The Core: What it is and what it is not

Orr, Rob Marc

Published: 06/04/2015

Document Version:
Peer reviewed version

Link to publication in Bond University research repository.

Recommended citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.
The Core: What it is and what it is not.

Dr Rob Orr (PhD, MPhy, BFET, ADPFTI, TSAC-F)

BLUF

The concept up front:
- When training the core are you treating the victim?
- All tissues have a yield point?
- What causes overtraining?
What do you do?
• Who here trains their core?
• Why do you train your core?
• How do you train your core?

What do you know?
• What is the core/core training?
• Why train the core?
• What do you know about the core and how it functions?
• What do you know about training the core?

What is the core and core training?
Why train the core?

- To increase spinal stability
 - Have they been diagnosed with an segmental instability?

Why train the core?

- Previous Hx of Back Pain?
 - Delayed TrA

Why train the core?

- Previous Hx of Neck Pain?
 - Pts with WADs found to have postural control system impairments (Treleaven, et al. 2003; Heidkof & Astrom, 1996)
 - Includes altered kinaesthetic sense with increased cervical JPE (Treleaven, et al. 2003; Heidkof & Astrom, 1996)
Why train the core?

- Make the core stronger?
 - TA thickness does not change above 20-30% MVC (Himes et al., 2012).

Why train the core?

- Make the core stronger?
 - Research suggests that the problem is not one of strength or endurance but of motor control (Jull, et al., 1999).

What do you know about the core?

- Common Terms – Is there a difference
 - Rigidity vs Stability vs Stiffness
- 4 Roles of muscles in movement
 - Which roles are they training for?
 - Does this make a difference?
What do you know about the core?

- So what is stability and how is it maintained?
 - Optimal alignment at rest = minimal load and effort
 - The TrA/OI is less active in sitting than standing – more stable?

The Control System

- Do you think that they are thinking ‘Gently draw in my abdominals?’

The Control System

- Do you think the core is ‘stiff’?
The Control System

- Active System (Abdominal Muscle Recruitment)
 - All of the abdominal muscles have been reported to be active in advance of trunk and limb movement to prepare the trunk for perturbations (Urquhart, et al. 2004).
 - These responses occur either before or slightly after the muscles producing the movement – pre-programmed by the Central Nervous System (Urquhart, et al. 2004).

The Passive System

- Basic Anatomy – The Spinal Column
 - Segmented to allow movement
 - Restriction of motion at any level of the spine will increase the range requirement of the joints above and below

The Passive System

- Basic Anatomy – The Spinal Column
 - The Cervical Vertebrae
 - Moderate F/E
 - Good Rot
 - The Thoracic Vertebrae
 - Limited F/E
 - Limited Rot
 - The Lumbar Vertebrae
 - Good F/E
 - Limited Rot
The Passive System

• Basic Anatomy — The Spinal Column

The Passive System

• Basic Anatomy — The Spinal Column

The Active System

• Basic Anatomy — Rectus Abdominus (RA)

Upper ¾ enclosed by a sheath formed from the aponeurosis of the Obliques and TA

IO divides into 2
- Anterior sheath blends with EO to pass in front
- Posterior sheath with TA to pass behind
- All join again at the Linea Alba
The Active System

- **Basic Anatomy – External Oblique (EO)**

 - 8 Fleshy digitations from the lower 8 ribs
 - 5 superior are received between corresponding Serratus Anterior and
 - 3 lower from the lati dorsi

 - Mid and Upper fibres spread into an aponeurosis which connects left and right but also to the lower Pec Major

 - Internal surface connects with the IO

 - Mid and Upper fibre's spread into an aponeurosis which connects left and right but also to the lower Pec Major

The Active System

- **Basic Anatomy – Internal Oblique (IO)**

 - Attachments into the LDF and iliac crest
 - Inserts conjointly with TA into pubis and pectineal line

 - Fibres insert together in a conjoint tendon with the IO into the crest of the pubis and pectineal line (purple)

 - Vertbral aponeuroses of the TA divides into three layers
 - Between anterior and middle layer = QL
 - Between Mid and Post = ES
 - Posterior lamella of this aponeurosis also receives the IO attachment and Lat Dorsi forming the La Fascia

The Active System

- **Basic Anatomy – Transverse Abdominals (TA)**

 - O – Crest of the ilium, lower six costals – interdigitates with the diaphragm & through a broad aponeurosis to the Lx processes
 - Fibres insert together in a conjoint tendon with the IO into the crest of the pubis and pectineal line (purple)

 - Vertbral aponeuroses of the TA divides into three layers
 - Between anterior and middle layer = QL
 - Between Mid and Post = ES
 - Posterior lamella of this aponeurosis also receives the IO attachment and Lat Dorsi forming the La Fascia
The Active System

• Basic Anatomy – Quadratus Lumborum (QL)

QL is contained in a sheath formed by the anterior and middle lamellae of the aponeurosis of origin of TrA.

