Effectiveness of Different Topical Treatments in the Healing of Pressure Injuries: A Network Meta-analysis

Furuya-Kanamori, Luis; Walker, Rachel M; Gillespie, Brigid M; Clark, Justin; Doi, Suhail A R; Thalib, Lukman

Published in:
Journal of the American Medical Directors Association

DOI:
10.1016/j.jamda.2018.10.010

Licence:
CC BY-NC-ND

Recommended citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository coordinator.
Review Article

Effectiveness of different topical treatments in the healing of pressure injuries: A network meta-analysis

Running title: Treatment for pressure injuries

Luis Furuya-Kanamori¹*, Rachel M. Walker²³*, Brigid M. Gillespie²⁴, Justin Clark⁵, Suhail A.R. Doi¹⁶§, Lukman Thalib⁷§

¹ Department of Population Medicine, College of Medicine, Qatar University, Doha, Qatar
² School of Nursing and Midwifery, Griffith University, Gold Coast, Australia
³ Division of Surgery, Princess Alexandra Hospital, Metro South Health, Brisbane, Australia
⁴ Gold Coast University Hospital, Gold Coast Health, Gold Coast, Australia
⁵ Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
⁶ School of Population Health, Australian National University, Canberra, Australia
⁷ Department of Public Health, College of Health Sciences, Qatar University, Doha, Qatar

* Joint first authors
§ Joint senior authors

Post-publication correspondence to:
Rachel M. Walker
Nursing Practice Development Unit, Building 15, Level 2, Princess Alexandra Hospital (PAH),
Ipswich Road Woolloongabba QLD 4102, Australia
E: r.walker@griffith.edu.au; T: + 61 7 3176 5843; F: +61 7 3176 7356

Word count (body): 3160 words
Word count (abstract): 299 words

Key words: Comparison, meta-analysis, network, pressure injuries, treatment

Funding: This research was supported by Qatar University Grant No. QUUG-CHS-CHS-15\16\1.
Abstract

Objectives: Pressure injuries (PIs) are one of the most common types of complex wounds and impose a huge economic burden to the healthcare system and the patients. A plethora of topical treatments is widely available for PI treatment, yet there is a paucity of evidence with regards to the most effective treatment. The objective of this study was to compare the effect of various topical treatments and identify the best treatment choice(s) for PI healing.

Design: Systematic review and network meta-analysis.

Setting and Participants: All published randomized controlled trials that compared the effectiveness of two or more of the following dressing groups: basic, foam, active, hydroactive, and other wound dressings.

Measures: The outcome was the relative risk (RR) of complete healing following treatment and the generalised pair-wise modelling framework was used to generate mixed treatment effects against hydroactive wound dressing, currently the standard of treatment for PIs. All treatments were then ranked by their point estimates.

Results: 40 studies (1,757 participants) comparing 5 dressing groups were included in the analysis. All dressings groups ranked better than basic (i.e. saline gauze or similar inert dressing). The foam (RR 1.18; 95%CI 0.95-1.48) and active wound dressing (RR 1.16; 95%CI 0.92-1.47) ranked better than hydroactive wound dressing in terms of healing of PIs when the latter was used as the reference group.

Conclusions/Implications: There was substantial uncertainty around the point estimates; however, evidence from our analysis supports the use of hydroactive wound dressings to replace basic dressings. Foam and active wound dressing groups seem promising and therefore need further investigation. High-quality, rigorously conducted research about the clinical effectiveness of the topical treatments in these two groups developed in consultation with health professionals, patients, and their carers is needed to identify if indeed foam and active wound dressings provide advantages over hydroactive dressings.
Introduction

Pressure injuries (PI),\(^1\) also known as pressure ulcers or bed-sores, are wounds involving the skin and sometimes the tissue on bony parts of the body, often occurring over bony prominences such as the sacrum and heel.\(^2\) They are caused by a combination of pressure, shear, and friction that leads to microcirculatory occlusion, resulting in stimulation of inflammatory processes.\(^2\) This in turn can lead to cell death, ulceration, and tissue necrosis.\(^3\) PIs can have a significant impact on those affected, as they can cause pain and infection which can increase patient’s hospital length of stay and significantly decrease their health-related quality of life.\(^4\) People at high risk of developing PIs include those with limited mobility such as older people, people with short or long-term medical conditions, and those with spinal injuries.\(^5\) Lack of mobility, reduced sensory perception, poor nutrition, and hydration as well as lack of blood flow can all increase the risk of developing PIs.\(^5\)

Development of PI can be rapid and lead to irreversible tissue damage in vulnerable patients after as little as 30 minutes of uninterrupted pressure.\(^6\)

Globally, PIs are one of the most common types of complex wounds. An estimated 2.5 million people are affected annually in the US alone.\(^7\) A large European pilot study estimated the hospital PI point prevalence to be 10.5%.\(^8\) National PI data collected in the UK’s National Health Service (NHS) reported a prevalence of 4.2% across community and acute care settings in September 2017,\(^9\) although the study could have underestimated the actual prevalence of PIs in the UK due to the low sensitivity of the tool used to identify the cases.\(^10,11\) Prevalence of PIs can vary according to setting and can be as high as 26% in some settings such as long-term, acute-care, and rehabilitation settings.\(^12\)

Managing PIs can be expensive. Annual health care costs associated with PIs in the UK in 2012/13 were estimated to be in the range GBP 4.5 to 5.1 billion.\(^13\) In the USA in 2014 alone, treatment for PIs were estimated at USD 9.1 to 11.6 billion annually with 2.5 million people affected and approximately 60,000 deaths resulting from PIs.\(^14\) The total costs to the Australian healthcare system for treating PIs have been estimated at AUD 1.8 billion annually or 9% of public
hospital expenditure.15 Although dated, these cost-estimates provide an insight about the substantial financial burden PIs represent within contemporary health contexts.

In terms of the treatment of PIs, there are two major strategies that are currently being employed: 1) the use of pressure-relieving support surfaces (e.g., alternating pressure air mattresses); and 2) management of ulcers using topical treatments such as wound dressings.16,17 Other general strategies for treating and healing PIs include optimizing circulation/perfusion, improving nutrition and the treatment of clinical infection.2,16 Topical treatments are widely used to treat PIs, there are a plethora of options to choose from including alginate, hydrocolloid, protease-modulating dressings, topical agents, and other therapies. Despite this, there is paucity of evidence to facilitate decision-making regarding the type of topical treatments that are the most clinically effective. This is despite many published meta-analyses examining effects of dressings, negative pressure wound therapy and topical agents on healing of PIs in mainly adult populations in care settings.18-22

A key issue has been the statistical methods used in previous reviews of topical treatments such as hydrogel,19 alginate,18 and foam22 as well as other therapies such as negative pressure wound therapy20 which only allowed pairwise comparisons. Results from these reviews consistently reported low to very low certainty of evidence from included studies due to high risk of bias (lack of allocation concealment and blind assessment) and imprecision (small studies and incomplete reporting). More significantly, they were unable to provide clear advice on effectiveness of the topical treatment in healing PIs. While we were undertaking this project, an attempt to address this limitation via a network meta-analysis was published.21 However, the authors of the study were still unable to determine which topical treatments were the most likely to heal PIs because sparseness of their network led to inconclusive results.23 Our approach differs from the latter in several ways including in the classification of topical treatments, extent of coverage of studies and methodology used which brings much more clarity to this issue and does away with the issue of sparseness.
Methods

Findings of this systematic review and meta-analysis are presented according to PRISMA reporting guidelines.

Search strategy

The original search strategy was designed in PubMed and converted for use in the following databases using the Systematic Reviews Accelerators Polyglot Search Translation module, with no limitations on year or language: CINAHL, Embase, Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials (CENTRAL). The initial search was conducted on 15th September 2016 and updated on 1st December 2017. Search terms related to pressure injuries, pressure ulcers, topical treatment types, and outcome measurements (i.e. healing) were included. The full search strategy is shown in the supplementary material (S1). In order to achieve a comprehensive evaluation of the published evidence, the systematic search was supplemented with a forwards and backwards citation search as well as retrieving the first 20 similar articles from PubMed for each of the papers included from the searches. We sought additional papers from the reference lists of relevant meta-analyses and review papers.

Titles and abstracts of all papers that were extracted by the search engine were uploaded to the Rayyan platform (http://rayyan.qcri.org/) which is a web application developed by Qatar Computing Research Institute (Data Analytics). Five authors (LFK, RW, BG, SD and LT) independently screened the titles and abstracts on the Rayyan platform. Any disagreements were resolved through author consensus. Additionally, LFK and RW examined the full-text papers for eligibility against the review protocol. Disagreements were resolved through consensus and by involvement of a third author (BG).

Selection criteria

Eligible studies were published and unpublished randomized controlled trials (RCTs) that enrolled patients with stage 2-4 PIs and compared the effectiveness of two or more of the following
The narrow topical treatment categories: antimicrobial, basic (i.e. gauze with normal saline), collagenase, collagen, combined treatment (i.e. when multiple active components were included), film, foam (i.e. lyofoam, polyurethane), growth factors, hydrocolloid, hydrogel, moisture retentive (i.e. calcium alginate), negative pressure, and radiant heat. These dressings were selected because they were either: 1) identified in the literature as wound care products used for the treatment of PI; 2) available to clinicians for use in routine practice; 3) recommended by international clinical guidelines; 2 or 4) under investigation as an experimental or alternative dressing for the treatment of PI. Dressings were grouped according to their dominant element. The network using these 13 narrowly defined topical treatment categories initially selected was noted to be sparse. The key issue with this is that networks that are not well connected may provide unreliable estimates and rank treatment options incorrectly and/or may lead to inconsistent ranking of the dressing when the reference category changes.

