Effects of acute oral feeding on protein metabolism and muscle protein synthesis in individuals with cancer

Van der Meij, Barbara S; de Groot, Lynette; Deutz, Nicolaas E P; Engelen, Marielle P.

Published in: Nutrition

DOI: 10.1016/j.nut.2019.06.012

Published: 01/11/2019

Document Version: Peer reviewed version

Licence: CC BY-NC-ND

Recommended citation (APA):
Effects of acute oral feeding on protein metabolism and muscle protein synthesis in people with cancer

Running head

Metabolic effects of acute oral feeding in cancer

Barbara S van der Meij PhD RD1,2,3
Lynette M De Groot APD2,3
Nicolaas EP Deutz PhD MD4
Mariëlle PKJ Engelen PhD4

1 Bond University Nutrition and Dietetics Research Group, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
2 Dietetics and Foodservices, Mater Health, South Brisbane, Australia
3 Mater Research Institute - University of Queensland, Brisbane, Australia
4 Center for Translational Research in Aging & Longevity. Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA

Role of each author in the work

BVDM drafted the article, LDG drafted and critically revised the article for important intellectual content, ME and ND critically revised the article for intellectual content.

All authors have provided final approval of the version to be published.

Word count for the entire manuscript (including figures and tables):

4509 words

2 Tables
0 Figures

Corresponding author:
Dr. Barbara van der Meij
Mater Health
Dietetics and Foodservices
Level 3, Salmon Building
South Brisbane QLD 4101

t: 07 3163 7527
m: 0413 835739
f: 07 3163 2442

Keywords
anabolism; oncology; muscle; amino acids; protein synthesis; oral; supplements

Declaration of interest
Barbara S van der Meij: None
Lynette De Groot: None
Nicolaas EP Deutz has received research funding and speaker honoraria from Abbott Nutrition
Marielle PKJ Engelen: None
Introduction

Weight loss and muscle loss are common in people living with cancer, with up to 50% experiencing involuntary weight loss at any time point in their cancer journey (1), and between 11 and 74% having sarcopenia or significant muscle loss (2,3). These changes in body composition have been related to poor outcomes, such as increased treatment toxicity, impaired quality of life and reduced survival duration (4,5). Poor outcomes are not restricted to those who are underweight with severe weight loss; sarcopenia alone has been shown to be a prognostic marker across all BMI categories, ranging from underweight to obesity (5).

Several mechanisms behind weight loss and muscle wasting in cancer have been identified, such as systemic inflammation, tumour-induced metabolic alterations, inadequate dietary protein intakes and physical activity levels, poly-pharmacy, or a combination of these (6,7). We recently showed that a higher protein turnover and muscle protein breakdown in people with cancer was evident when compared in matched healthy controls, and that protein turnover and muscle breakdown were associated with muscle weakness and impaired physical function (8).

So far, the main nutritional strategy to prevent or treat muscle wasting in people with cancer has been the adequate provision of dietary energy and substrates, such as macronutrients, mainly protein. Amino acids from protein are known to be required for muscle protein synthesis. Several studies in humans show that 20 to 35 g of a high quality protein is required to reach a maximal muscle protein synthesis (9,10). Higher amounts, i.e. 70 g of dietary protein intake, result in greater reduction in whole body protein breakdown than a 40 g dietary protein intake, and this will positively affect protein anabolism (10).
To achieve this, the main strategy to optimise dietary intake is nutritional counseling, with or without the provision of oral nutritional supplements (ONS), enteral nutrition or parenteral nutrition. However, despite the positive results of these strategies on dietary intake and body weight, results on muscle mass, quality of life and clinical outcomes are not convincing. A recent meta-analysis indicated an overall benefit of ONS on body weight during chemo(radio)therapy, and ONS enriched with n-3 PUFA showed attenuation of lean body mass loss and improvement of some quality of life domains, but no conclusions could be drawn on treatment toxicity or survival (11). Moreover, in advanced stages of cancer, people could become ‘refractory cachectic’ meaning that nutrition interventions are not effective due to progressive disease and cachexia (12). By using stable isotope technologies in an acute study design (5 hours), Deutz et al showed that a high-leucine ONS containing omega-3 PUFAs and HMB in people with advanced cancer was significantly more effective in stimulating muscle protein synthesis, whereas a conventional ONS did not change muscle protein synthesis (13). Engelen et al showed that an anabolic response was reached after oral intake of 14 g of essential amino acids and leucine caused an anabolic response in people with advanced lung cancer (14). Other studies have shown potential benefits of HMB and essential amino acid mixtures in malnourished older adults (15) and in hospitalised older adults with chronic obstructive pulmonary disease (COPD), chronic heart failure (CHF), acute myocardial infarction or pneumonia (16).

