
Bond University
Research Repository

The probabilistic heuristic in local (PHIL) search meta-strategy

Randall, M

Published in:
Innovations in applied and artificial intelligence

DOI:
10.1007/11504894_90

Licence:
Unspecified

Link to output in Bond University research repository.

Recommended citation(APA):
Randall, M. (2005). The probabilistic heuristic in local (PHIL) search meta-strategy. In M. Ali, & F. Esposito
(Eds.), Innovations in applied and artificial intelligence : IEA/AID 2005 (pp. 648-656). (LECTURE NOTES IN
ARTIFICIAL INTELLIGENCE; Vol. 3533). Springer. https://doi.org/10.1007/11504894_90

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository
coordinator.

Download date: 30 Apr 2024

https://doi.org/10.1007/11504894_90
https://research.bond.edu.au/en/publications/ea22695e-2edc-4599-a2b7-99ead89d133b
https://doi.org/10.1007/11504894_90


The Probabilistic Heuristic In Local (PHIL)
Search Meta-strategy

Marcus Randall1

Faculty of Information Technology
Bond University

QLD 4229
Australia

Abstract. Local search, in either best or first admissible form, gener-
ally suffers from poor solution qualities as search cannot be continued
beyond locally optimal points. Even multiple start local search strate-
gies can suffer this problem. Meta-heuristic search algorithms, such as
simulated annealing and tabu search, implement often computationally
expensive optimisation strategies in which local search becomes a subor-
dinate heuristic. To overcome this, a new form of local search is proposed.
The Probabilistic Heuristic In Local (PHIL) search meta-strategy uses a
recursive branching mechanism in order to overcome local optima. This
strategy imposes only a small computational load over and above classical
local search. A comparison between PHIL search and ant colony system
on benchmark travelling salesman problem instances suggests that the
new meta-strategy provides competitive performance. Extensions and
improvements to the paradigm are also given.

Keywords: heuristic search, combinatorial optimisation, meta-heuristic.

1 Introduction

Local search is a classical approach to solving combinatorial optimisation prob-
lems (COPs). There have been numerous instances of local search algorithms
being used by themselves to solve COPs (e.g., [3, 5, 10, 12]) (usually as a means
of implementing a control strategy); as the basis of meta-heuristic search strate-
gies (e.g., simulated annealing (SA) [14] and tabu search (TS) [8]); or as an
adjunct heuristic to other heuristics/meta-heuristics (e.g., ant colony optimisa-
tion (ACO) [4], greedy randomised adaptive search procedures (GRASPs) [6]).
While the iterative meta-heuristic search strategies (such as SA and TS) are
able to use local search to overcome local optima (usually at the expense of long
runtimes), the settling in local minima or maxima for the classical approach is
a limitation. However, the cost for using meta-heuristic strategies is that they
can require significant amounts of computational runtime beyond that of the
local search component. The Probabilistic Heuristic In Local (PHIL) search is



designed to extend classical local search by augmenting it with a computation-
ally inexpensive probabilistic branching strategy. This branching strategy is a
recursive one that continues the search process from a point within the current
search trajectory.

The remainder of the paper is organised as follows. Section 2 discusses other
extensions to local search while Section 3 describes the extensions to the clas-
sic algorithm that constitute PHIL search. Section 4 presents the results of the
computational experiments using benchmark travelling salesman problem (TSP)
instances. Additionally, a comparison to an implementation of ant colony sys-
tem (ACS) is provided. Finally Section 5 provides a discussion of some of the
extensions and enhancements that are possible for the new search strategy.

2 Local Search

There have been a number of variations of local search that have been extended
from the previously described classical forms. Some of the more notable ap-
proaches are described below.