• Myofascial slings and force transfer

Image from: http://becuo.com/talayna-fortunato

http://www4.pictures.zimbio.com/gi/Tim+Cahill+AFC+Asian+Cup+Semi+Final+Uzbekistan+3BzlfBhzJNEl.jpg
The Active System

Abdominal Muscle Recruitment

The Active System

- Abdominal Muscle Recruitment
 - All of the abdominal muscles have been reported to be active in advance of trunk and limb movement to prepare the trunk for perturbations (Urquhart, et al. 2004).

The Active System

Abdominal Muscle Recruitment

The Active System

• Abdominal Muscle Recruitment
 – Postural activity (seated or standing) associated with limb movement (forward shoulder flexion) significantly different between regions of the TrA (Urquhart, et al. 2004).
 – Activity of one region of the TrA (Lower, Middle, Upper) does not reflect recruitment of the whole muscle (Urquhart, et al. 2004)
 • Lower and Middle TrA 24-40ms prior to Deltoid
 • Upper TrA up to 15ms after Deltoid AND 30-44ms after IO
 • All TrA preceded EO by 12-67ms
 • Upper TrA 5ms later in Standing compared to Sitting
 • Lower IO recruited a mean 15ms BEFORE in Standing and 1ms AFTER Deltoid in Sitting

MOST STUDIES ONLY LOOK AT A SPECIFIC REGION

The Active System

• Abdominal Muscle Recruitment
 – Pelvic motion decreases TrA activity (Urquhart, et al. 2006)
 – Pelvic tilting is likely to produce greater activity of Middle IO relative to TrA and RA (Urquhart, et al. 2006)
 – Abdominal bracing recruits EO with less activity of upper TrA, lower IO and RA (Urquhart, et al. 2006)

The Active System

• Abdominal Muscle Recruitment
 – For TrA alone – Discourage any movement of the upper abdominals, bracing of the abdominal walls or posterior tilting of the pelvis (Urquhart, et al. 2006)
The Active System

Association between EMG activity, abdominal displacement and lumbopelvic motion. A three-dimensional graph depicting the relationship between EMG activity of all regions of TrA (as a proportion of the total abdominal muscle activity) (y axis), maximal abdominal displacement (x axis), and pelvic motion (z axis). EMG activity of TrA, relative to the other abdominal muscles, was greater when abdominal movement was performed without pelvic motion.

The Active System

- Does the pelvis move during gait?

The Active System

- Basic Anatomy – Diaphragm

O: Costal margin and Lx
Vert 1-3

Psoas Major
O: Anterior surfaces of the T12-L5 vertebrae, Posterior wall of the abdomen
The Active System
• Basic Anatomy – The Multifidus

The Active System
• Basic Anatomy – The Pelvic Floor
 – Voluntary activity in the abdominal muscles lead to increased activity in the PFM [Sapford & Hodges, 2001].

What do you know about trg the core?
• From what we have discussed would this:
 – Activate TrA/IO effectively?
 – What about the other ‘core’ muscles?
What do you know about trg the core?

- Remember: With decreased use or lack of use (pain inhibition, motor dysfunction or OG) tonic/local muscles systems (all of them) take on phasic/global characteristics (Jull, et al., 1999)
 - This is why TrA/I/O drawing-in is done —
 - To reteach the motor control (Not to increase endurance or strength)
 - This is also why load should be below 30-40% MVC – to stimulate slow tonic loading
 - Then the movement is integrated back into functional tasks

What do you know about trg the core?

- So in INITIAL stages of rehabilitation following lower back pain/chronic back pain
 * Following assessment of need
- Teach correct muscle patterns
- Transfer into function
- Fix the cause of the dysfunction
 * Treat the criminal (cause), not just the victim (symptom)
What do you know about trg the core?

- Choosing the right exercises for the initial phases...

What do you know about trg the core?

- McGill vs Hodges
 - A: McGill
 - B: Hodges
 - C: All of the above
 - D: None of the Above
 - E: C&D
What do you know about trg the core?

Bjerkefors, et al., 2010

• Looked at 5 exercises comparing LV/ and with/without Instruction

Mean values (+1SD) of relative EMG amplitudes (in % of the highest observed in the MVC tasks) for TrA (a) without instruction and (b) with instruction, on the left side (open bars) and on the right side (hatched bars) during the five exercises (A–E) investigated. (A) supine with right leg lift, (B) bridging, (C) bridging with right leg lift, (D) four-point kneeling with right leg lift and (E) four-point kneeling with right leg lift and left arm lift.

What do you know about trg the core?

Urquhart, et al., 2006

- Pelvic tilting is likely to produce greater activity of Middle IO relative to TrA and RA
- Abdominal bracing recruits EO with less activity of upper TrA, lower IO and RA (Urquhart, et al. 2006)
- For TrA alone – Discourage any movement of the upper abdominals, bracing of the abdominal walls or posterior tilting of the pelvis (Urquhart, et al. 2006)

What do you know about trg the core?