To understand the mechanism of nutrition interventions in cancer and to develop effective future interventions, it is necessary to look at the acute effects of feeding on the response of the body and the ability to reach an anabolic response. This paper will explore and
summarise the emerging evidence on metabolic effects of acute oral interventions on whole body protein kinetics and muscle protein synthesis in people with cancer.

The role of acute oral feeding in cancer

This narrative review focuses on the effects of acute (<24 hours) oral feeding on protein metabolism in cancer. Protein metabolism includes, among others, muscle protein synthesis, muscle protein breakdown and the anabolic response to feeding. Kim et al defined the anabolic response as “the difference between protein synthesis and protein breakdown, or the net protein balance, in response to ingestion of protein or a meal containing protein. It usually refers to gain of muscle protein but can involve the entire body” (10).

Muscle protein balance in the human body is controlled by many signalling pathways, including an anabolic arm reliant on growth factors and nutrient signalling via (among others) the mTOR pathway. The catabolic arm involves signalling cascades connected to autophagy genes and ubiquitin-mediated proteasomal degradation of myofibrils (17). Within the anabolic arm, the right amount and type of amino acids from dietary protein are required to achieve muscle protein synthesis. It is well known that oral amino acids stimulate skeletal muscle anabolism in healthy individuals (10), as well as in people with diseases such as COPD (18) and cancer (14). There are age-related differences in the anabolic response, with the elderly needing more amino acids than young adults to reach a comparable anabolic response, and in sick people there could be a higher breakdown, lower protein synthesis, or both, impacting on the net protein balance and anabolic response to protein (9).
Acute metabolic response to oral feeding

A handful of metabolic studies have investigated the effects of acute oral feeding in people with cancer, utilising oral amino acids, oral nutritional supplements or meals (see Table 1).

One of the first studies investigating the effects of oral amino acids on muscle protein anabolism in cancer was conducted by Dillon et al (19). In 6 women with ovarian cancer receiving chemotherapy, who showed evidence of systemic inflammation and weight loss, 18 oral boluses of 2.22 g amino acids (in total 40 g of amino acids, of which 18 g essential amino acids) significantly decreased protein breakdown, which resulted in an improved net muscle protein synthesis. Engelen et al investigated the metabolic effects of two amino acid mixtures in lung cancer (14). In 13 people with NSCLC with systemic inflammation, and critical weight loss in 38% of the group, 14 g of a free EAA mixture induced a higher protein synthesis and net protein anabolism than a regular whey protein mixture of EAA and non-EAA. Interestingly, leucine from the free EAA mixture did not contribute to the anabolic response. There was a positive correlation between net protein anabolism and the amount of EAA consumed, as well as the EAA appearance in the systemic circulation. This correlation was independent of weight loss, systemic inflammatory response or length of survival.

Standardised drinks containing protein, fat and carbohydrates, also known as ONS are often prescribed to enrich the diet of people with cancer. Several studies applied ONS in metabolic studies in people with cancer. Early work from Barber et al looked at albumin and fibrinogen synthesis rates in people with pancreatic cancer and healthy controls (n=8, n=6 respectively), and showed that in both groups, protein synthesis rates were upregulated during consumption of hourly sips of an ONS for 4 h (20). In a mixed group of people with cancer, the
use of ONS high in EAA and omega-3 PUFAs was shown to increase muscle protein build-up significantly better than conventional supplements (13).