Guided Local Search (GLS) [9, 15] is a nominal extension to classical lo-
cal search that enables it to become a meta-strategy. Once local search be-
comes stuck in a local optimum, the meta-strategy component is activated. The
weights/penalties in an augmented objective function are increased so as to guide
the local search out of the particular local optimum. This is a form of search
space transformation that has only been applied to a few combinatorial opti-
misation problems. An extended version of the algorithm in which tabu style
aspiration criteria and random moves are added gives comparable performance
on the quadratic assignment problem to standard TS approaches [9].

The Affine Shaker algorithm of Battiti and Techolli [1, 2] works by succes-
sively sampling sub-regions of search space. Each region is defined by a central
starting point (i.e., the region surrounds this point equally). This region is then
sampled to generate a new tentative point. Depending on whether this new point
is of better or worse quality, the sampling area is expanded or compressed (re-
spectively). If the sampling is able to produce a better solution, this becomes
the new starting point, and the sub-region is relocated around this point. Thus
the process can continue for a number of iterations. The affine shaker algorithm
has been applied to problems within neural networking back propagation [2] and
as part of continuous reactive tabu search solving benchmark functions [1].

Paquette and Stützle [10] present an enhancement of local search called It-
erated Local Search (ILS) that optimises problems, such as the graph colouring
problem, in which there are two optimisation criteria. In terms of this problem,
ILS first attempts to find feasible colourings for successively smaller chromatic
numbers. At each iteration of the algorithm, a complete local search based heuris-
tic (such as classic hill climbing or tabu search) is executed. The procedure ter-
minates once a legal colouring cannot be found and hence returns the chromatic
number of the previous colouring. The authors reported receiving comparable
results to state of the art heuristics and meta-heuristics on benchmark problems.

2



Yuret and de la Maza’s [16] Dynamic Hill Climbing algorithm is a population
based approach that uses genetic algorithm mechanisms of reproduction and
selection in order to modify solutions. It also adds two elements to the search.
These are: a) the dynamic alteration of the search space co-ordinate system and
b) the exploitation of local optimum. The first is necessary when the search
encounters a local optima. It re-orients the search space co-ordinate system in
order to compute an escape trajectory. In terms of the latter, the local optima
found by the search process are recorded. If the population becomes stuck, a
diversification measure is enacted. A new starting point point is generated by
maximising the Hamming distance between the nearest recorded local optimum.
At this stage, the search process is restarted and the list of local optima is
reset. Dynamic hill climbing has been applied to De Jong’s set of continuous
test functions and has provided competitive performance [16].

Unlike the previously described local search methods, Complete Local Search
[7] implements a local search having a memory component. The strategy keeps
a finite list of previously visited solutions. This list is used to prohibit the search
process from exploring the neighbourhoods of these solutions at a later stage.
Experimental evaluation on the travelling salesman and subset sum problem
instances [7] suggest that though its execution times are efficient, its overall
performance is not yet comparable with standard heuristic and meta-heuristic
implementations.

3 The PHIL Search Algorithm

PHIL search is an extension of classical local search. It resembles multistart local
search as it performs multiple local searches. The key difference is that instead of
starting at a random point in state space, PHIL search probabilistically chooses
a point within the recently completed local search trajectory. The rationale for
this is that the point will at least be better than the starting point and may
lead to a superior end point. At this point, the new local search (referred to as a
branch) chooses the next best transition operation1 and proceeds until no more
improvement is possible (i.e., the classic local search termination condition).
Moreover, this is a recursive process as once a local search trajectory has been
explored (in terms of the generation of probabilistic branch points), the strategy
will return to the branch from which the current branch was initiated. This is
consistent with depth first search behaviour.

Termination of the overall algorithm is either after a certain number of indi-
vidual PHIL searches have been executed, or when a particular solution cost has
been obtained. In terms of the former, an individual PHIL search is completed
once the root branch (the original local search trajectory) has explored all its
branch points. These may be referred to as search trees. The only parameter
required by PHIL search (referred to as α) is the probability of branching at a
point on the local search trajectory. A high probability will produce dense search
trees, while the reverse is true for a low probability.

