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Abstract

The power to solve intractable optimisation problems is often found through pop-

ulation based evolutionary methods. These include, but are not limited to, genetic

algorithms, particle swarm optimisation, differential evolution and ant colony op-

timisation. While showing much promise as an effective optimiser, extremal opti-

misation uses only a single solution in its canonical form – and there are no stan-

dard population mechanics. In this paper, two population models for extremal op-

timisation are proposed and applied to a multi-objective version of the generalised

assignment problem. These models use novel intervention/interaction strategies

as well as collective memory in order to allow individual population members to

work together. Additionally, a general non-dominated local search algorithm is

developed and tested. Overall, the results show that improved attainment surfaces

can be produced using population based interactions over not using them. The

new EO approach is also shown to be highly competitive with an implementation
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of NSGA-II.

Keywords: Extremal Optimisation, Population, Multi-objective Optimisation

Problems, Local Search

1. Introduction

Over the past few decades, numerous population-based optimisation algo-

rithms have been proposed. From this, a few techniques have emerged as being

standard algorithms that researchers and practitioners routinely apply. The more

notable of these are genetic algorithms (GAs) [1], particle swarm optimisation

(PSO) [2], differential evolution (DE) [3] and ant colony optimisation (ACO) [4].

These have been successfully applied to discrete, continuous, single and multi-

objective problems.

One class of algorithms that has not gained as much attention is extremal op-

timisation (EO) [5, 6]. Unlike the techniques previously mentioned, its standard

formulation relies on the manipulation of a single solution only. Only a relatively

small number of papers have proposed population models. This paper links the

notions of population mechanisms to the need to consistently produce improved

solutions to multi-objective problems. It develops appropriate population models

and mechanisms to give EO a computational advantage over its canonical form.

In particular, the contributions it makes are the development of two alternative

EO population mechanisms suitable for multi-objective problems and a generic

non-dominated local search technique.

The remainder of the paper is organised as follows. Section 2 gives a brief

overview of multi-objective optimisation and the problem that will be used in this

study. This will be the first time that this version of the bi-objective Generalised
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Assignment Problem (GAP) will be used for benchmark instances. Section 3 pro-

vides a thumbnail sketch of extremal optimisation, outlining its canonical mechan-

ics, as well as giving a summary of its applications to multi-objective problems

and the competing population models. Section 4 describes a population approach

suitable for a range of continuous and discrete multi-objective problems as well

as a non-dominated local search technique. Section 5 discusses issues including

transition operators, constraint handling and non-dominated local search while the

experimental work is carried out in Section 6. The latter includes a comparison

to NSGA-II. Finally conclusions and ideas for further investigation are given in

Section 7.

2. Multi-objective Optimisation and the Test Problem

For a thorough discussion of multi-objective optimisation and its relation to

evolutionary meta-heuristic algorithms, the reader is referred to works such as

Coello Coello [7] and Deb [8].

Multi-objective optimisation, by definition, involves the simultaneous optimi-

sation of more than one objective. While each objective requires minimisation or

maximisation, this discussion (without loss of generality), will consider objectives

that need to be minimised. The minimisation of objectives is commonly expressed

according to Equation 1.

Minimise:−→f (−→x ) = f1(
−→x ), f2(

−→x ), . . . , fm(
−→x ) (1)

Where:

−→f is the set of objective functions,
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−→x is the solution vector and

m is the number of objective functions.

Rather than a single optimal solution being produced, a number of trade-off

solutions are generated instead. The key question becomes which solutions should

become part of this trade-off (attainment) surface? This is achieved by the process

of Pareto dominance ranking. A decision vector −→x1 dominates −→x2 (denoted −→x1 ≺
−→x2 ) if it is not worse in any objective, and better on one or more objectives. Over

a number of iterations, the optimisation algorithm will produce a set of decision

vectors which dominate other solutions that have been generated, i.e., solutions

will be generated that dominate previously non-dominated solutions. The aim is

to produce an attainment surface that is as close as possible to the optimal surface

(also known as the Pareto Front).

2.1. The Bi-Objective Generalised Assignment Problem - the Test Problem

In comparison to continuous problems, there have been relatively few stud-

ies that have considered combinatorial multi-objective problems. Additionally,

there are few benchmark problems on which researchers may test their discrete

techniques. This paper presents a rarely unused bi-objective version of the gen-

eralised assignment problem that is applied to the benchmark instances of Chu

and Beasley [9]. In its canonical form, the generalised assignment problem is a

problem in which jobs are assigned to agents for these agents to perform subject

to capacity constraints. Each job may be performed by one agent only. The aim

is to minimise the total cost of assigning the jobs to the set of agents. By its very

general nature, it has been applied to such areas as resource scheduling, designing

communication networks and vehicle routing.
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In a first of its kind, Prakash, Sharma and Singh [10] present a non evolu-

tionary algorithm for solving a bi-objective version of the generalised assignment

problem. While maintaining the standard objective function, the second function

is non-linear and minimises the maximum resource usage of the agents. This

paper, unlike many other Pareto approaches, prioritises the two objectives. Ini-

tially, it does this by using a constructive heuristics to optimise objective one.