In a small group of people with pancreatic cancer and signs of cachexia, sips of ONS were consumed over 4 h. In this study, net protein synthesis in response to the sip feeding was similar in cancer and healthy subjects, however, in pancreatic cancer only protein breakdown was decreased, whereas in healthy controls protein synthesis was stimulated and breakdown decreased (21). In a cohort of women with stage II breast cancer, protein synthesis was assessed prior to and within 24 h after mastectomy surgery. Surgery was shown to upregulate fasted protein synthesis and breakdown rates, and reduce net protein catabolism (22).

We retrieved two studies from the 1980-90s that investigated short term effects of meals or standardised diets on anabolic response. One study applied identical food intake for 2 days, both preoperatively and postoperatively in colorectal cancer: ad libitum on the first day and 6 equal portions every 2 h during the experimental period (23). No significant differences in rates of nitrogen flux, protein synthesis and protein breakdown were found before and after tumour resection. Both before and after tumour resection, nitrogen balance was positive with levels varying between +0.98 and +2.55 g/24 h. The investigators estimated that 1g N / 24 h is required for 1 kg of lean mass buildup in 1 month.

In non-cachectic people with non-metastatic lung cancer, compared with controls undergoing elective aneurysm surgery, whole body protein turnover and leucine oxidation were assessed during 4 h postabsorptive and 4 h of feeding. Four small hourly meals composed of bread, margarine, cheese, raisins, and milk were consumed by subjects. During feeding, leucine oxidation and incorporation into protein remained the same and release of leucine caused by
protein breakdown dropped. Despite higher incorporation and release of leucine in cancer than in controls, the protein balance was not improved (24).

Lastly, in a group of 5 people, of which 4 had lung and 1 had kidney cancer, hourly meals of a milk based liquid diet were administered over 10 hours as well as IV isotopes of leucine and sodium bicarbonate. Despite a comparable whole body protein synthesis and breakdown in cancer subjects and healthy controls, muscle samples showed a significantly lower muscle protein synthesis in those with cancer than in healthy controls (25).

Although the above studies are small and heterogenous, all but one study showed that people with cancer are able to achieve protein anabolism in response to a high protein meal or supplement.

Potential nutrients for future research

The next paragraph describes other nutrients that could have anabolic effects in cancer. The basic chemical properties and mechanism of action of the nutrients are summarised in Table 2.

Branched-chain amino acids

Branched-chain amino acids (BCAA) are a group of EAA with a similar lateral radical chain. They are transaminated in skeletal muscle during exercise, generating acetyl-CoA to the Krebs Cycle and assisting with muscle recovery from exercise. Branched-chain amino acids also activate the mammalian target of rapamycin (mTOR) pathway when glutamine is lacking (e.g. in cancer), and thus reduce protein breakdown and stimulate protein synthesis in cancer (26). There are three branched-chain amino acids (BCAA): leucine, isoleucine and valine. Leucine has been
studied most extensively regarding its effects on muscle protein synthesis via initiation of signal-transduction pathways (27,28). Leucine is also a source of HMB (see next paragraph).

In mouse cancer cachexia models, a leucine-enriched oral diet resulted in greater maintenance of lean muscle mass compared with a standard diet (29,30). Some human studies demonstrated beneficial effects of administration of total parenteral nutrition supplemented with BCAA on muscle protein metabolism by inhibiting protein breakdown and promoting protein synthesis and leucine balance (31,32).

One double blinded RCT by Cangiano et al applied oral BCAA and placebo mixtures for 7 days in people with resectable cancers. This study showed marked improvements in metabolic parameters (decreased free tryptophan/LNAA ratio decreased in BCAA group), reduced incidence of anorexia, and increased energy intake. Effects on protein metabolism were not assessed (33).

Therefore, leucine and a mixture of BCAA administered orally or by parenteral nutrition showed to have beneficial effects on protein synthesis and other cachexia parameters (e.g. anorexia, dietary intake) in a small number of animal and human studies. More research is needed to test short- and long term effects of BCAA on muscle protein synthesis in people with cancer.