Tehyen, et al. 2008

- Changes in TrA and IO muscle thickness differed during 6 trunk strengthening exercises as assessed with USI.
 - Abdo crunch; ADIM, Abdo Sit back, Side Plank, Supine lower extremity extender; Bird dog
 - Specifically, the greatest changes in muscle thickness of both muscles were found with the horizontal side-support and the abdominal crunch.

What do you know about trg the core?

Himes, et al., 2012

- Further examined the Side Plank with Healthy and Non-symptomatic sufferers from LBP (5 levels of difficulty)
- No differences between groups at any level
 - Only difference within groups was the healthy DECREASED activation of the TrA at higher levels
- The recurrence of LBP may not be because of the ability of the TrA to contract but rather the timing of when the TrA becomes activated during exercise
Koumantakis, et al., 2005
- General Exercise program or General Exercise Program with Isolation core exercises
- Outcome measures for both groups improved with generally no differences between the 2 exercise approaches.
- Self-reported disability improved more in the general exercise-only group immediately after intervention but not at the 3-month follow-up.

What do you know about trg the core?

Koumantakis, et al., 2005
- A general exercise program reduced disability in the short term to a greater extent than a stabilization-enhanced exercise approach in patients with recurrent nonspecific low back pain.
- Stabilization exercises do not appear to provide additional benefit to patients with subacute or chronic low back pain who have no clinical signs suggesting the presence of spinal instability.

What do you know about trg the core?

Monfort-Panego, et al., 2009
- When Sitting Up
 - Initial phase of the exercise during dorsolumbar spine flexion the RA is activated then decreases when Lx is around 30°-45° HF activation increases
 - Having the feet fixed during a sit up increases HF activity – having the arms fixed increases abdominal activity
What do you know about trg the core?

Nesser, et al 2008

- Correlations between strength, power and core strength
 - Core strength measured using the protocol established by McGill (7) – Results correlated to power (e.g. Dash, power clean and CMJ) and strength (1RM Bench and Squat)
 - Results suggest weak to moderate correlations
 - Authors suggest that increases in core strength are not going to contribute significantly to strength and power and should not be the focus of strength and conditioning.

What do you know about trg the core?

Scibek, 1999 : Stanton, et al, 2004

- Scibek, 1999
 - Swissball training 2 x 6/52
 - Sig improvement in core stability
 - No sig improvement in myoelectric activity of the abdominal and back muscles, treadmill VO2max, running economy, or running posture in either group
- Stanton, et al, 2004
 - Similar findings with Swissball

What do you know about trg the core?

Saeterbakken et al, 2011

- Looked at core training to increase throwing velocity
 - Intervention group performed a progressive core stability-training program consisting of 6 unstable closed kinetic chain exercises in slings
 - Sig increase in throwing velocity
 - Authors state that their results suggest that core stability training using unstable, CKC movements can sig improve maximal throwing velocity.
 - A stronger and more stable lumbopelvic-hip complex may contribute to higher rotational velocity in multisegmental movements
What do you know about trg the core?

Leetun, et al. 2004

- Core stability as an injury risk predictor
 - 80♀ 60♂ Intercollegiate basketball and track and field athletes
 - Hip Abduction and ER sig predictors
 - Side plank and back extension were not predictors (Large SD)
 - Claim that core stability has an important role to play in injury prevention

What do you know about trg the core?

Rehab Considerations

- Contemporary approach for LBP involves recruitment of TrA with minimal activity of the superficial abdominal muscles in the EARLY stages of Rehab (Urquhart, et al. 2005).
- Abdominal hollowing isolates the co-activation of TrA and OI for patients with spinal instability – retrain perturbed motor patterns (Monfort-Panego et al, 2009).

What do you know about trg the core?

Rehab Considerations

- ALL trunk muscles play a role in spinal stability – 1-2 muscles should NOT be the specific targets when training the abdominal (Monfort-Panego et al, 2009)
- Retraining of 6-8 treatments with low level US guided abdominal drawing in OR sling exercises OR GENERAL Exercises for CLBP attained only marginal changes in contraction thickness and slide in deep abdominal muscles – only provide a limited account for pain reduction (Vasseljen & Fladmark, 2010).
So where does this leave the core?
• Would the ‘core’ protect them?
So where does this leave the core?

- Rehab in isolation (as qualified) and then integrate early back into global movements (in the same posture)

So where does this leave the core?

- Get back to Task Specific Training or global tasks that generally mimic tactical tasks
 - If the ‘core’ is a concern then it is either
 - Mismatched with global force production
 - Mismatched with muscular endurance
 - Progressed too fast – regress and retrain.

So where does this leave the core?

- It is not the magical answer – it is just another message lost in a marketing scheme
- If there is a dysfunction seek retraining (isolate then integrate)
- Train movement and you will train the ‘core’.

• Joint Public Affairs Unit - Achieves
 - It is not the magical answer – it is just another message lost in a marketing scheme
 - If there is a dysfunction seek retraining (isolate then integrate)
 - Train movement and you will train the ‘core’.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES