed (i) annually for athletes with no symptoms (or history of ID), or (ii) quarterly (or at 

least biannually) for ‘at risk’ individuals.  

 

Are there any sex differences relevant to iron deficiency? 

An estimated 11% of male and 35% of female athletes suffer from ID (Malczewska et 

al. 2001; Dubnov and Constantini 2004). In the general population, IDA is estimated to affect 

3-5% of women and <1% of men. For IDNA, this affects approximately 12-16% of 

premenopausal adult women and 2% of men (Looker et al. 1997). Active women are estimated 

to be twice as likely to present with IDNA compared to sedentary women (Sinclair and Hinton 

2005), with 24-47% of exercising women experiencing IDNA (Rowland 2012). In 193 elite 

young (<25 years) German athletes (mean age 16.2 years, ~50% female) across 24 different 

sports, the prevalence of low ferritin (<35 ug/L) was almost double in females compared to 

males (57% vs. 31%) (Koehler et al. 2012). However, the incidence of low Hb (<120 g/L or 

<130 g/L for females and males, respectively) was similar (6.2% vs 7.3%). Although sex-

specific cut-points for biomarkers related to ID have been proposed (Looker et al. 1997), such 

methods have been met with criticism. Specifically, as current practice used to establish 

reference ranges (for serum ferritin, Hb and transferrin saturation) for women contained a large 

proportion of individuals with suboptimal iron status from the general population, the lower 

limits may be set too low (Rushton et al. 2001). Therefore, the universal cut-points established 

in the iron deficiency definition section above, are generally used for athlete populations. 

http://dx.doi.org/10.1007/s00421-019-04157-y
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With the aforementioned guidelines in mind, IDA as defined by Dubnov and 

Constantini (2004) (ferritin <12 μg/L, transferrin saturation <16%) was observed among 7% 

of elite Basketball players (n=103, 64% male). Of the IDA athletes, 3% were male and 14% 

were female. These findings highlight the frequency of poor iron status in athletic populations, 

which may be related to a combination of factors including: (i) the aforementioned exercise-

induced mechanisms; (ii) inadequate dietary iron and/or energy intake; (iii) an influence of sex 

hormones on iron metabolism; and (iv) menses. For example, in regularly menstruating 

women, ~30-50 mL of blood is lost during menses (Dasharathy et al. 2012), with ~40 mL of 

blood resulting in an average loss of 1.6 mg of iron (Jacob and Blanche, 1965). Of concern, 

consecutive menstrual blood loss of greater than 60 mL can compromise iron stores (Andrade 

et al. 1991). Given the differences in sex hormones between males and females, this section 

will focus on the interaction between sex hormones, hepcidin and iron parameters that may 

contribute towards impaired iron metabolism. 

The predominant circulating gonadal sex steroid hormones after puberty are androgens 

in males and oestrogens in females (Sims and Heather 2018). Both testosterone and oestrogen 

can influence iron metabolism via their suppressive effects on the hepcidin-ferroportin axis 

(Bachman et al. 2010; Bachman et al. 2013; Hou et al. 2012; Yang et al. 2012). For athletes, it 

is possible that high training loads may alter an individual’s hormonal profile (Warren and 

Perlroth 2001), thereby suppressing gonadotrophin-releasing hormone (GnRH); a precursor for 

sex hormones. In women, this can lead to suppressed luteinising hormone (LH), follicle 

stimulating hormone (FSH; to a lesser extent) and consequently oestrogen. Such events likely 

contribute to secondary amenorrhea, which has previously been reported in recreational 

runners (De Souza et al. 1998). 

Few studies to date have investigated the specific effects of sex hormones such as 

oestrogen, progesterone and testosterone on hepcidin and iron status in exercising populations. 

http://dx.doi.org/10.1007/s00421-019-04157-y


14 
This is a post-peer-review, pre-copyedit version of an article published in European Journal of Applied 
Physiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00421-019-04157-y 

 

Of these hormones, only the role of testosterone is well-established in erythropoiesis. For 

example, in young strength-trained healthy males (n=12), weekly testosterone injections (600 

mg) resulted in a ~10% increase in Hb concentration over 20 weeks (Bhasin et al. 2001). 

Potential mechanisms including erythropoietin (EPO) secretion and the stimulation of 

erythroid progenitor cells have been proposed (Moriyama and Fisher 1975). An investigation 

in males of varying ages (aged 19–35 years, n=53; 59–75 years, n=56) reported that 

testosterone enanthate supplementation (using a range of doses 25, 50, 125, 300, and 600 mg) 

over 20 weeks, suppressed basal serum hepcidin concentration by more than 50% (Bachman 

et al. 2010). In younger men (19-35 years), hepcidin suppression was more pronounced, while 

appearing dose-dependent in older individuals (59-75 years). The proposed mechanisms for 

hepcidin down-regulation by testosterone appears multifactorial, including its stimulatory 

effect on erythropoiesis, modulation of bone morphogenetic protein signalling by the androgen 

receptor, and alterations in epidermal growth factor receptor signalling (Li et al. 2016; Guo et 

al. 2013; Latour et al. 2014). Lower circulating (~40%) and production rates of testosterone 

(~20-30%) resulting from altered hypothalamic-pituitary-testicular axis has been demonstrated 

in endurance-trained men compared to age-matched sedentary controls (Hackney et al. 2003). 