ß-hydroxy-ß-methylbutyrate (HMB)

HMB is a metabolite of leucine and has an inhibitory effect on protein breakdown via a number of mechanisms (34,35). HMB suppresses the ubiquitin-proteasome proteolytic pathway, up-regulates protein synthesis via the mTOR pathway, and stabilizes cell membranes via the rate
limiting enzyme to cholesterol synthesis HMG-coenzyme A reductase (34). It can also decrease cell apoptosis, thus improving cell survival; and increase proliferation and differentiation of muscle stem cells, via the MAPK/ERK and PI3K/Akt pathways (35). HMB directly enhances muscle protein synthesis and mitochondrial dynamics in skeletal muscle via several metabolic pathways (36,37). A few studies have shown increases in lean mass, muscle strength and physical performance after adding HMB to a high protein ONS in geriatric (15,38,39), perioperative and rehabilitation settings (35). From these heterogeneous studies, no solid conclusions can be drawn and the impact of HMB on muscle maintenance or buildup and clinical outcomes needs to be confirmed yet.

In humans with cancer, 3 studies have investigated the effect of HMB, supplemented as part of an amino acid mixture. One study applied a daily dose of 3 g HMB/14 g arginine/14 g glutamine supplement vs. an isonitrogenous mix of NEAAs for 24 weeks in an RCT including 32 weight-losing subjects with cancer. The intervention group gained 1.12 kg of fat free mass, the control group lost 1.34 kg of weight on average, and the intervention group maintained their fat free mass at 24 weeks (intervention: +2.27 kg vs. controls: +0.27 kg) (40). A large RCT was conducted in 472 weight-losing subjects with advanced cancer, applying HMB/arginine/glutamine for 8 weeks. The intervention group showed a trend toward higher lean mass, statistical significance was not reached. In this study, only 37% of participants completed the study, which could have impacted on the results (41). Perioperative nutritional support with HMB, arginine, and glutamine (1.2 g HMB, 7 g L-Arg, and 7 g L-Gln) or placebo (isocaloric juice) in 60 subjects undergoing surgery for abdominal malignancies. Supplements were provided once daily for 3 days preoperatively and once daily for 7 days postoperatively
and the primary outcome of this study was incidence of wound complications. No significant
differences were found in body composition or handgrip strength. Serum growth hormone (GH)
levels were significantly higher for subjects whose total intake was > 80% of planned volume in
the HMB/Arg/Gln group (42).

With regards to HMB supplementation in humans, there are insufficient studies to draw
any conclusions on the effects of HMB on protein metabolism in cancer.

Creatine

Creatine (N-aminoiminomethyl-N-methylglycine) is produced in the body from glycine and
arginine, requiring methionine to catalyze the transformation to creatine. It plays an essential
role in rapid energy provision during skeletal muscle contraction (43) and is endogenously
synthesized or ingested from the diet. It has been shown to impair energy metabolism and
reduce tumour growth in animals. A 70 kg person has a creatine pool of 120 g and produces 2 g
per day from dietary and endogenous sources. Supplementation of creatine temporarily
reduces the normal production in the body and increases creatine phosphate stores. Creatine
supplementation in athletes improved exercise performance and muscle mass (44).

In cancer, one study showed that eight weeks of creatine supplementation in (non-
cachectic) people with colorectal cancer did not exert any changes in quality of life or
nutritional parameters, but did show improvements in handgrip strength and bio-electrical
characteristics of the cell membrane, such as capacitance and phase angle, and these
parameters were correlated with longer survival (45).
In a double blind placebo-controlled trial by Jatoi et al, 263 incurable malignancies with anorexia/cachexia symptoms were assigned creatine for 7 days (20 g/day load×5 days followed by 2 g/day orally) versus identical placebo. The results showed that only 3 subjects gained ≥10% of their baseline weight by 1 month: two creatine-treated and the other placebo-exposed (P = 1.00), and there were no differences between groups for appetite, quality of life, activities of daily living, grip strength, body composition (46). However, a 10% weight gain is not achievable within such a short time frame, and body composition was assessed by bio-impedance analysis only in subgroups of 20 creatine-treated subjects and 15 placebo-exposed subjects, and results on body composition were not reported. This might have skewed the results of this study.

With only 2 studies available with inconclusive effects of creatine, more research on short term metabolic effects and muscle mass and strength in people with cancer is required.