This then becomes the first non-dominated solution. In generating the second

non-dominated solution, a constraint is added that restricts the value of the second

objective to being smaller than the value of the second objective obtained for the

first non-dominated solution. This procedure is repeated for the desired number

of non-dominated solutions. Unfortunately, only a numerical example of the op-

timisation procedure was given, rather than a full suite of results on benchmark

problems. It does, however, provide a model of the bi-objective GAP that is used

in this paper.

The model of the problem is given in Equations 2-6.

Minimise
n

∑
i=1

m

∑
j=1

ci jxi j (2)

Minimisemax

{
n

∑
i=1

ti jxi j ∀ j,1≤ j ≤ m

}
(3)

s.t.

m

∑
j=1

xi j = 1 ∀i,1≤ i≤ n (4)

n

∑
i=1

ti jxi j ≤ b j ∀ j,1≤ j ≤ m (5)
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xi j ∈ {0,1} ∀i,1≤ i≤ n, ∀ j,1≤ j ≤ m (6)

Where:

ci j is the cost of assigning job i to agent j,

ti j is the resource required by agent j to perform job i,

xi j is 1 if job i is assigned to agent j, 0 otherwise,

b j is the capacity of agent j,

n is the number of jobs and

m is the number of agents.

3. Extremal Optimisation

Extremal optimisation is a nature-inspired strategy for solving combinatorial

and continuous optimisation problems [11]. As it is relatively unexplored com-

pared to other techniques such as ant colony optimisation (ACO) [12], genetic

algorithms (GAs) [13] and particle swarm optimisation (PSO) [14], there exists

wide scope to test and extend its capabilities. Unlike its counterparts, the canon-

ical algorithm manipulates a single solution vector rather than a population of

solutions, though population versions have been implemented (e.g., Chen, Lu and

Yan [15], Chen, Xie and Chen [16] and Randall et al. [17]). The remainder of this

section describes the mechanics of the canonical algorithm, the changes necessary

for use on multi-objective problems, as well as the population models that have

been used with it.
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3.1. Algorithmic Mechanics

EO is loosely based on the principles of the Bak-Sneppen model [18] in which,

on occasion, a series of very small changes to the state of a system will lead to

a very large change. This is referred to as punctuated equilibrium. The model,

that has its basis in biology, consists of a number of species arranged in a ring

so that each species has two neighbours as well as a fitness value. At each step

of the process, the least fit species and its two neighbours are removed and re-

placed by new species. Over time, the system evolves so that no species’ fitness

is below a critical value. Boettcher and Percus [5, 11, 19] adapt this notion to the

development of EO. The concept of “solution components” replaces “species” as

the unit of change, and the ring structure is removed in place of a solution vector.

Additionally, neighbouring values do not change when the primary value does.

Solution components are the building blocks of the solution, an example being

a job being assigned to a particular agent for the canonical version of the test prob-

lem, the generalised assignment problem. In the original version of the EO algo-

rithm, at each iteration, the component whose fitness was worst would be replaced

by another solution component value generated at random. However, this choice

of always selecting the worst component to modify leads to too greedy a search,

and consequently its performance was poor. Like other meta-heuristic algorithms,

an element of randomness (in the form of the probabilistic selection of solution

components to change) was introduced. This became known as τ−EO [19]. Com-

ponents are ranked from worst (rank 1) to best (rank n). The parameter τ and the

rank controls the selection probability for each solution component [5]. Selection

is biased towards the lower ranks (i.e., the worst components). This is achieved

using Equation 7.
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Pi ∝ i−τ 1≤ i≤ n (7)

Where:

i is the rank of the component,

Pi is the probability (Pi ∈ [0,1] when normalised) that component i is chosen

and

n is the number of components.

Values of τ close to, or equal to, zero produce an undirected random search

strategy. Conversely, allowing τ = ∞ gives the original EO algorithm. How does

the ranking work practically however? For the generalised assignment problem,

the overall total cost of assigning jobs to agents needs to be minimised. Therefore,

each component is ordered on its individual assignment cost (of job to agent), with

the highest cost assigned a rank of 1 and the lowest a rank of n. This means that

the job assignments that are most costly and degrade the solution the most will

most likely be chosen.

Algorithm 1 shows the mechanics of a single τ−EO iteration. Note that this

canonical algorithm assumes that there is only one objective function that is sep-

arable (i.e., each solution component’s fitness can be evaluated independently).

This is an O(n logn) algorithm given that Quicksort [20] is used to help calculate

the rankings. Typical values for τ are normally between 1 and 2 [11]. Note that

the calculation of the P vector values only needs to be done once – before the

EO process begins. For the sake of computational ease of implementation, P is

normalised.
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Algorithm 1 A single τ−EO iteration.
Rank the solution components in x from worst to best according to their adverse

effect on the objective function f (x)

i = Select a component from x using roulette wheel selection on P

Assign xi a random (legal) value

c = Evaluate f (x)

if c is better than Best then

Best = c

end if

end

As is evident from the above discussion, one of the structural properties of

canonical EO is also one of its potential weaknesses – the requirement that the

problem under consideration be a separable one. This means that each solution

component can be evaluated separately. There are a wide variety of problems

for which, this is not the case. However, some works are beginning to appear

that address this issue. Two such are briefly described here. Meneses, Randall

and Lewis [21] solve a problem in which the objectives are evaluated through a

black box function. Their novel approach incorporating the notion of introducing

a pheromone structure from the domain of ACO. It is used to track the relative per-

formance of components via the solutions that they have been incorporated into.