Unsurprisingly, endurance exercise completed over extended periods has also been implicated 

with lower circulating testosterone levels in men (Hackney 1996). Albeit an extreme example 

of acute endurance exercise, testosterone levels were reduced by ~58% in 38 trained males 

(aged ~32 years) after completing an Ironman triathlon race (swim 3.8 km, cycle 180 km and 

run 42.2 km) (Ginsburg et al. 2001). Comparable findings have also been reported after less 

demanding exercise, as reviewed previously (Hackney 2001). Consequently, chronic 

suppression of testosterone may be linked to higher hepcidin levels in male athletes, potentially 

impairing iron regulation, and thereby helping to explain the incidence of ID among this sex. 

In women, although lower levels of testosterone are present, its importance in iron metabolism 
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should not be ignored. For example, higher testosterone levels have been associated with lower 

risk for anemia in both healthy older women (n=509) and men (n=396) (Ferrucci et al. 2006). 

Of note, the primary female sex hormones oestrogen and progesterone (and their synthetic 

forms oestradiol and progestogens) have been implicated in hepcidin and iron regulation (Sim 

et al. 2014). 

Currently, evidence exists for oestradiol supplementation to down-regulate hepcidin 

production (Hou et al. 2012; Yang et al. 2012). Specifically, a link between oestrogen and 

hepcidin mRNA in mice has been uncovered, where oestrogen deficiency resulted in lower 

iron stores (in the liver and spleen) and higher transcription of hepcidin mRNA (Hou et al. 

2012). Another investigation examined the relationship between oestrogen and hepcidin in 

women undertaking in-vitro fertilisation treatment who had their oestrogen suppressed using 

buserelin (GnRH agonist) (Lehtihet et al. 2016). In this study, when a FSH injection was 

provided to stimulate oestrogen production, hepcidin levels decreased by 40% (median 

hepcidin: 4.85–1.43 ng/mL). These results indicate that large amounts of endogenous oestrogen 

can suppress basal hepcidin levels. When examining synthetic sex hormones, positive effects 

of an oral contraceptive pill (OCP) use on iron status have been reported; as OCP users have 

higher serum ferritin, iron, total iron binding capacity and lower menstrual blood loss (~50%) 

compared to non-users (Frassinelli-Gunderson et al. 1985; Larsson et al. 1992). Evidence also 

exists that after commencing with OCP use, ferritin increases (~21-29%) in women with poor 

iron stores (ferritin <10 μg/L) (Larsson et al. 1992). 

Although ID is often studied in female athlete populations, the interaction of the 

aforementioned sex hormones with hepcidin and iron metabolism remain unclear. For example, 

besides an inverse link between progesterone and IL-6 (a primary mediator of hepcidin) 

(Angstwurm et al. 1997), relatively little is known about the potential role of progesterone (and 

its synthetic form progestogens) on iron metabolism. To our knowledge, only one study has 
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examined the role of oestradiol in combination with progestogens for their acute effects on 

hepcidin and iron metabolism in exercising young women (Sim et al. 2015). In that study, 10 

active females on OCP performed two separate 40 min run trials at 75% of the velocity attained 

at peak oxygen uptake (vVO2peak) during specific phases of the oral contraceptive cycle (OCC): 

(a) Day 2–4, representing a hormone-free withdrawal period (D-0); (b) Day 12–14, 

representing the end of the first week of active hormone therapy (D+7). Exercise performed 

during the different phases (D-0 vs. D+7) did not alter exercise-induced IL-6 or hepcidin 

production. Specifically, serum hepcidin concentration was significantly elevated 3 h post-

exercise in both trials. Of interest, serum iron remained significantly elevated 3 h post-exercise 

as compared to baseline only during D−0 (not D+7). Of note, higher oestradiol levels are 

hypothesised to reduce oxidative stress (Stirone et al. 2005), which is known to exacerbate 

hemolysis (indicated by serum iron), thereby likely explaining why serum iron levels return to 

baseline by 3 h post-exercise at D+7, but not D−0.  

