Injuries suffered by an Australian State Police Force

Stierli, Michael; Orr, Rob Marc; Pope, Rodney

Licence: CC BY-NC-ND

Recommended citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.
Australian Tactical Loads and their Operational Impacts

Dr Rob Orr (PhD, PHTY, BFET, TSAC-F, ADFPTS)
HISTORICAL CONTEXT – MILITARY

Background

• From the early Assyrian spearman of antiquity (circa 800 B.C.), soldiers have been required to carry external loads consisting of weaponry, equipment and food

 (Orr, 2010; Knapick et al., 2012:2004)

• Downstream effects of these loads have been shown to impact on the tactics of warfare, cause injury and reduce fighting force size

 (Lee, 2007; Breen, 2002; Lothian, 1921)
HISTORICAL CONTEXT – MILITARY

(Orr, 2010: Orr et al., 2015)

https://bond.edu.au/tru
CURRENT CONTEXT – AUSTRALIAN ARMY

On Operations (2001-2010)

• PO loads
 • $M=28.4 \pm 10.0$ kg
 • heaviest mean load in 2008 ($M=36.9 \pm 10.8$ kg)

• MO loads
 • $M=56.7 \pm 15.3$ kg
 • heaviest mean load in 2009 ($M=65.1 \pm 16.3$ kg)

• OVERALL loads
 • 47.7 ± 21.0 kg, (mean range over 10 years = 40.7 kg to 50.9 kg),

(Orr et al., 2015)
CURRENT CONTEXT – AUSTRALIAN ARMY

- Approximate relative load carried by Roman Legionnaires = 56%
- Australian Soldiers in East Timor = 56%
- *US Soldiers in Afghanistan* = 57%
ABSOLUTE VS RELATIVE LOADS

• Currently female soldiers carry lighter absolute loads than male soldiers but only slightly heavier relative loads

ABSOLUTE LOADS*

FEMALE: $M = 26.4 \text{ kg}$

MALE: $M = 39.0 \text{ kg}$

$\text{p} = .045$

RELATIVE LOADS

FEMALE: $M = 43\%$

MALE: $M = 47\%$

$\text{p} = .55$

ABSOLUTE VS RELATIVE LOADS

• Currently lighter soldiers carry the same absolute loads as heavier soldiers but heavier relative loads

ABSOLUTE LOADS
Light 20%: \(M = 34.7 \) kg
Heavy 20%: \(M = 35.7 \) kg

RELATIVE LOADS
Light 20%: \(M = 49\% \)
Heavy 20%: \(M = 36\% \)

\(p = .902 \)
\(p = .0509 \)

HISTORICAL CONTEXT – LEO

http://2.bp.blogspot.com/-xH5ULRf/MD/lfswvPRbe9I/AAAAAAAAlpc/54yapn_iBE/s1600/curious-black-white-photographs-of-the-police-officers-from-1890-1930.jpg

https://bond.edu.au/tru
HISTORICAL CONTEXT – LEO

- Police are becoming Christmas trees
HISTORICAL CONTEXT - LEO

• Increasing levels of threat
<table>
<thead>
<tr>
<th>ILAV type (A-C) & Normal station wear (N)</th>
<th>ILAV Weight (kg)</th>
<th>Duty load Complete (kg)</th>
<th>Total load including officer weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.12 ± 0.65*</td>
<td>11.53 ± 0.77‡</td>
<td>88.03 ± 20.49</td>
</tr>
<tr>
<td>B</td>
<td>3.54 ± 0.70*</td>
<td>11.01 ± 1.01‡</td>
<td>87.51 ± 20.60</td>
</tr>
<tr>
<td>C</td>
<td>3.24 ± 0.48*</td>
<td>10.77 ± 1.16‡</td>
<td>87.27 ± 20.66</td>
</tr>
<tr>
<td>N</td>
<td>NA</td>
<td>8.69 ± 0.68</td>
<td>85.19 ± 20.24</td>
</tr>
</tbody>
</table>

* Significantly different (p<0.05) between vests:
‡ Significantly different (p<0.001) from normal station wear

(Orr et al., 2016)
CURRENT CONTEXT – AUSTRALIAN LEO

<table>
<thead>
<tr>
<th>ILAV type</th>
<th>FEMALE</th>
<th>MALE</th>
<th>FEMALE</th>
<th>MALE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILAV + Duty Loads (kg)</td>
<td>ILAV + Duty Loads (kg)</td>
<td>%BW</td>
<td>%BW</td>
</tr>
<tr>
<td>B</td>
<td>10.80</td>
<td>11.18</td>
<td>16.43</td>
<td>13.91</td>
</tr>
<tr>
<td>C</td>
<td>10.24</td>
<td>11.22</td>
<td>15.60</td>
<td>13.95</td>
</tr>
<tr>
<td>N</td>
<td>8.68</td>
<td>8.70</td>
<td>13.20</td>
<td>10.92</td>
</tr>
</tbody>
</table>

* *p=0.225
* *p=0.009

(Orr et al., 2016)
• The LEO study found female officers carried the same absolute loads compared to the male officers

• However when expressed as a percentage of their body weight female officers carried significantly more relative load than male officers

(Orr et al., 2016)
CURRENT CONTEXT – AUSTRALIAN LEO (TOU)