Carnitine

Carnitine is a trimethylated amino acid roughly similar in structure to choline. It is derived mainly from meat and dairy dietary sources, and plays a central role in the metabolism of fatty acids, and has antioxidant and anti-inflammatory properties. In skeletal muscle and heart muscles, carnitine regulates the mitochondrial ratio of free coenzyme A to acyl-coenzyme A, which is required for fatty acid oxidation. People with cancer, especially those underweight or with cachexia, are at risk of and often present with carnitine deficiency (47).

People with cancer often have a decreased caloric intake and increased metabolic requirements, and numerous antineoplastic drugs can interfere with the absorption and
synthesis of carnitine (47). This has led to preliminary studies on L-carnitine supplementation in people with cancer cachexia. Overall these studies indicate improved fatigue and quality of life, and improvements in nutritional variables of appetite, total body weight and lean body mass.

Studies by Kraft (48) and Gramignano (49) showed L-carnitine supplementation resulted in significant improvements in BMI (48), LBM and appetite (49). In a study by Mantovani L-carnitine supplementation in combination with a progestational agent, eicosapentaenoic acid and thalidomide had a positive effect on LBM, fatigue and appetite. However L-carnitine supplementation alone did not have the same positive effect (50).

Gramignano’s study of 12 people with advanced cancer confirmed the significant improvement of fatigue and quality of life with L-carnitine supplementation (6g/day). Similarly Mantovani’s large phase III study demonstrated interim results of significant improvements in fatigue when 4g/d L-carnitine was supplemented (50). Despite this promising preliminary result, L-carnitine did not impact any primary endpoints such as fatigue or LBM and appetite in cancer however did impact on secondary outcomes such as performance status and inflammation based prognostic scores (50).

There is evidence that L-carnitine is able to reduce chronic inflammation and oxidative stress in cancer. Several animal studies have shown the anti-inflammatory effects of L-carnitine supplementation (51,52). Gramignano found that levels of reactive oxygen species decreased and glutathione peroxidase increased with L-carnitine supplementation in people with advanced cancer but not significantly. Proinflammatory cytokines also did not change significantly (49).
These studies highlight that L-carnitine is an interesting potential agent in the treatment of cancer cachexia however the efficacy of such supplementation to improve cachexia symptoms requires further investigation. These studies shed light on some of the longer term effects in people with cancer however short term metabolic effects of L-carnitine supplementation is yet to be investigated in human studies.

Glutamine and arginine

Glutamine and arginine are conditionally essential amino acids, which means that the body can produce them, but not in sufficient amounts during stress. Glutamine is converted to citrulline in the gastrointestinal tract, and in the kidneys metabolised to arginine + NO (53). The availability of arginine depends on dietary intake and the de novo synthesis from citrulline. There are indications that dietary arginine and citrulline stimulate muscle protein synthesis. Citrulline is more effective per gram than arginine. As citrulline gets converted into arginine, citrulline could be effective in stimulating muscle protein synthesis (53).

In cancer there has been a lot of interest in the effects of glutamine on gastrointestinal toxicity, for instance during radiation or chemotherapy. There is emerging evidence suggesting that supplementation of oral glutamine decreases the incidence and/or severity of chemotherapy-associated mucositis, diarrhea, neuropathy, veno-occlusive disease and cardiotoxicity. It is suggested that glutamine protects normal tissues from chemo-related injury, and to sensitize tumor cells to chemotherapy and radiation (54). A retrospective study by Gul et al looked at the effects of oral glutamine powder (10g tid) on acute radiation-induced esophagitis and weight loss and survival in people with non-small lung cancer (NSCLC). During a
median follow up of 13 months, there was a lower prevalence of severe esophagitis and less weight loss in the supplemented group (55,56). These results need to be confirmed by well-designed prospective studies.

Arginine activates the mTOR signalling pathway in muscle tissue and in this way enhances protein synthesis and possibly inhibiting proteolysis (57). In healthy humans, arginine administration enhanced exercise endurance and muscle force (57). Dietary supplementation of arginine in cancer has mostly been studied in perioperative settings as part of immunonutrition. There is some evidence that immunonutrition reduces the surgery-induced immune suppression, postoperative complications and infections, length of stay (58).