Similar basal serum iron, hepcidin, IL-6 and transferrin saturation levels have also been 

reported during different phases of an OCC (e.g. D-0 vs. D+7) in young active women (Sim et 

al. 2017). Only serum ferritin was significantly higher at D+7 compared to D-0 (69.4 vs. 61.1 

µg/L), suggesting that a combination of oestradiol and/or progestogens from the OCP can 

influence iron stores. Considering the high prevalence of ID in female athletes and active 

women, numerous questions remain regarding the potential interaction between oestrogen, 

progesterone and iron metabolism. Since favourable links between oestradiol (or oestrogen) 

and iron regulation exist, future studies should examine both the acute post-exercise hepcidin 

response and its longitudinal influence on markers of iron status in OCP users vs non-users 

(including different phases of the menstrual cycle). This work should also consider the 

influence that sex hormones might have on menstrual blood loss and oxidative stress-induced 

hemolysis, and the implications for exercise-induced ID. 
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What is the impact of diet on the iron status of athletes? 

The current recommended dietary intake (RDI) for elemental iron is 8 mg for males 

and 18 mg for females (Trumbo et al. 2001), with the higher intake in women attributed to the 

iron losses associated with menses (McClung 2012). However, given the aforementioned 

mechanisms of iron loss that occur as a result of exercise, it is likely that athletes have a higher 

iron requirement than the general population. For instance, despite consuming iron at the RDI 

(13-18 mg/day), a block of intensified training was shown to reduce ferritin concentrations by 

25-40% in a group of international-level endurance athletes (McKay et al. 2018). This suggests 

that the current iron recommendations for the ‘general population’ may not be sufficient for 

athletes, supporting the case for athlete-specific recommendations to be developed (Thomas et 

al. 2016). 

Developing appropriate RDIs for athletes is important, since iron cannot be synthesised 

by the body and is attained solely from dietary sources, primarily in the form of wholegrain 

cereals, fish, poultry and meat. For reference, a comprehensive list of the iron content for 

various foods can be found on the United States Department of Agriculture Food Composition 

Database (USDA, 2015), while a condensed list of iron rich food has been prepared by the 

British Dietetic Association (Gill, 2017). The timing, amount and source of dietary iron, in 

combination with the overall iron composition of the diet are all important factors for 

practitioners to consider, since they collectively influence total iron absorption. For instance, 

it is well-known that heme iron sources (from meat) exhibit greater absorptive capacity (~5-

35%) than non-heme sources (~2-20%) from a single meal (Beard and Tobin 2000). 

Furthermore, the presence of various dietary components such vitamin C, meat, poultry and 

fish can enhance non-heme iron absorption, whereas substances such as polyphenols, phytates, 

or calcium, that are part of tea, coffee, whole grains, legumes and dairy products, can decrease 
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the amount of non-heme iron absorbed from a given meal (Saunders et al. 2013). With this in 

mind, it is clear that athletes should be working with trained dietitians and nutrition experts 

when planning their meal composition to optimise dietary iron absorption. 

Notwithstanding the dietary composition, it might also be considered that the 

aforementioned transient increases in hepcidin activity may require strategic thinking relevant 

to the timing of post-exercise iron intake for athletes, with impaired iron absorption likely to 

occur during the post-exercise window. However, to add another layer of complexity, hepcidin 

activity also shows a strong diurnal variation, with the lowest levels observed in the morning, 

and a steady increase reported throughout the day (Schaap et al. 2013). Therefore, it may be 

that optimal iron ingestion should occur as far away from exercise as possible, in an attempt to 

maximise its absorption, with a preference for the morning, compared to evening consumption. 

However, the impact of exercise, coupled with typically higher breakfast calcium intake, and 

the diurnal variation of hepcidin presents a logistical challenge for the elite athlete population, 

who often complete multiple training sessions on each day, and likely consume their highest 

iron containing meals in the evening, when hepcidin levels are naturally elevated. As a result, 

literature is lacking when it comes to the appropriate timing of iron consumption for the elite 

athlete population. Interestingly, recent work from our laboratory (McCormick et al., 2019) 

indicates a potential open window of opportunity if the iron is consumed within 60 min of 

completing exercise in the morning, likely a result of the iron reaching the gut within the 3-

hour period before transient hepcidin elevations take effect. However, further work is required 

to fully elucidate the prospects of such a window, and whether this strategy is applicable to 

elite-level athletes with full training schedules. 

 

What is the influence of contemporary nutritional strategies on iron regulation? 

Recent interest in iron metabolism has focused on nutritional strategies where select 
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exercise sessions are deliberately undertaken with low muscle glycogen stores, with the 

primary goal of increasing transcriptional activation of enzymes involved in carbohydrate 

(CHO) and fat oxidation, as well as greater mitochondrial biogenesis (Burke et al. 2018; Impey 

et al. 2018). While these strategies may promote endurance adaptation, they may also interfere 

with post-exercise iron metabolism. Given IL-6’s role as an energy sensor for contracting 

muscle, this explains augmented post-exercise IL-6 concentrations when training under 

conditions of low CHO availability (Hennigar et al. 2017). Furthermore, as IL-6 is a key 

cytokine involved in the up-regulation of hepcidin levels post-exercise, training with low 

muscle glycogen stores may also amplify hepcidin levels following exercise. Such events 

potentially prolong the post-exercise period of impaired iron absorption and metabolism.  