Non-dominated solutions (from their components) update the pheromone levels.

Therefore components with low levels of pheromone have high values in the P

vector. The other approach by Chen, Lu and Yang [22] is used to solve continu-

ous functions in the which the objectives are non-separable. At each iteration of

their algorithm, for each solution, n mutations occur on the n solution components
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(i.e., one mutation per solution component). The n new solutions are then ranked

using dominance ranking, and the solution with rank 0 (i.e., the solution compo-

nent being the best change, so, by implication the worst solution component to

begin with) is always chosen to be changed.

In terms of the bi-objective GAP, and multi-objective problems more gener-

ally, ranking the solution components becomes more difficult than single objective

problems. One way to do this is on dominance count. That is, those components

that have low fitness (i.e., tend not to dominate other components on a quality

measure) will have a lower rank than those that don’t. This is the approach used

to address the non-separable nature of the problem considered in this paper.

Measuring the quality of components is problem-specific. For the GAP for-

mulation in this paper, this is done using the competing component cost (c) and

the resource (t) required when a job is assigned to a particular agent. In both

instances lower values equate to a better quality component.

3.2. Existing Populations Models and Multi-objective Problems

As previously mentioned, there has been little work done on applying EO

to multi-objective problems – particularly discrete/combinatorial ones as well as

having population models developed for it. This section summarises the more

notable contributions in both regards.

Randall [23] and Randall, Hendtlass and Lewis [17] propose a population ex-

tension in which the members interact at either definite intervals [23] or according

to a probability function [17]. The latter triggers an interaction event if the objec-

tive costs of the members of a particular generation vary widely. Specifically, a

probability p =
(

1− cost(best)
cost(worst)

)1/l
is generated. In it cost(best) is the best cost

received in the current population while cost(worst) is the opposite. l is the num-
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ber of iterations since an interaction has occurred. This means as time passes,

an interaction becomes more likely. As EO does not converge, a large difference

between cost(best) and cost(worst) would tend to suggest that the search had

lost cohesion. In order to attempt to correct this, the interaction will eliminate

the weakest members of the population and replace them by randomly generated

members. In the case of Randall [23], this was exactly three members – the worst

solution and the two closest in terms of solution similarity, rather than cost similar-

ity. Randall et al. [17] change this model slightly by replacing one of the solutions

with the best solution found to date. Given the improvements in this paper, it is

unsurprising that it out-performed its predecessor. For both papers, single objec-

tive combinatorial problems were used. The generalised assignment problem was

studied in both papers; Randall et al. [17] also looked at the bin packing problem

and a constrained variant of the hub location problem.

Chen, Lu and Yang [22] propose a population-based EO in which solutions are

considered in isolation from one another, rather than as an interactive population

like genetic algorithms, ant colony optimisation or particle swarm optimisation. It

is also a non-tau version of EO which is applied to the non-separable continuous

Zitzler-Deb-Thiele (ZDT) test functions. This is because, at each iteration of the

algorithm, for each solution, n mutations occur on the n solution components (i.e.,

one mutation per solution component). The n new solutions are then ranked us-

ing dominance ranking, and the solution with rank 0 (i.e., the solution component

being the best change, so by implication the worst solution component to begin

with) is always chosen to be changed. If this were a τ version of the algorithm,

components with ranks other than 0 would have the opportunity to be changed.

If it is the case that more than one component is ranked at 0, a diversity preser-
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vation mechanism is invoked. This means that the resultant solution that crowds

members in the external archive the least is chosen.

Meneses, Randall and Lewis [21] have recently applied EO to the problem

of designing Radio Frequency IDentification (RFID) antennas. This is a discrete,

non-separable NP hard problem whose aims are to produce antennas that have

high efficiencies and low resonant frequencies (i.e., high read ranges). These

values are obtained through a black box evaluation suite. As the problem is to

design an antenna as a series of links on a grid, a modified knapsack approach was

used (i.e., a component simply incorporated a link, or not, into the design). As EO

requires information about each component, a pheromone scheme (adapted from

the ACO literature) was used. Furthermore, each time a non-dominated solution is

found, the pheromone level on each component value is increased. The algorithm

was able to produce very efficient designs with very few function evaluations.

4. Two Population Models

A population of objects (be they solutions to optimisation problems, or peo-

ple in a country) is more than a collection of non-interacting individuals. It is a

concept that embraces the idea of community – the individuals interact with one

another, and in turn are affected by one another. This is in the cause of advanc-

ing, or optimising, the society in which they live. Modifying a meta-heuristic

search algorithm, such as extremal optimisation, to include a population compo-

nent can be difficult. This is because, as is evident from the previous section, such

approaches can be seen as just “bolt-ons” that do not necessarily contribute to

the goal of allowing solutions to influence one another in order to produce better

solutions.
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In this section, two alternative population schemes are defined. As will be-

come evident, they may also be easily combined.

4.1. Collective Memory Scheme

To define an appropriate population strategy, one should take advantage of

the key factors of the meta-heuristic under consideration. For EO, without doubt,

this is the unique way in which solution components are selected to be changed

at each iteration. Presently, each solution component is ranked against the other

components in the same solution. This naturally could be extended out across all

solutions in a population and achieved by altering the EO generated probability

by adding or subtracting a “social” factor. This social factor, which is along the

lines of PSO, represents a record of the “badness” of the component and value

combination for all solutions from previous generations. The greater the value

of the badness, the more this will add to the original probability (as generated

through Equation 7). These values are stored in a communal memory matrix that

is indexed by component and value. For the GAP, this corresponds to an m by n

matrix. Figure 1 gives an example of a collective memory matrix.