Despite the application of glutamine and arginine in human research, there are no studies on acute effects of glutamine and arginine on protein metabolism in people with cancer.

Conclusion

Amino acids from protein are known to be the building blocks of muscle mass and are required to achieve muscle maintenance in people with cancer. This review summarised the existing metabolic studies on effects of oral administration of amino acids or their metabolites. The studies showed that people with cancer are able to achieve protein anabolism in response to an oral meal or a supplement high in protein. This occurred in people with early and more advanced stages of cancer, and in people with inflammatory and critical weight loss as well as in those with a stable weight. Mixtures high in essential amino acids were more effective than traditional amino acid mixtures. Branched chain amino acids have beneficial short term effects
on protein metabolism, but more research is needed. This also applies to other nutrients that have been claimed to be anabolic, such as HMB, creatine, and L-carnitine.

The identified studies were small and differed with regard to cancer types, disease stages, inflammatory state, levels of involuntary weight loss and type of oral intervention. We advocate larger acute as well as long term metabolic studies in common types of cancer. In addition, more research is needed on the metabolic effects of other nutrients that are claimed to have positive effects on muscle buildup in people with cancer, such as vitamin D and omega-3 polyunsaturated fatty acids from fish oil. As there could be a synergistic effect of combination supplements, future research should also focus on the effects of a multicomponent approach combining a number of effective nutrients.
References

2006;84:1163–70.

http://linkinghub.elsevier.com/retrieve/pii/S0261561416301819

17. Schiessel DL, Baracos VE. Barriers to cancer nutrition therapy: excess catabolism of muscle and adipose tissues induced by tumour products and chemotherapy. Proc Nutr Soc. 2018;

44. Smith RN, Agharkar AS, Gonzales EB. A review of creatine supplementation in age-related diseases: more than a supplement for athletes. F1000Research. 2014;

54. Ziegler TR. Glutamine Supplementation in Cancer Patients Receiving Bone Marrow Transplantation and High Dose Chemotherapy. J Nutr. 2018;