Investigations of acute CHO supplementation have found minimal influence on iron-

regulation (Dahlquist et al. 2017; Robson-Ansley et al. 2011; Sim et al. 2012), however, it 

appears diet-training strategies that target depleting muscle glycogen stores may have a greater 

impact. For instance, Badenhorst et al. (2015) demonstrated both IL-6 and hepcidin 

concentrations were elevated in response to exercise after 24 h of a low (3 g/kg), compared to 

high CHO (8 g/kg) diet. Interestingly, when this diet was extended across 7 days, no differences 

in iron-regulation were evident (Badenhorst et al. 2016). However, the programing of a rest 

day prior to the exercise test on day 7, combined with the increased protein consumption in the 

low CHO condition likely minimised any differences in muscle glycogen stores between 

dietary conditions. Further research in this area, using elite athletes adhering to a low CHO 

high fat (LCHF) diet for 3 weeks (<50 g CHO / day), observed increased IL-6 and hepcidin 

levels (3 h post-exercise) following a 2 h bout of race walking, compared to athletes consuming 

a CHO-rich diet (McKay et al. 2018). However, differences in the baseline iron status of the 

athletes in this investigation may have been a confounding factor when interpreting changes to 

hepcidin concentrations (McKay et al. 2019; Peeling et al. 2014). In light of these recent 
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findings, it is evident that the macronutrient composition of an athletes’ diet may impact on 

post-exercise iron metabolism. As a result, we currently suggest that the use of nutritional 

approaches that restrict CHO should be carefully considered, particularly for athletes with 

increased iron requirements (e.g. growth, altitude, females or endurance athletes) or those 

consuming low dietary iron intakes (e.g. vegetarians, weight category athletes). Finally, a 

greater understanding of the relationship between the dietary macronutrient composition, 

current iron status, inflammatory responses to exercise, and subsequent hepcidin activity is 

warranted to further our understanding of the true influence of contemporary nutritional 

strategies on iron metabolism. 

 

Is there an impact of overall energy availability?  

Low energy availability occurs in athletes when a mismatch between energy intake and 

energy expenditure is evident (Loucks et al. 2011). RED-S is an umbrella term used to describe 

the health and performance consequences associated with LEA in athletes. Of note, ID is an 

associated haematological outcome of RED-S (Mountjoy et al. 2018), with a retrospective 

questionnaire-based investigation of 1000 female athletes reporting that LEA was associated 

with greater risk (64%) for hematologic dysfunction (characterised by a history of anaemia, 

low Hb, iron or ferritin) (Ackerman et al. 2018). Recent work supports these findings, with 

significantly higher Hbmass (7.9%) recorded in eumenorrheic (n=22) versus amenorrheic (n=13) 

elite females runners; indicating the importance of long-term energy availability for relevant 

health outcomes (Heikura et al. 2018). One explanation is that athletes with LEA are in energy 

deficit and are not reaching the RDI for dietary iron. A typical Western diet is shown to provide 

~6 mg of iron per ~4200 kJ (Beard and Tobin 2000). Therefore, reduced energy intake may 

result in low dietary iron consumption, subsequently having negative implications for an 

athlete’s iron status. Additionally, many negative health outcomes associated with RED-S can 
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be exacerbated by ID. For example, low iron stores are known to perturb thyroid function, 

decrease appetite and impair metabolic efficiency; alterations of which can lead to reduced 

energy intake, increased energy expenditure and potentially contribute to LEA in athletes 

(Petkus et al. 2017). Therefore, it appears that ID can be a negative consequence of LEA; 

however, ID itself may also amplify some of the other undesirable outcomes (e.g. weakness 

and extreme fatigue) associated with RED-S. 

With this in mind, studies directly linking LEA and ID are lacking, and further research 

is required to understand this relationship. Perhaps, low iron stores may be an early indication 

of LEA and supplementation should be considered to minimise other health consequences 

associated with RED-S. However, first and foremost, targeted nutrition counselling focusing 

on adequate energy and nutrient intake should be emphasised to correct energy availability. 

Notably, future work examining the implications of RED-S and/or LEA on hepcidin expression 

and iron metabolism is warranted. Such work could provide direct evidence for the mechanistic 

interaction between RED-S and ID. Finally, since the physiology of elite athletes, in 

combination with high training loads, make such populations unique, the inclusion of healthy 

recreationally active controls as part of this work should be considered. 

 

What are the strategies to address an iron deficiency? 