1 Any standard local search operator can be used within PHIL search.

3



Algorithm 1 The initialisation phase of PHIL search

1: Get user parameters(α, num restarts)
2: for trial = 1 to num restarts do
3: x = Generate a random initial feasible solution
4: cost = Find cost(x)
5: Initialise all of index array elements to 0
6: cost = Perform phil(x,α, cost, index, 1)
7: if cost < best cost then
8: best cost = cost

9: end if
10: end for
11: Output best cost

12: end

Algorithm 2 The PHIL search strategy

1: Perform phil(x,α, cost, index, level)
2: x′ = x

3: cost, trail length = Perform local search(x′, cost, tran list1, tran list2)
4: index[level] = Probabilistic find branch point(x, α, tran list1, tran list2)
5: if index[level] 6= dead branch then
6: index[level] = index[level] + 1
7: level = level + 1
8: Perform phil(x, α, cost, index, level)
9: level = level − 1
10: else
11: return cost

12: end if
13: end Perform phil

Algorithms 1-4 give the combined pseudocode description of PHIL search.
The first presents the framework in which PHIL search is executed. The termi-
nation condition used here represents the number of search trees generated. The
overall PHIL strategy is given in Algorithm 2 while Algorithm 3 corresponds to a
standard local search procedure. The final part of PHIL search probabilistically
chooses a branching point on the current local search trajectory. Fig. 1 provides
an explanation of some of the terms used within the overall algorithm.

4 Computational Experience

The methodology and results of testing PHIL search are described herein. The
target application for this initial study is the TSP. The local search operator
is the inversion operator, as it has been shown to be effective by Randall and
Abramson [12].

Initial experimentation with the α parameter suggests that appropriate val-
ues of it are a function of the size of the problem. In this case, the term “ap-
propriate” refers to values that tend to produce good quality solutions. Using a

4



Algorithm 3 The local search component of PHIL search

1: Perform local search(x, cost, tran list1, tran list2)
2: new cost = cost

3: index = 1
4: while new cost < cost do
5: cost = new cost

6: neighbours = Evaluate neighbours(x)
7: tran list1[index] = neighbours[1]
8: if there is a second best transition then
9: tran list2[index] = neighbours[2]
10: end if
11: Apply transition(x, tran list1[index])
12: new cost = Find cost(x)
13: index = index + 1
14: end while
15: return new cost and index

16: end Perform local search

Algorithm 4 The probabilistic branching strategy within PHIL search

1: Probabilistic find branch point(x, trail length, α, tran list1, tran list2, index)
2: Perform all transitions up to and including the indexth

3: while found = false And index < trail length do
4: Apply transition(x, tran list1[index])
5: q = unif rand()
6: if q ≤ α And tran list2[index] is present then
7: Apply transition(x, tran list2[index])
8: return index

9: end if
10: index = index + 1
11: end while
12: return dead branch

13: end Probabilistic find branch point

linear regression model on a subset of the test problem instances revealed that
α = −0.008n+0.925 (where n is the number of cities and the minimum bound of
the equation is 0.005) is a good overall function for the TSP. The investigation
of this parameter will receive further attention in future studies.

4.1 Methodology and Problem Instances

The computing platform used to perform the experiments is a 2.6GHz Red Hat
Linux (Pentium 4) PC with 512MB of RAM.2 Each problem instance is run
across ten random seeds.

The experiments are used to compare the performance of PHIL search to
a standard implementation of ACS (extended details of which can be found

2 The experimental programs are coded in the C language and compiled with gcc.

5



Fig. 1. Terms used within the PHIL search algorithm

x is the solution vector,
Find cost evaluates the objective function,
dead branch signifies a branch that has been explored,
Evaluate neighbours evaluates all the neighbours of a solution using a defined local
search operator,
neighbours is an ordered array of transition attributes of the neighbours,
tran list1 refers to the list of best transitions at each stage of the local search while
tran list2 is the list of the second best,
Apply transition() applies a transition to a solution using a set of transition attributes
and
unif rand() produces a uniform random number.

in Randall [11]). As the amount of computational time required for an ACS
iteration is different to that of a PHIL search iteration, approximately the same
amount of computational time per run is given to both strategies. This is based
on 3000 ACS iterations. It must be noted that the ACS solver applies a standard
local search (using inversion as the operator) to each solution that is generated.