To update the memory, a small factor is either subtracted or added to the rele-

vant element of the matrix. This is given by s
N where s is social mediation factor,

0 < s≤ 1 and N is the size of the population size.

Dividing by N corresponds to exerting relevant influence of members over one

another. That is, the members of a small population will have a greater influence

over one another than a large population. Working out when to apply the update,

and if it should be positive or negative, can be given by a rule base. What needs

to be taken into consideration is whether the solution has changed its feasibility

status and if there was solution quality improvement or not. The latter can be
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Figure 1: An example of the collective memory matrix s for a small problem. Note that a value of

0 signifies that that combination of job and agent has not yet been incorporated into a solution.

 

determined by working out whether the new solution dominates the old one or

vice-versa). The rules, formally stated, are given in Table 1.

Table 1: The rule base for deciding whether the social factor should be applied. Note the last

two entries assume that the feasibility status is the same. “Better” and “Worse” refer to better and

worse hypervolume values respectively. For all other cases, the factor becomes 0.

Old solution New solution Factor

infeasible feasible − s
N

feasible infeasible s
N

better worse s
N

worse better − s
N
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4.2. Interaction/Intervention Population Scheme

This strategy is quite different in approach to the first, but also complimentary

to it. In it, a combination of intervention and interaction strategies are used in

which community based operations to the members of the current population and

the archive are used. To help define the strategy, the following questions are posed:

1. What is the exact nature of the population interactions? Are there alterna-

tives?

2. When would and should such interactions occur? Too often, and it may dis-

tort the main optimisation effort as well as consuming excess computational

resources. Too few, and it may have no significant effect at all.

In the case of Question 1, the default/control position is to allow individual

solutions to evolve completely separately. This was the case for Chen et al [22].

There are a large number of potential actions that could be taken from an interac-

tion. Apart from the control strategy, the following will be implemented.

1. Canonical Extensions – The first method is simply an extension of EO’s

canonical transition mechanism. After an iteration of the population, elimi-

nate the probabilistic worst solution (as determined by a dominance ranking

on all the solutions in the current population), and replace it by a randomly

created solution. As every iteration may be too frequent, this could be done

at specific intervals, such as every thousand iterations. This would then be-

come a parameter of the process. Another extension is to replace all the

non-dominant solutions in the population.

2. Use solution material from the Archive within a genetic algorithm – The

archive can be used for more than just a store of good solutions. These so-

lutions potentially contain valuable material that can be used to form new
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solutions to put back in the population. When a population interaction oc-

curs, all of the dominated solutions in the population are replaced by so-

lutions produced by a GA iteration. The idea is motivated by the success

of memetic algorithms [24] that often embed attributes of multiple search

techniques into the one overall strategy. Crossover and mutation parameters

will be given in the next section. Additionally, the number of iterations over

which the genetic component is run is also a parameter. Initial experimenta-

tion revealed that a value of around 200 proved to be very effective. While

solution quality did increase as the number of iterations increased, the run-

time started to become very large. The algorithm is given in Algorithm 2

Algorithm 2 The algorithm for the genetic component interaction.
for 1 to the maximum number of genetic iterations do

Perform two point crossover using random parents from the Archive (two per

new solution) and replace the entire population.

Perform mutation on the new solutions.

Determine which of the new solutions are feasible, and which aren’t.

Perform local search on each of the new feasible solutions.

Update the Archive with any improved solutions found.

end for

end

Question 2 is a particularly interesting one, as population-based meta-heuristics

often have some form of community interaction as their main means of opti-

mising solutions, at each iteration of the algorithm. As examples, GAs and DE

use crossover variants to combine portions of different chromosome/solutions to-
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gether. Where optimisation operations are exclusively performed on individu-

als, like extremal optimisation, adding the dimension of a population means that

one has both individual and community operations. Some possible examples of

the latter are described above. It becomes evident that community operations

needn’t be done at each iteration. Two broad alternatives exist. First, perform

interactions every fixed number of iterations. This was the approach used by

Randall et al. [17]. The second is a little more sophisticated. Rather than per-

forming iterations blindly, only perform them when the need arises. In the case of

multi-objective optimisation, and particularly the archive-based Pareto approach

adopted in this paper, this need is triggered when there are few, if any, solutions

that enter the archive at an iteration. This suggests that the search has stagnated

and some form of community based intervention is necessary. A probability func-

tion that is inversely proportional to the number of members entering the archive

at an iteration (that is, the smaller the number, the larger the probability) is a

means of achieving this. The probability function used in this study is given by

Equation 8, though other functions are possible.

P =
A−N

A
× k (8)

Where:

P is the probability,

A is the archive size,

N is the number of solutions entering the archive at a particular iteration and

k is a scaling factor, a parameter of the process.
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5. Subsidiary Issues

Beyond population mechanics, there are a number of other issues that need

to be considered. These are: use of transition operators; constraint handling and

local search. Each of these is addressed separately below.