Given the increased iron demand placed on an athlete, an adequate exogenous iron 

supply is imperative to maintaining appropriate iron levels. With the inability to endogenously 

replace taxed iron stores, supplemental sources of iron are an important consideration for 

athletes and their support team. When faced with an ID, there are three primary strategies for 

iron supplementation (Castell et al. 2018); these include (a) increasing dietary iron intake, (b) 

supplemental oral iron, or (c) parenteral iron administration. In determining the most 

appropriate strategy, the athlete and support team must first consider the severity of the ID, the 
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typical individual response to a given supplement preparation, the time required for iron 

repletion via the strategy chosen (generally in context of the training phase), and of course, any 

legalities of supplement choice in respect to the sport’s governing body and anti-doping 

authority. Furthermore, it is important to ascertain and treat any potential causes of ID (e.g. 

underlying pathophysiology), as this could facilitate the efficacy of iron supplementation and 

prevent future reoccurrence. 

The initial and most conservative strategy to approaching an ID is for a full dietary 

assessment by a qualified sports dietitian, with a subsequent eating plan that focuses on 

increasing dietary iron intake from food. Considering the aforementioned superior absorption 

of heme compared to non-heme iron, vegetarian athletes presenting with compromised iron 

stores are a more complex case when approaching the issue via this strategy. An additional 

complexity when considering diet as a primary means to address an ID are the concurrent 

absorption enhancers and/or inhibitors that may be consumed with the iron source (Saunders 

et al. 2013). As such, careful planning is required when manipulating the diet to increase iron 

absorption, and factors other than total iron intake must be considered. 

The second strategy to addressing compromised iron stores requires the use of oral iron 

supplements, commonly consumed as either tablet or liquid preparations. Oral iron 

supplements are generally provided in the ferrous form (fumarate, sulphate or gluconate), 

however, ferric preparations are also available; although the GI tolerance for ferric iron 

supplements appears low (Hoffman et al. 2000). Of note, in a comparative review of ferrous 

versus ferric oral iron formulations (Santiago 2012), slow-release ferrous sulphate preparations 

remained the established and standard treatment of ID, resulting from their acceptable 

tolerability, adequate bioavailability and overall efficacy of effect. However, it should be noted 

that a generally high incidence of GI-disturbance from oral iron supplementation is commonly 
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reported (Tolkien et al. 2015); and in such cases, consideration of iron polymaltose preparations 

or using enteric tablet coating may be helpful. 

Generally, the overall response to oral iron supplementation in athlete cohorts appears 

positive (40-80% increases to ferritin) when consumed over an 8-12 week time frame, utilising 

doses of ~100 mg per day (Garvican et al. 2014; Dawson et al. 2006). However, alternate day 

supplementation may increase the efficacy of effect via an improvement in the fractional 

absorption of iron from a given dose, which over time, results in a greater cumulative response 

(Stoffel et al. 2017). Such regimens, in combination with iron absorption enhancers such as 

vitamin-C, should be considered. Furthermore, under extreme environmental stress (e.g., 

exposure to altitude), a greater dose of oral iron may be required to sustain iron stores and assist 

in the haematological adaptation (as discussed in detail below). 

The final method of addressing an iron deficiency comes in the form of parenteral iron 

preparations via intramuscular or intravenous (IV) administration. Previous literature has 

shown both approaches to be very effective at improving an athlete’s iron status, with 200-

400% increases in ferritin levels reported from 300-550 mg of iron delivered over a 1 to 42-

day period (Dawson et al. 2006; Garvican et al. 2014; Woods et al. 2014; Burden et al. 2015b). 

Modern advances in IV preparations (Macdougall, 2009) have increased the safety and 

accessibility of IV supplementation, with injections or infusions commonly delivered in an out-

patient setting. As such, IV administration has largely supersceded intra-muscular 

administration that is commonly associated with soreness and staining around the injecion site. 

The clear benefit of an IV supplement strategy is the speed and magnitude of the response, 

without GI upset, in comparison to the aforementioned approaches of dietary modification or 

oral supplementation. This is likely a result of such administration methods by-passing the gut 

where key issues of iron absorption exist. With this in mind, parenteral supplement methods 

may be of great importance when a situation requires rapid improvement in iron stores, or when 

http://dx.doi.org/10.1007/s00421-019-04157-y


24 
This is a post-peer-review, pre-copyedit version of an article published in European Journal of Applied 
Physiology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00421-019-04157-y 

 

gut issues appear to render more traditional methods of iron therapy impractical and ineffective. 

Regardless, the use of these adminstration methods do come with some risks of adverse 

reactions, which may manifest as a mild rash through to anaphlyaxis (in very rare cases; 

Rampton et al. 2014).  

Also worth considering is the concept of maximising iron stores through 

supplementation during periods of lower activity (e.g. off-season). Inevitably, as training load 

and iron demands increase during the competitive season, higher iron reserves may limit the 

negative influence that exercise training has on the bioavailability of iron. In conclusion, the 

decision to undertake, and the supplement administration strategy should be made by the sports 

physician, in consultation with the support team (i.e. dietician). Furthermore, in deciding to 

pursue this avenue, care should be taken to ensure that the method of supplement delivery is 

acceptable and consistent with the sport’s governing body and the anti-doping authorities. 