63. Gil Á, Plaza-Diaz J, Mesa MD. Vitamin D: Classic and Novel Actions. Ann Nutr Metab. 2018;

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Cancer Type</th>
<th>Nutritional status / Systemic inflammation</th>
<th>Study Design</th>
<th>Type of Oral Feeding</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral amino acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dillon 2007 ORAL AA</td>
<td>Ovarian (stage IIIC) (n=6)</td>
<td>- Weight loss: >10% in n=6 (100%)
- BMI: 22.0 ± 3 kg/m²
- CRP: 7.7 ± ng/mL
- > 6 months post surgery</td>
<td>- n=8 healthy older controls
- Primed continuous IV of labeled PHE (prime: 2 µmol/kg, cont: 0.05 µmol/kg/min)</td>
<td>- 40 g amino acids (18 g EAA and 22 g non-EAA)
- Boluses (30 mL) every 10 minutes for 3 h (total: 540 mL)
- Amount of AA resembling meat protein (based on Volpi, ACJN 2003)</td>
<td>- Skeletal muscle TNF-alpha, IL-6, NF-kB were elevated.
- Muscle fractional synthesis rate increased significantly
- Protein breakdown remained unchanged
- PHE balance improved
- AA were capable of stimulating muscle protein synthesis</td>
</tr>
<tr>
<td>Engelen 2015 ORAL AA</td>
<td>NSCLC, advanced (stage III and IV) (n=13)</td>
<td>- Weight loss: >5% weight loss in 3-6 months in n=5 (38%)
- BMI: 26.5 ± 1.1 kg/m²
- CRP: 9.8 ± 3.7 mg/l
- > 4 wks after cancer treatment</td>
<td>- n=11 healthy age-matched controls
- Randomized, double-blind, crossover design
- Primed, constant, continuous IV of labeled PHE and TYR</td>
<td>250 ml non-caloric soft-drink w L-15N PHE with 30 g maltodextrin E: 14 g of free EAA with high leucine levels (EAA/leucine) C: 14 g balanced amino acid mixture with EAA + non-EAA (whey protein)</td>
<td>- Postabsorptive PS and PB comparable in cancer and controls
- PS and net protein anabolism > after intake of EAA/leucine than C mixture (P < 0.001) in cancer and healthy subjects
- Significant correlation between net protein anabolism and dietary EAA intake and EAA appearance in systemic circulation in cancer and health.
- Presence of muscle or recent weight loss, systemic inflammatory response, or length of survival did not influence this relationship.
- High leucine levels in EAA/leucine mixture: no anabolic benefit.</td>
</tr>
<tr>
<td>Study</td>
<td>Patient Groups</td>
<td>Methodology</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barber 2000</td>
<td>Pancreatic (n=8)</td>
<td>Weight loss: 18.9 (12.7 – 37.5) (n=6 healthy controls)</td>
<td>Weight loss: 2.9 ± 2.2 %
BMI: 25.1 ± 3.3 kg/m²
CRP: 28.7 ± 8.2 ng/ml
> 4 wks after cancer treatment</td>
<td>Fasting albumin synthesis rates similar between E and C
Albumin synthesis rates rose on feeding by 29 and 24% in cancer and controls
Fasting fibrinogen synthetic rate: higher in cancer than in controls (3.3 vs 1.0 g/d, P=0.0019)
Acute-phase protein synthesis upregulated in cancer
Similar albumin synthesis in cancer and controls. Albumin synthesis and fibrinogen synthesis upregulated during feeding in both groups.</td>
<td></td>
</tr>
<tr>
<td>Deutz 2011</td>
<td>Mixed types (stage II to IV) (n=25)</td>
<td>Weight loss: 2.9 ± 2.2 %
BMI: 25.1 ± 3.3 kg/m²
CRP: 28.7 ± 8.2 ng/ml
> 4 wks after cancer treatment</td>
<td>E: n=13, C: n=12 Priming dose (2 mmol/kg) of L-[ring-13C6] PHE, followed by a continuous (0.07 mmol/kg/min) infusion
Muscle biopsy 2 h and 5 h after start IV</td>
<td>Plasma leucine increased in E: 7.8 g, vs. C: 2.0 g (P<0.001)
Postabsorptive muscle protein FSR was similar in E and C
Absorptive MPS: 0.073 (SD: 0.023) to 0.097 (SD: 0.033) %/h (P=0.027), C: no change: 0.073 (SD: 0.022), to 0.065 (SD: 0.028) %/h, P>0.05.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Tissue</td>
<td>Weight loss</td>
<td>BMI</td>
<td>CRP</td>
<td>Time after cancer treatment</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----</td>
<td>--------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Van Dijk</td>
<td>Pancreas (n=8)</td>
<td>>10% in n=7</td>
<td>20.0 kg/m²</td>
<td>8.3 (IQR: 4.2–31.3) mg/L</td>
<td>> 4 wks after cancer treatment</td>
</tr>
<tr>
<td>Engelen</td>
<td>Breast (stage II) (n=9)</td>
<td>none</td>
<td>28.5 ± 5.1 kg/m²</td>
<td>3 mg/L</td>
<td>> 4 wks after cancer treatment</td>
</tr>
</tbody>
</table>