5.1. Transition Operations

In order to select a component for EO to change at each iteration in a multi-

objective context, a more complex approach than single objective optimisation is

needed. For the latter case, the current value of each component1 is computed –

and then these are ranked from worst to best. The worst components have a greater

probability of being changed. With more than one objective, this is more difficult

to judge. One way to do this is to use dominance ranking on the components

themselves, rather than on full solutions. The dominance ranking can then be

mapped directly onto an appropriate EO ranking. In terms of the actual transition,

the agent of a chosen job (by EO’s canonical mechanics) is changed to a random

agent.

5.2. Constraint Handling

As the GAP has constraints, infeasible solutions will inevitably be generated

in the course of an EO run. The approach adopted in this paper follows that of

Randall [23] and Randall et al. [17] in allowing feasible and infeasible solutions

in the system, but subjecting the latter to a process known as partial feasibility

restoration. It attempts to identify portions of the solution that contribute to the

infeasibility the most (in a very greedy way) and change these to values that will

1assuming a separable objective function
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reduce infeasibility. Obviously, this may still leave an infeasible solution at the

end (hence the term “partial”). EO then simply selects its probabilistic worst com-

ponent in the next iteration on each component’s contribution to the infeasibility,

rather than its cost. By this method, EO efficiently travels through infeasible space

toward feasible space.

5.3. Non-dominated Local Search

To improve solutions that are generated by meta-heuristic search algorithms,

it is customary for greedy local search algorithms to be applied. Usually, once a

feasible solution has been generated, a series of local transitions are carried out,

each transition only being accepted if it improves the solution. Regardless of the

transition operators that are used for a particular problem, a general algorithm

for multi-objective optimisation is given in Algorithm 3. The main difference

between this and other local search algorithms is the acceptance mechanism –

only if a new transition creates a solution that dominates the previous solution

will it be accepted.

In terms of the local search transition operators for the GAP, two are used, as

they have been found to be successful in the past [17, 23] (albeit for the single

objective version of the problem). “Move” moves an item from one group to

another. The job and agent are chosen such that the (negative) change in the

objective function is the greatest. This is a variable length search stopping when

an improving move cannot be found. “Swap” works in a similar way except that

at each iteration, two items are chosen such that their swap will lead to the most

improvement in the objective function.
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Algorithm 3 Algorithm for multi-objective local search applied to a single solu-

tion.
previous best = Evaluate the objectives of the incoming solution.

while improving solutions are still being received do

for each possible transition on this solution do

Try the transition and evaluate its objectives.

if feasible and it dominates previous best then

Accept this as the new solution.

previous best = the objective values of the new solution.

else

Reverse this transition.

end if

end for

end while
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6. Computational Experiments, Results and Analysis

Section 4 presented numerous novel concepts that can be implemented to pro-

duce improved attainment surfaces over and above canonical EO as well as other

recognised solvers. This section explains the environment in which the experi-

ments are run, the instances of the test problem used, the design of the experi-

ments, the actual results and the analyses of these.

6.1. Test Environment and Problem Instances

The computing platform used to perform the experiments is a 3GHz Pentium 4

based personal computer. The experimental programs are coded in the C language

and compiled with gcc.

Each problem instance will be run across ten random seeds to give statistically

valid results. A run is terminated if the maximum number of iterations has been

reached. A value of 1.4 is used for EO’s only parameter, τ , as it has been found to

be a good value for similar problems [17, 23].

The large-sized B, C and D problem instances of Chu and Beasley [9] are used.

These range in size from five agents to 200 jobs. There are six problem instances

for each of the B, C and D categories. Table 2 gives the characteristics of each

problem, including the hypervolume reference points and size of the instance2. It

must be noted that the reference points have been derived through experimenta-

tion, as this is the first time this bi-objective formulation has been applied to any

GAP instances.

2This is given in the name itself, e.g., B5-100 indicates that there are 5 agents and 100 jobs.
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6.2. Experimental Design and Results

Given that there are three conceptual developments (i.e., non-dominated local

search, the population models, and timing and nature of interactions) and appro-

priate population size parameters that need to be tested, a large amount of exper-

imental work could be carried out. The experiments were performed over two

phases and are detailed below.

6.2.1. Phase 1 – Evaluating the Conceptual Developments on a subset of the Test

Problem Instances

This phase tested whether turning local search on gives better results than

not using it. In addition, this effect was examined in context with the popula-

tion/external archive size. The sizes used were {20,50,100,200} which gives

Table 2: The description of the problem instances.

Instance Hypervolume reference Instance Hypervolume reference

B5-100 (3500,250) C5-200 (6000,500)

B10-100 (5000,150) C10-200 (6500,250)

B20-100 (4000,80) C20-200 (8000,150)

B5-200 (8000,500) D5-100 (10000,900)

B10-200 (6500,250) D10-100 (9000,500)

B20-200 (8000,150) D20-100 (12000,250)

C5-100 (5000,300) D5-200 (15500,1750)

C10-100 (3500,150) D10-200 (16000,900)

C20-100 (3500,65) D20-200 (16000,500)
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eight combinations per instance. These were evaluated across a maximum of

100,000 objective function evaluations per run. As this was an exploratory phase,

and as a result of there being potentially a lot of analysis, only a small subset of

the problem instances were used: specifically, B20-100, C20-100 and D20-100.

This is in accordance with the principles of hierarchical parameter tuning [25].