 

Does iron play a significant role in adaptation to hypoxic environments?  

Prolonged (>2 week) exposure to low (1000–2000 m) and moderate (2,000–3000 m) 

simulated or terrestrial altitudes (Bärtsch et al. 2008) is associated with several hematological 

(increased Hbmass) and non-hematological adaptations (increased iron-dependent oxidative and 

glycolytic enzyme concentrations) that assist aerobic exercise performance (see Hahn and 

Gore, 2001) for a comprehensive review). The magnitude of the change in Hbmass during live 

high, train low (LHTL) altitude training depends upon the hypoxic dose (defined in kilometre 

hours (km/h) = (m/1,000) × h), and is characterised by an exponential increase, followed by an 

eventual plateau after ~4 to 5 weeks (Garvican-Lewis et al. 2016b). Although large intra- and 

inter-individual variability exists in the Hbmass response (Siebenmann et al. 2015), hypoxic 

exposure of 1000 km/h (e.g. 21 days at 2,000m) is associated with a ~3-4% increase in Hbmass. 

Of note, altitude training places a large demand on an athlete’s iron stores, since, in addition to 
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the aforementioned ~1-2 mg iron/day required to replenish exercise-related iron losses (Nielsen 

and Nachtigall 1998), altitude exposure increases erythroid iron demand by 3- to 5-fold 

(Reynafarje et al. 1959). Therefore, low iron availability during prolonged altitude exposure 

may blunt hematological adaptations (Stray-Gundersen et al. 1992; Garvican-Lewis et al. 

2018), in turn decreasing the potential performance benefits that may be gained from altitude 

exposure. 

 

How is iron metabolism regulated in hypoxia? 

Oxygen sensing and the regulation of iron metabolism during altitude exposure are 

linked by three distinct isoforms of hypoxia-inducible factor (HIF-1α, HIF-2α and HIF-3α), 

with the HIF-2α isoform stimulating EPO production (Kapitsinou et al. 2010). Continuous 

hypoxic exposure causes plasma EPO to increase within ~90 min (Rodríguez et al. 2000), 

peaking usually within 48 hours and returning to baseline levels (or below) after one week 

(Garvican et al. 2012). EPO principally acts upon receptors located on erythroid progenitor 

cells in the bone marrow, stimulating the differentiation of proerythroblasts into basophilic, 

polychromatic and orthochromatic forms. Iron supply to differentiating erythroid cells is met 

almost entirely by diferric transferrin (Leimberg et al. 2008). Proerythroblasts then enucleate 

to form reticulocytes, which are expelled into the blood plasma as mature red blood cells. These 

adaptations typically manifest as measurable changes in Hbmass after approximately 10 days 

(Garvican et al. 2012). 

Several changes in systemic iron metabolism occur to support accelerated 

erythropoiesis in hypoxia, including increased iron efflux from storage sites 

(reticuloendothelial macrophages, hepatocytes and enterocytes), increased iron transport to the 

erythron, and increased intestinal iron absorption (see Chepelev and Willmore (2011) for 

review). Hypoxic stress has been shown to strongly inhibit liver hepcidin production within 15 
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h of exposure (Ravasi et al. 2018), thereby promoting iron release from (predominantly) 

reticuloendothelial macrophages in the bone marrow to support erythropoiesis. Hepcidin 

suppression in hypoxia is not directly mediated by EPO (Canali et al. 2016); instead, the 

hormone erythroferrone (ERFE) is released by proerythroblasts and acts to suppress hepcidin 

expression (Kautz et al. 2014). Simultaneously, during early hypoxic exposure, several growth 

factors in the bone marrow (but not the spleen or liver) may also play a role in hypoxic hepcidin 

suppression (Ravasi et al. 2018). However, since these growth factors and ERFE are down-

regulated within 48 h, alternative mechanisms have been suggested to regulate the later phases 

of hepcidin suppression in hypoxia (Ravasi et al. 2018). These mechanisms include erythroid 

iron demand as indicated by the current plasma transferrin receptor-2 (TfR-2) concentration. 

TfR-2 is highly expressed by erythroblasts and involved in sensing plasma diferric transferrin 

concentration, in turn modulating EPO receptor signalling. In addition to hepcidin suppression, 

hypoxic stabilisation of HIF-2α up-regulates divalent metal transporter 1 (an iron import 

protein; DMT-1) and duodenal cytochrome b (a ferric reductase; DCytB) expression on 

duodenal enterocytes, thereby increasing intestinal iron absorption (Goetze et al. 2013) from 

~15-20% in normoxia to ~20-25% in hypoxia (Reynafarje et al. 1959). Additionally, hypoxic 

stabilisation of HIF-1α promotes increased iron transport to the erythron by increasing TfR 

expression within ~16-40 h of hypoxic exposure (Piperno et al. 2010). 