Oral meals
<table>
<thead>
<tr>
<th>Glass 1983 ORAL MEALS</th>
<th>Colorectal (n=11)</th>
<th>Weight loss: n=6 (55%)</th>
<th>Before and after tumour resection</th>
<th>Identical food intake for 2 days (ad libitum on day preceding the pre-operative study, and 6 equal portions every 2 h during the experimental period)</th>
<th>No significant differences in rates of nitrogen flux, protein synthesis and protein breakdown were found before and after tumour resection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- BMI: N/A</td>
<td>- Urinary secretion of 15N in ammonia and urea over a 9h period after an oral dose of [15N]-glycine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CRP: N/A</td>
<td>- No previous cancer treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emery 1984 ORAL MEALS</td>
<td>Lung (n=4, kidney (n=1)</td>
<td>Weight loss: n=5 (100%), average 10.1 ± 5.9%</td>
<td>n=7 healthy controls</td>
<td>Hourly meals of a milk based liquid diet (⅔ of normal daily intake of protein and energy over 10 hours (0.4-0.8 g protein/kg/h, 4-8 kJ/kg/h)</td>
<td>Protein synthesis in muscle was much lower in E than in C (0.198 ± 0.020 %/h vs. 0.030 ± 0.007 %/h, P=0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- BMI: N/A</td>
<td>- IV Prime (1mg/kg) of 13C L-leucine and 13C sodium bicarbonate (0.08mg/kg), constant infusion of carboxyl 13C labeled L-leucine 1 mg/kg/h)</td>
<td></td>
<td>No difference between E and C for whole body protein synthesis and breakdown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CRP: N/A</td>
<td>- No previous cancer treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melville 1990 ORAL MEALS</td>
<td>Lung (n=9)</td>
<td>Weight loss: n=6 (67%)</td>
<td>n=9 control (elective aneurysm surgery)</td>
<td>4 hourly meals (bread, margarine, cheese, raisins, milk): 1/12 of daily energy expenditure</td>
<td>Postabsorptive incorporation of leucine into protein: higher in E (102 ± 21 vs 86 ± 8) p<0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- BMI: 22.6 ± 2.8 kg/m²</td>
<td>- Primed continuous infusion of [13C]-leucine (2.3 μmol/kg/h+ prime dose of 1.9 μmol/kg)</td>
<td></td>
<td>Release of leucine by protein degradation higher in E: 126 ± 19 vs 110 10 μmol/kg LBM/h (p<0.01), no differences for leucine oxidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CRP: N/A</td>
<td>- No previous cancer treatment</td>
<td></td>
<td>During feeding, incorporation of leucine into protein (106 ± 20 versus 89 ± 7 μmol/kg LBM/h, P <0.05) and release (59 ± 12 versus 42 ± 14 μmol/kg LBM/h, P < 0.02) remained higher in E than in C. Leucine oxidation (43 ± 15 versus 43 ± 12</td>
</tr>
</tbody>
</table>
μmol/kg LBM/h) and leucine balance (+48 ±10 versus +47 ± 12 μmol/kg LBM/h) were the same.
Table 2 Basic chemical properties and mechanism of action of nutrients with potential beneficial effects on muscle protein synthesis in cancer

<table>
<thead>
<tr>
<th>Agent</th>
<th>Basic chemical properties</th>
</tr>
</thead>
</table>
| Branched-chain amino acids (BCAA) | ● Essential amino acids with a similar lateral radical chain (leucine, isoleucine, valine)
● Transaminated in skeletal muscle during exercise and assisting with muscle recovery
● Activate the mTOR pathway when glutamine is lacking (e.g. in cancer) |
| β-hydroxy-β-methylbutyrate (HMB) | ● α-amino acid
● Used in biosynthesis of proteins
● Conditionally essential in states where tissue is being built or repaired (illness, wound healing)
● Synthesised in the body from glutamate and ammonia |
| Creatine | ● Organic compound
● Facilitates recycling of ATP
● Synthesis in liver and kidneys from glycine and arginine
● Tissues with high energy demands (brain and skeletal muscle)
● Creatine kinase in brain/muscles: re-synthesizes ATP from ADP to meet increased energy demands |
| Carnitine | ● Trimethylated amino acid (roughly similar in structure to choline)
● Plays a central role in the metabolism of fatty acids
● Antioxidant and anti-inflammatory properties
● Cancer increases the risk of carnitine deficiency |
| Arginine | ● Conditionally essential amino acid (the body cannot produce in sufficient amounts during stress.
● Availability depends on dietary intake and the de novo synthesis from citrulline
● Dietary arginine and citrulline stimulate muscle protein synthesis (citrulline is more effective per gram than arginine) |
| Glutamine | ● Conditionally essential amino acid
● Glutamine is converted to citrulline in the gut, and in the kidneys metabolised to arginine + NO
● Protects normal tissues from chemo-related injury, and sensitizes tumor cells to chemotherapy and radiation |

ADP: adenosine diiphosphate, ATP: adenosine triphosphate, mTOR: mammalian target of rapamycin, NO: nitric oxide