The analysis of Phase 1 fell into three main areas: determining whether multi-

objective oriented local search should be used and the best population/archive

size; and the most appropriate degree of the social factor. Varying these pa-

rameters will affect the quality of solutions. The non-parametric statistical test,

Kruskal-Wallis, was used, as the data are highly non-normally distributed. A sig-

nificance level of α = 0.05 is used throughout.

In terms of local search, the results are very emphatic. It outperformed the

non-local search version, indicating that a computational advantage was gained

given the same amount of resources. The difference between the local search

enabled and non-local search versions was statistically significant. Figure 2 shows

the two attainment surfaces for local search being switched on and off. Thus, the

multi-objective oriented local search will be used by default throughout the rest

of the paper.

Now that local search has been established as a necessity, the remaining dis-

cussion will emphasise the results that have used local search. For population,

a size of 200 members was best. A significant difference was detected and the

ordering became (according to the Kruskal-Wallis ranks) p200≺ p400≺ p100≺

p50≺ p1. Note that p1 signifies canonical EO.

The next part of this exploratory phase examined the effects of the two inter-

action models (i.e., the canonical extensions and the one that uses genetic algo-
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Figure 2: The attainment surfaces for B20-100 when local search is turned on and when it is not.

Both surfaces represent typical runs.

 

rithms) and collective memory as well as the timing of these (i.e., at fixed intervals

or on a calculated needs basis). The parameters required by this model are as fol-

lows:

1. interaction – This is used to denote whether the replacement, genetic or no

interaction, is used.

2. intervention – This is used to define whether the interaction will be done at

fixed periods or based on need (as defined in Equation 8).

3. period / k – The actual value of these parameters.

4. s – The value of the social mediation factor, 0≤ s≤ 1.

The local search enabled EO served as the control. Additionally, a non-

population version (i.e., a population of one) was also run. If given any of the
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parameter settings, improved results could be generated, then these too will be

considered as additions to EO. In terms of the parameter values, for the fixed

number of evaluations before an interaction, the values of {5000,10000,20000}

were assessed. For the values of k, in the detected approach, scaling values of

{0.2,0.5,0.8} were used. Both sets of values were used with the two interaction

models. These values were also used for s.

Tables 3-5 are comparison tables for each of the three test problems (for ease

of comparison). Note, in these tables “Min”, “Med”, “Max” “Stdev” denote min-

imum, median, maximum and (sample) standard deviation respectively.

The analysis of these tables reveals that the population models certainly pro-

duce improved solutions over the non-population (standard EO) version of the

algorithm. Distinguishing between the various approaches is a different matter;

however, a pattern emerges which becomes more noticeable as the difficulty of

the problem instances increases. It is evident that while merely having a pop-

ulation produces very competitive solutions, the enhancements, nearly univer-

sally, produce better solutions. This is most apparent for the replacement and

genetic strategies for C10-200 and D10-200. Various statistical analyses, using

the Kruskal-Wallis technique, confirmed that there was a significant difference

between the different EO approaches for each of the test problems. For B10-200,

the replacement strategy with a probability of 0.8 worked best, while for the other

two problems, the genetic option, with the same probability setting, proved supe-

rior. These findings are mirrored when analyses are performed to determine which

interaction and intervention strategies are best overall. The differences between

B10-200 and the other two may be explained by the nature of the test problems

themselves. The C and D versions of these problems progressively have tighter
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constraints.

6.2.2. Phase 2 – Final Results

The intent of the final set of experiments was to see what the best versions of

the EO population models were capable of, given an extended run length. Ad-

ditionally, for the sake of comparison, a stand-alone genetic algorithm (based on

the one used for the interaction strategy) was run as well. The new number of

total function evaluations was 500,000 to allow the meta-heuristics greater scope

for exploration. Table 6 shows the EO based results. EO 1 refers to the replace-

ment option with interaction probability of 0.8, while EO 2 is the genetic option

with the same probability. By way of comparison, Table 7 show the results of GA

and an NSGA-II [26] implementation. Both were tuned in the following ways.

Note that the GA was tuned within the EO framework and, in common with the

tuning of the EO variants carried out in phase 1 of this investigation, tuning of

both NSGA-II and the GA was carried out using the same, reduced subset of test

functions used in phase 1.

• For the GA, only two parameters were required to be examined, the mu-

tation rate, and the generational replacement rate. Values of {0.1,0.2,0.3}

and {0.2,0.5,0.7}, respectively, were trialled on the test instances. From

this it was determined (via Kruskal-Wallis tests) that a low mutation rate

coupled with a low rate of generational replacement worked best. Thus a

value set of (0.1,0.2) will be used throughout.

• NSGA-II was allowed the same total function evaluations, and was tested

for crossover and mutation rates of {90%,50%,10%} and {10%,20%,30%},

respectively. By inspection of median hypervolumes attained, it was con-
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firmed that a crossover rate of 90% and a mutation rate of 10% gave gener-

ally superior performance across the test instances.

Upon visual inspection of Table 6, looking at the bolded figures, it is easy to

see that the genetic algorithm based variant of EO (EO 2) is able to find many

best solutions (in terms of the descriptive measures) over and above EO 1. It is

believed this may be due to the introduction of the diverse material that the genetic

intervention can provide. Having said that though, it is clear from Table 7 that the

GA component alone is not solely responsible for producing the good solutions.