 

Are there specific iron supplementation strategies at altitude for an optimised outcome? 

Athletes need sufficient iron stores to support accelerated erythropoiesis and to 

replenish exercise-related iron losses associated with daily training during prolonged altitude 

exposure. Athletes typically receive oral iron supplements before and during altitude exposure 

to maintain iron balance (Garvican-Lewis et al. 2018). However, despite several different 

serum ferritin cut-off values being used to guide iron supplementation during altitude exposure 
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(Constantini et al. 2017; Garvican-Lewis et al. 2018; Hauser et al. 2018), the optimal iron 

supplementation strategy, including timing, dose and administration route (i.e. oral versus 

intravenous) to maximise hematological adaptations is still emerging. 

The decision to provide iron supplementation to athletes undertaking altitude exposure 

should be made by a sports physician following a review of their pre-exposure blood profile. 

Blood screening should be performed three-to six weeks before exposure, and should include 

a full blood count (but preferably Hbmass via the carbon monoxide-rebreathing method, since it 

is not affected by the plasma volume shifts that occur at altitude), iron profile (including serum 

iron, serum ferritin and transferrin saturation) and C-reactive protein assessment (reflecting 

systemic inflammation over the previous ~24-48 h). This enables the size of the red cell 

compartment, iron storage pool and the presence of inflammation, to be quantified, 

respectively. Based upon their pre-exposure serum ferritin concentration, athletes are usually 

prescribed iron supplements to avoid the development of an ID and to support erythropoiesis 

(Govus et al. 2015). On a cautionary note, pre-exposure serum ferritin concentration appears 

to be a weak predictor of Hbmass changes at altitude in individuals with otherwise healthy iron 

stores (Hauser et al. 2018; Ryan et al. 2014). Other factors, such as the rate of iron efflux from 

bone marrow and splenic macrophages, in addition to the rate of iron transport to the erythron 

(indicated by the transferrin saturation) during early adaptation, likely exert a greater influence 

on the resulting haematological adaptation. In practical terms, the adequacy of an athlete’s iron 

storage pool for a prolonged altitude sojourn likely depends both on the overall hypoxic dose 

(Garvican-Lewis et al. 2016b) (with larger hypoxic doses, such as longer duration and higher 

elevations requiring more iron owing to the potentially greater hematological response), the 

volume of training performed, and the preparation time available. 

Of note, oral iron supplements remain the most common form of iron used for altitude 

training, and are typically administered daily for two to six weeks before, and throughout 
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exposure, in order to ensure that athletes can maintain a sufficient iron balance over time. In a 

retrospective analysis of athletes undertaking simulated LHTL altitude training, Hbmass was 

improved even in athletes with low pre-exposure iron stores (considered by the authors as 

serum ferritin: <35 μg/L) who were supplemented with oral iron supplements for two weeks 

before, and for the duration of the altitude exposure (Govus et al. 2015). In fact, athletes with 

a pre-exposure serum ferritin concentration <20 μg/L, who were supplemented with 210 mg 

elemental iron/day, not only increased their Hbmass (+4.0%), but also increased their iron stores, 

indicating that the oral iron dose exceeded bone marrow iron uptake. As such, hypoxic-

mediated changes in iron metabolism during altitude exposure (e.g. suppression of hepcidin, 

increased iron absorption, transport and the mobilisation of iron from storage sites) may 

improve the efficacy of oral iron supplementation; assisting in the hematological adaptation to 

the environmental stress. 

The timing and dose of oral iron supplements during prolonged altitude exposure may 

affect intestinal iron absorption and subsequent incorporation by the erythron, in turn affecting 

haematological adaptations to prolonged altitude exposure. For example, Hall et al. (2018) 

found that a single nightly dose of oral iron supplement (200 mg elemental iron/d delivered 

nightly), rather than a split dose of oral iron supplement (2 × 100 mg elemental iron/day 

delivered in the morning and evening, respectively), was associated with a higher Hbmass 

response in athletes exposed to 2106 m terrestrial altitude for ~3 weeks. Of note, both doses 

allowed athletes to maintain or increase their pre-exposure serum ferritin concentration. 

However, GI discomfort, a common side effect of oral iron supplements, was higher in the 

single compared with the split dose group; decreasing by the third week of exposure. As such, 

a single dose of oral iron supplement may be superior to a split dose (of the same concentration) 

during prolonged altitude exposure to maximise Hbmass adaptations. 
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In contrast to oral iron supplements, IV iron preparations allow athletes to rapidly 

increase their iron stores and are not associated with GI discomfort, instead delivering iron 

directly into the splenic macrophages (Girelli et al. 2018). We recently reported that both IV 

iron supplementation and oral iron supplementation augment ΔHbmass (%) in endurance-trained 

athletes who undertook 3 weeks of simulated LHTL altitude training (Garvican-Lewis et al. 