Ten TSP problem instances are used to test both the ACS strategy and PHIL
search. These problems are from TSPLIB [13] and are given in Table 1.

Table 1. Problem instances used in this study

Name Size (cities) Best-Known Cost

hk48 48 11461
eil51 51 426
st70 70 675
eil76 76 538
kroA100 100 21282
bier127 127 118282
d198 198 15780
ts225 225 126643
pr299 299 48919
lin318 318 42029

4.2 Results and Comparison

The results for the ACS and PHIL search strategies (in terms of objective cost
and the amount of computational time required to reach a run’s best objective
value) are given in Tables 2 and 3 respectively. In order to describe the range

6



of costs gained by these experiments, the minimum (denoted “Min”), median
(denoted “Med”) and maximum (denoted “Max”) are given. Non-parametric
descriptive statistics are used as the data are highly non-normally distributed.
Additionally, each cost result is given by a relative percentage difference (RPD)
between the obtained cost and the best known solution. This is calculated as
E−F

F
× 100 where E is the result cost and F is the best known cost.

Table 2. The results of the ACS strategy on the TSP instances. Note that Runtime
is recorded in terms of CPU seconds

Problem Cost (RPD) Runtime
Min Med Max Min Med Max

hk48 0 0.08 0.08 0.04 1.29 16.32
eil51 0.47 2 2.82 0.08 0.49 40.69
st70 0.15 1.33 2.07 36.39 43.48 87.56
eil76 0.19 1.3 2.42 0.08 70.23 114.73
kroA100 0 0 0.54 8.67 34.58 192.17
bier127 0.32 0.72 1.87 58.64 253.21 855.28
d198 0.16 0.33 0.6 154.53 1723.34 2422.52
ts225 0.63 1.15 1.93 513.65 3019.9 5484.59
pr299 0.42 0.92 2.68 10139.87 10794.69 13470.37
lin318 1.39 1.92 3 10388.72 14185.36 16090.43

Table 3. The results of the PHIL search strategy on the TSP instances

Problem Cost (RPD) Runtime
Min Med Max Min Med Max

hk48 0 0.25 0.44 3.89 31.38 53.01
eil51 0 0.7 1.64 1.74 22.91 48.37
st70 0.15 0.3 0.74 19.73 127.04 264.78
eil76 1.12 2.42 3.35 56.7 138.69 309.24
kroA100 0.05 0.44 0.84 7.92 466.59 714.43
bier127 0.66 1.57 1.76 12.92 204.48 304.76
d198 1.12 1.66 1.86 17.26 1213.02 2172
ts225 0.34 0.61 0.93 173.25 2570.73 3602.72
pr299 2.13 2.64 3.7 455.17 6479.34 13885.99
lin318 2.96 3.86 4.51 5423.68 14961.38 19807.22

Given that PHIL search is a new technique, its overall performance is good
in terms of solution quality and consistency. Both strategies can find solutions in
all cases within a few percent of the best known costs. For the larger problems,
PHIL search’s performance is slightly behind that of ACS. However, it must be
bourne in mind that this ACS (as is standard with ant colony techniques) also

7



executes local searches for each solution that it constructs. It is suspected that
a greater exploration of the mechanics and the parameters of the new technique
will yield still better results. This is discussed in the next section.