EO 2 produces quite a few more best results on each of the three measures. This

shows that EO adds optimisation power to the search process. In terms of the

comparison to NSGA-II, it may be noted that it achieved the best results for the

test cases with small numbers of agents. The reason for these results is unclear.

NSGA-II was included as a point of comparison for the modified EO algorithm,

and investigation of its specific, unexpected behaviour was beyond the scope of

this paper. It remain, obviously, a question worthy of further investigation. It

may also be noted that on a number of test cases NSGA-II was unable to find

many feasible solutions, making the statistical analysis of its performance of di-

minished value, and in one case was unable to find any feasible solutions at all.

EO (particularly EO 2), on the other hand, was always able to find feasible solu-

tions while being very competitive with NSGA-II in the number of best solutions

it was able to produce. This is very much in evidence on the median measure.

7. Conclusions

Populations are integral to nearly all successful evolutionary optimisation strate-

gies. The collective utility of solutions is harnessed in order to produce improved
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solutions that could not be derived from isolated individuals. Techniques such as

extremal optimisation, that do not have a population mechanism as standard, often

require this in order to be able to find competitive solutions. However, it is not

necessarily easy to find an effective strategy, and in some way must be linked to

the characteristics of the problems one is studying. The contribution of this paper

is the development of two alternative, but complimentary, population mechanisms

to target discrete multi-objective optimisation problems, though these can be ex-

tended to continuous problems as well. An additional contribution and way to

improve solutions was given by a generic non-dominated local search technique.

Moreover, a new set of benchmark discrete multi-objective problems have also

been introduced.

The evidence from the test problems strongly suggest that the combination of

the population models are able to produce very good solutions. Given the same

number of function evaluations, it was shown that these results were superior to

those that the solver could achieve using a non-interacting population. In com-

parison to the GA implementation, the modified EO was very competitive, often

producing better attainment surfaces. It was also quite competitive with the state-

of-the-art NSGA-II algorithm, exceeding its performance on most of the larger

problems.

In summary, the contributions of this paper are clear in terms of the advances

in the structure of a class of evolutionary algorithms. It was intended to show

that, by adding a population component to a single solution technique, Extremal

Optimisation, an advantage to that technique can be gained. This was indeed

achieved and came with no excessive computational costs. It may be noted that EO

did not exceed the performance of comparable algorithms in all cases. However,
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as is known in light of the no free lunch theorem [27], this is not the sole criterion

of success. Indeed in our case, it was clearly demonstrated the NSGA-II algorithm

completely failed in a number of cases. In contrast, the population EO was very

robust and was able to produce solutions on each occasion. In addition, it was

able to find quite a few improved solutions over NSGA-II.

There are a number of ways in which this work may be extended. The first

is to test it on more discrete multi-objective problems, and to extend it to contin-

uous problems as well. This paper only addressed the bi-objective GAP, as the

motivation was to test the basic concepts and extensions to EO. With a better un-

derstanding of these now, the work will be extended to many objective problems.

The collective memory model can also be extended so that this information can

be used to eliminate solution components to rank and evaluate at each iteration.

This idea belongs to the candidate set literature [28], and may offer improvements

in computational efficiency.

One refinement of the proposed approach for population interactions deserves

investigation in future work. In Algorithm 2, all dominated solutions were re-

placed with new solutions derived from the Archive through crossover operations.

However, solutions close to the Pareto front may contain useful information, par-

ticularly in sparsely populated regions of the front. An approach that uses ranking

of dominated solutions, similar to that used by NSGA-II (Non-Dominated Sorting

Genetic Algorithm) [26], may be used to preserve “second-rank” solutions. These

solutions may contribute to improved coverage of the Pareto optimal set, either

via local search mechanisms or by normal evolution of solutions.
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Table 3: Phase 1 results for B10-200. These values represent hypervolumes from the reference

points given in Table 1. ‘Single’ refers to canonical EO, whereas “Population’ is the multi-solution

EO without the intervention strategies. For both the ‘Replace’ and ‘Genetic’ strategy, the two

intervention methods of fixed iterations (first three values) and the detected, k, values (last three

values) are given. The following two tables also follow this structure.

Method Parameter Min Med Max Stdev

Value

Single 42398 53323.5 75473 10926.5

Population 82370 87188.5 93655 4070.3

Replace 5000 82709 87147.5 94370 4246.5

10000 82705 87142.5 94401 4256.8

20000 82383 87393.5 93646 4059.6

0.2 82596 86731.5 93290 3805.9

0.5 82585 86701 93340 3836.4

0.8 82722 87455.5 93398 4200.3

Genetic 5000 82359 86645 93221 3843.5

10000 82490 86474 93186 3784.8

20000 82477 87292.5 93650 4067.3

0.2 82625 87056.5 93414 3824.1

0.5 82513 86803 93598 3921.2

0.8 82511 86555 93331 3857.9

s 0.2 82396 87214 93527 4066.5

0.5 82309 86733 93611 3927.8

0.8 82496 87383 93496 3845
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Table 4: Phase 1 results for C10-200. Refer to Table 3 for an explanation of the features of this

table.