2018). Notably, the ΔHbmass (%) was not greater than the coefficient of variation for the CO 

rebreathing method (1.5%) in the non-iron supplemented group. Of note, Hbmass decay was less 

rapid post-altitude exposure in the IV group as compared to the oral group. Therefore, IV iron 

supplementation may be useful to prepare athletes for prolonged sojourns at moderate altitudes 

(~2000-3000 m) when athletes have little time to adequately prepare for the altitude exposure. 

However, given the greater logistical (i.e. medical assistance required), financial (IV iron is 

more expensive than oral iron) and ethical concerns (some sports have a “no needle policy”) 

associated with IV iron supplements, oral iron supplementation should be considered as the 

first choice iron supplementation strategy to prepare athletes for prolonged altitude sojourns. 

 

Summary 

This review summarises evidence regarding the regulation and increased demands of 

iron in athletic populations. We have covered key topics related to athletes’ iron regulation 

including (i) the effects and severity of ID on performance; (ii) sex and the implications of sex 

hormones on iron parameters; (iii) diet, including macronutrient manipulation and RED-S; and 

finally, (v) the demands and influence of hypoxia as part of altitude exposure. Collectively, we 

also highlight the multifactorial causes of exercise-induced ID and prevention strategies (e.g. 

dietary intake or supplements), and provide suggestions for future work and practical 

information that should be considered by athletes and their support staff (sports dietitians, 

physiologists and physicians). We propose that the iron status of athletes are monitored closely 
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throughout the training year, and that particular attention should be paid in situations linked 

with increased iron loss and/or demands; such as chronically high training loads and 

environmental factors (altitude), respectively. Although the influence of IDNA on athletic 

performance remains unclear, early detection of low iron stores and subsequent 

supplementation may reverse (or limit) further declines to iron status. As detailed in Figure 1, 

we propose that blood screening should be performed regularly for athletes, while also 

considering a diverse range of circumstances. On a positive note, substantial progress has been 

made in understanding the role of iron, mechanisms of its regulation, and the strategies used to 

correct a deficiency/optimise adaptation; however, continued research is required to further our 

ability to reduce the burden of an iron deficit in athlete populations. 
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Figure 1. Framework of considerations for the frequency of iron blood screening in athlete populations.  *This framework requires the expertise of trained 
professionals including sports physicians, dietitians and physiologists. #Stages of iron deficiency are defined by Peeling et al. (2007). 

Considerations and frequency of iron blood screening for athletes* 
 

Annually Biannually Quarterly 

• No history of iron deficiency 
• No history of irregular/excessive 

menses or amenorrhea 
• No reports of fatigue after extended 

rest 
• Strength/power-based sports with 

minimal endurance component 
• No iron-related dietary restrictions 
• No evidence of low energy 

availability 
• No intention to undertake hypoxic 

training in the next 12 months 
• No underlying pathology  

(e.g. coeliac or Crohn’s disease) 

• Female 
• Previous history (≥ 24 months) of 

iron depletion  (e.g. Stage 1#) 
• Previous history (≥ 24 months) of 

irregular/excessive menses 
• Intention to undertake high training 

loads especially in endurance and 
team-based sports 

• Minimal (or zero) reports of 
prolonged fatigue after extended rest 

• No iron-related dietary restrictions 
(e.g. non-vegetarian, non-vegan) 

• No evidence of low energy 
availability 

• Intention to undertake hypoxic 
training in the next 12 months 

• Any recent history (<24 months) of 
iron depletion/deficiency (Stage 1, 2 
or 3#) irrespective of sex 

• Any evidence of irregular/excessive 
menses or amenorrhea 

• High training loads in team and 
endurance-based sports 

• Reporting prolonged 
fatigue/lethargy even after extended 
rest 

• Reduced work capacity during 
training 

• Unexplained poor athletic 
performance 

• Individuals restricting sources of 
dietary iron (e.g., vegetarian and 
vegan) or overall caloric intake 

• Any evidence of low energy 
availability 

• Intention to undertake hypoxic 
training in the next 6 months  

Variables to be considered 
• Minimum: Serum ferritin, hemoglobin concentration, transferrin 

saturation 
• Desirable: Serum soluble transferrin receptor, hemoglobin mass, 

C-reactive protein 
 
 
 

Standardisation of blood collection 
• Time of day: Preferably in the morning 
• Hydration state: hydrated preferably assessed by waking urinary 

specific gravity (< 1.025) 
• Low to moderate activity in the proceeding 24 hours, including no 

muscle-damaging exercise (e.g. eccentric) in the 2-3 days prior 
• No signs of sickness or infection 
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