5 Conclusions

A new meta-strategy search technique, based on local search, has been pro-
posed in this paper. PHIL search uses a recursive branching strategy, based on
previous points within a search trajectory, to generate new searches. The advan-
tage to this technique is that the branching strategy is computationally light in
comparison to the characteristic mechanics of other meta-heuristics, particularly
TS and ACO. Additionally, it only requires one parameter. The performance of
PHIL search on benchmark TSP instances is encouraging. It can achieve solution
costs within a few percent of best known costs and it is comparable to an ACS
implementation.

In principle, PHIL search can be applied to any combinatorial optimisation
problem that has been solved by traditional techniques (such as SA, TS and
ACO). The development of the procedure is still in the initial stages. Some of the
larger issues include the mechanics of the branching strategy and PHIL search’s
performance on a wider range of COPs. The former will involve the investigation
of alternative strategies such as those based on heuristic strategies rather than
just probabilities. As for the latter, the performance of PHIL search needs to
be benchmarked against other meta-heuristics, especially on larger and more
difficult problems. Of interest will be the incorporation of constraint processing
within the strategy. Additionally, it is also possible to replace the local search
branches with either tabu searches or simulated annealing.

References

1. Battiti, R., Tecchiolli, G.: The continuous reactive tabu search: blending combina-
torial optimization and stochastic search for global optimization. Technical Report
UTM 432, Department of Mathematics, University of Trento (1994)

2. Battiti, R., Tecchiolli, G.: Learning with first, second and no dervatives: a case
study in high energy physics. Neurocomputing 6 (1994) 181–206

3. Crauwels, H., Potts, C., van Wassenhove, L.: Local search heuristics for the sin-
gle machine total weighted tardiness scheduling problem. INFORMS Journal on
Computing 10 (1998) 341–350

4. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD. thesis, Politec-
nico di Milano (1992)

5. Ernst, A., Krishnamoorthy, M.: Solution algorithms for the capacitated single
allocation hub location problem. Annals of Operations Research 86 (1999) 141–
159

6. Feo, T., Resende, M.: Greedy randomised adaptive search procedures. Journal of
Global Optimization 51 (1995) 109–133

7. Ghosh, D., Sierksma, G.: Complete local search with memory. Journal of Heuristics
8 (2002) 571–584

8



8. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston, MA
(1997)

9. Mills, P., Tsang, E., Ford, J.: Applying an extended guided local search to the
quadratic assignment problem. Annals of Operations Research 118 (2003) 121–
135

10. Paquete, L., Stützle, T.: An experimental investigation of iterated local search for
colouring graphs. In Cagnoni, S., Gottlieb, J., Hart, E., Raidl, G., eds.: Proceed-
ings of EvoWorkshops 2002. Volume 2279 of Lecture Notes in Computer Science.,
Springer Verlag (2002) 122–131

11. Randall, M.: A systematic strategy to incorporate intensification and diversification
into ant colony optimisation. In: Proceedings of the Australian Conference on
Artificial Life, Canberra, Australia (2003)

12. Randall, M., Abramson, D.: A general meta-heuristic solver for combinatorial
optimisation problems. Journal of Computational Optimization and Applications
20 (2001) 185–210

13. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on
Computing 3 (1991) 376–384

14. van Laarhoven, P., Aarts, E.: Simulated Annealing: Theory and Applications. D.
Reidel Publishing Company, Dordecht (1987)

15. Voudouris, C.: Guided Local Search for Combinatorial Optimisation Problems.
PhD. thesis, Department of Computer Science, University of Essex (1997)

16. Yuret, D., de la Maza, M.: Dynamic hill climbing: Overcoming the limitations of
optimization techniques. In: The 2nd Turkish Symposium on Artificial Intelligence
and Neural Networks. (1993) 208–212

9

View publication statsView publication stats

https://www.researchgate.net/publication/27827962

	Recommended Citation
	Bond University
	ePublications@bond
	1-1-2005

	The Probabilistic Heuristic In Local (PHIL) Search Meta-strategy
	Marcus Randall