Method Parameter Min Med Max Stdev

Value

Single 17810 19937 22041 1657.9

Population 24210 26193 32453 2886.3

Replace 5000 24251 26388.5 32572 2969

10000 24247 26386.5 32486 2954.5

20000 24220 26164.5 32514 2908.6

0.2 24273 26262 32435 2726.7

0.5 24221 26332.5 32557 2970.5

0.8 24278 26409 32572 2960.2

Genetic 5000 24310 26380.5 33749 3398.3

10000 24207 26389 35693 3830.4

20000 24250 26467.5 32549 2948.1

0.2 24349 26439 32713 2969.2

0.5 24363 26439 34002 3313.8

0.8 24284 26547 34291 3413.1

s 0.2 24211 26170 32482 2898.3

0.5 24203 26167.5 32510 2908.5

0.8 24178 26209 32502 2928.9
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Table 5: Phase 1 results for D10-200. Refer to Table 3 for an explanation of the features of this

table.

Method Parameter Min Med Max Stdev

Value

Single 298558 399471.5 630066 113379.6

Population 728180 768416 799370 20129

Replace 5000 730596 771273 800623 19774

10000 728222 769008 798901 20342.6

20000 728014 768944.5 799035 20198.01

0.2 727852 771754.5 798233 20404.8

0.5 728794 771516 800193 20316.4

0.8 728602 772024 799922 20546.8

Genetic 5000 739916 780529.5 803794 20207.8

10000 731844 776910.5 801095 20492.3

20000 739453 771466.5 805987 19540.7

0.2 739655 781554.5 802961 20676.8

0.5 741292 784941.5 803256 20935.3

0.8 739740 783452 802376 20682.5

s 0.2 729651 768563.5 798842 19594.9

0.5 730250 769179.5 799572 19602.2

0.8 731745 769325 798898 19154.1
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Table 6: The phase 2 results for the two EO variants. Note that boldface values indicate the best

values received for Min, Med and Max across this Table and Table 7.

EO 1 EO 2

Instance Min Median Max Stdev Min Median Max Stdev

B5-100 94137 98755.5 101782 2604.664 99703 104198.5 106389 2183.395

B5-200 558043 574426 585949 9802.196 576989 611116.5 626569 14846.46

B10-100 219691 231192.5 239767 6936.484 221593 236960.5 242779 8138.798

B10-200 225704 233829 253460 9310.994 226830 236724 261579 11099.22

B20-100 82436 87248.5 93704 4056.425 82986 87314.5 93817 3908.311

B20-200 543713 546863 553172 3558.047 539465 545775.5 548753 2852.738

C5-100 2284701 2305554.5 2335446 16946.86 2301985 2329676.5 2360071 18388.13

C5-200 263206 267094 276418 4128.081 276651 283170.5 298379 7252.545

C10-100 124549 126771.5 129425 1590.653 125387 128754.5 133659 2469.478

C10-200 198896 228806.5 253757 18910.07 181564 218945.5 251521 24372.97

C20-100 24253 26207 32534 2888.421 24507 27699.5 34494 3376.83

C20-200 270011 297982.5 319445 13276.38 269458 295962.5 322159 14062.84

D5-100 943170 982318 1024922 23553.77 1057271 1148590 1207370 53501.97

D5-200 149808 203278 242945 31065.26 1345241 1478741 1653667 91433.95

D10-100 432591 446206 456438 6313.08 582101 633822 676206 34409.76

D10-200 196192 306434 357587 53252.44 667233 1010097 1131048 142059.7

D20-100 730039 769825.5 799511 19779.67 762394 793975 842072 24881.47

D20-200 153457 224614 278965 39558.01 239536 390887.5 536718 89206.98
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Table 7: Results of running GA and NSGA-II on the test problems. Note that the 0 entries indicate

that NSGA was unable to find feasible solutions. Boldface values indicate the best values received

for Min, Med and Max across this Table and Table 6.

GA NSGA-II

Instance Min Med Max Stdev

Min Median Max Stdev Min Median Max Stdev

B5-100 93954 98531 104200 3514.394 128610 213580 250370 39559.16

B5-200 535706 544886.5 588003 19615.14 824321 927861 1126303 97090.71

B10-100 220996 229361 247425 9124.602 121946 172956.5 223440 29192.32

B10-200 222635 231336.5 264675 15115.53 177546 254081.5 299482 35459.58

B20-100 82774 88308.5 93742 3225.715 0 0 35882 16603.78

B20-200 530127 539094.5 543576 4080.025 94468 178642 252310 48815.12

C5-100 2268995 2316721 2357730 25540.32 523376 547381 612122 26280.13

C5-200 247359 271020 296170 14918.21 1043319 1243416.5 1320131 96378.92

C10-100 117530 125031.5 130728 4036.423 80022 101166.5 153417 20440.87

C10-200 170773 200876.5 233434 18324.82 160324 226043 315263 52373.9

C20-100 24585 28733 34992 3334.501 0 0 24145 8286.963

C20-200 264586 287466 308868 15391.34 0 71550 223956 93707.32

D5-100 1088684 1177462 1311221 79603.69 1588447 2209439.5 2739628 295771.2

D5-200 1100449 1273125 1657301 210915.8 5994382 6394365 7182949 348316.9

D10-100 146538 229148 258128 35870.21 0 848387 1128841 301992.7

D10-200 787807 911578 1060052 99895.54 1623617 2042716.5 2900104 413851.3

D20-100 747281 781562.5 840238 28562.2 0 0 0 0

D20-200 310561 353607.5 488267 57184.21 0 0 1130795 514752.3

38