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute load carried (kg)</td>
<td>22.8 ± 1.8</td>
<td>20.6-25.6</td>
</tr>
<tr>
<td>Relative load carried (%BW)</td>
<td>25.9 ± 4.0</td>
<td>21.2-28.8</td>
</tr>
</tbody>
</table>

(Carbone et al., 2014; Carlton et al., 2014)
SEX DIFFERENCES IN LC INJURIES

• Mean ARA population over 2 years = 24,876 personnel
 • Female n= 2441 (10%): Male n= 22435 (90%)

• 401 reported injuries associated with load carriage
 • Female n=40 (10%): male n= 361 (90%)
 • RR = 1.02 (95% CI 0.74 to 1.41)

• SPI
 • Female n=6 (15%): male n= 23 (6%)
 • RR of SPI = 2.40 (95% CI 0.98 to 5.88)

https://bond.edu.au/tru
IMPACTS ON PERFORMANCE - MARKSMANSHIP

• Decrements in performance:
• Reduced performance
 • Survey of 218 soldiers on operations

(Orr et al., 2013)
IMPACTS ON PERFORMANCE - MARKSMANSHIP

• Distance to centre of target
 • DCOT
• Horizontal shot spread
 • X-Dispersion
• Vertical shot spread
 • Y-Dispersion

Carbone et al., 2014
IMPACTS ON PERFORMANCE - MARKSMANSHIP

• Mobility Task

Carbone et al., 2014
IMPACTS ON PERFORMANCE - MARKSMANSHIP

• Marksmanship

Carbone et al., 2014
IMPACTS ON PERFORMANCE - MARKSMANSHIP

- No significant difference when TL

Orr et al., Unpublished

https://bond.edu.au/tru
IMPACTS ON PERFORMANCE - MARKSMANSHIP

• Visual Analogue Scale (VAS)

Orr et al., Unpublished

https://bond.edu.au/tru
IMPACTS ON PERFORMANCE - MARKSMANSHIP

- Perceived significant improvement in marksmanship when TL
 - Primary – VAS +3.00 ± 2.53 (p = 0.016)
 - Secondary – VAS +2.83 ± 2.93, (p = 0.039)

- Correlations between perceptions of load carriage impacts on performance and actual marksmanship scores
 - Primary: Short move: r = -0.347, (p = 0.500) and mobility task: r = -0.401 (p = 0.431)
 - Secondary: Short move: r=-0.631 (p = 0.179) and mobility task: r = -0.306, (p = 0.555)

Orr et al., Unpublished
IMPACTS ON PERFORMANCE - MARKSMANSHIP

• GD police (n=11)
 • Average marksmanship scores (p=.118)
 • ILAV B – smallest SD,
 • ILAV A: a negative impact, -2.1 (95% CI -5.5 to +1.3)
 • ILAV B: a positive impact, +2.7 (95% CI +0.4 to +5.0)
 • ILAV C: a negative impact, -1.7 (95% CI -4.4 to +0.9)
 • Normal station wear: a positive impact, +1.4 (95% CI -2.2 to +5.0)

Schram et al., unpublished
Schram et al., unpublished
IMPACTS ON PERFORMANCE - MOBILITY

• Decrements in performance:
 • ↓ Mobility
 • Impeded mission success (Breen 2000)
IMPACTS ON PERFORMANCE - MOBILITY

- Victim Drag (10m)
- Police Vehicle Exit and Sprint

<table>
<thead>
<tr>
<th>Condition</th>
<th>Victim Drag</th>
<th>Vehicle Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILAV A</td>
<td>5.74±0.28</td>
<td>3.49±0.94</td>
</tr>
<tr>
<td>ILAV B</td>
<td>5.47±0.23</td>
<td>3.41±0.87</td>
</tr>
<tr>
<td>ILAV C</td>
<td>5.50±0.38</td>
<td>3.40±1.06</td>
</tr>
<tr>
<td>N</td>
<td>5.56±0.43</td>
<td>3.41±0.85</td>
</tr>
</tbody>
</table>

Schram et al., unpublished
IMPACTS ON PERFORMANCE - MOBILITY

<table>
<thead>
<tr>
<th></th>
<th>Unloaded</th>
<th>Loaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>10m sprint (sec)</td>
<td>2.40 ± 0.22</td>
<td>2.46 ± 0.15</td>
</tr>
<tr>
<td>10m dummy drag (sec)</td>
<td>6.89 ± 0.44</td>
<td>7.79 ± 0.75*</td>
</tr>
<tr>
<td>Total time (sec)</td>
<td>9.29 ± 0.53</td>
<td>10.25 ± 0.77*</td>
</tr>
</tbody>
</table>

* Indicates statically significant differences between unloaded and loaded, p<0.01.

Carlton et al., 2014

https://bond.edu.au/tru
ENCAPSULATION

• Loads for both LEO and Army are increasing
• Female soldiers carry lighter absolute but similar relative loads
• Female LEO carry similar absolute but heavier relative loads
• There are differences in injuries sustained based on sex
• There are different impacts of load on marksmanship (primary / secondary weapon)
• Soldiers think load reduces marksmanship, LEO varies but appear accurate
• Load impacts on mobility – but the load may need to reach a threshold
Australian Tactical Loads and their Operational Impacts

References avail on request from tru@bond.edu.au