For these reasons a parallel analysis using a broader classification based on mechanisms of action provided by Horn 29 was conducted. This classification defined five dressing groups as follows: Basic wound dressing (i.e. inert materials like saline gauze), hydroactive wound dressing (i.e. hydrocolloid, hydrogel, moisture retentive dressings), foam dressing, active wound dressing (i.e. collagen, growth factors), and other wound dressing (i.e. antimicrobial, collagenase, film, negative pressure, radiant heat) to achieve a network that was not sparse. These two classifications are given in table 1.

Studies were also excluded if they assessed effectiveness more than one year post-treatment or included other types of wounds (e.g. chronic wound and venous leg ulcers). Because we used a pair-wise modelling approach (described below), if studies compared an odd number of eligible treatments, we selected a pair (or multiple pairs) of treatments for inclusion in meta-analysis. In such cases, we prioritised the inclusion of treatments with the lowest dose and that are currently in widespread use for PI healing over novel treatments.
Data extraction

Data extraction was performed by LFK and RW. We extracted the year and country of study; study population topical treatment names, types and schedules; sample size; number of people “healed” and “not healed” after treatment; and follow-up time. If a study compared the same intervention in both arms, it was assumed that the effect of such an intervention cancelled itself from both arms (e.g. a RCT compared hydrocolloid + hydrogel against hydrocolloid + collagen, it was considered as hydrogel compared to collagen) and dressings were classified accordingly to the remaining active ingredients.

Quality assessment

Quality of included studies was assessed using the Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. This scale assessed studies for risk of bias using items related to random sequence generation, allocation concealment, selective reporting, blinding, incomplete data, and attrition rate (supplementary material S2).

Statistical analysis

We aimed to examine healing rate; that is the proportion of treated individuals whose PIs healed completely based on the cure criteria, where reported in each study. The outcome calculated for each study was the relative risk (RR) of cure following topical treatment. We used an automated generalised pair-wise modelling (GPM) framework to generate mixed treatment effects against basic dressings, currently the simplest standard treatment. This framework requires no additional assumptions other than that of transitivity, and uses an automated process to extend the previously reported Bucher method for single three-treatment loops. The method involves: (1) pooling effect sizes for direct comparisons between each combination of two treatments using meta-analysis; (2) performing indirect comparisons by automated generation of all possible closed loops of three treatments such that one is common to two studies; and (3) pooling all direct and indirect effects
using meta-analysis to give a final effect size comparing each treatment to the common comparator. To pool estimates, we used the inverse variance heterogeneity model, which uses a quasi-likelihood based variance structure without distributional assumptions and has been shown to perform better when compared to the random effects method. For comparison, all analyses were re-run using the random effects model within a multivariate frequentist framework.

We assessed statistical heterogeneity across pooled direct effects using Cochran’s Q and the H index. The H index is the square root of H^2, the estimated residual variance from the regression of the standardized treatment effect estimates against the inverse standard error in each direct meta-analysis. H was computed as follows:

$$H = \sqrt{\frac{\max (1, n-1) \cdot Q}{\max (1, n-1)}}$$

where n is the number of study estimates and Q represents the Chi squared from Cochran’s Q.

Transitivity across the network was assessed by examining inconsistency across the network using the weighted pooled H index (\bar{H}), which was computed from Cochran’s Q as follows:

$$\bar{H} = \sqrt{\frac{\sum_{j=1}^{k} \max (1, n-1) \cdot Q}{\sum_{j=1}^{n} n - k + s}}$$

where n is the number of estimates pooled across each comparison and s is the number comparisons (out of k) where $n=1$. The minimum value H or \bar{H} can take is 1. $\bar{H} < 3$ was taken to be minimal inconsistency based on our simulations in homogenous direct meta-analyses.

Sensitivity analyses were performed based on restricting the network to studies that examined efficacy within 6-12 weeks and to assess the impact of the risk of bias on the results (using a quality effects model35).

Publication bias was assessed using ‘comparison-adjusted’ funnel plots, that plots the difference of each study’s observed $\ln(RR)$ versus the comparison’s mean $\ln(RR)$ obtained from meta-analysis on the horizontal axis. In the absence of small-study effects, studies are expected to form an inverted funnel centred at zero.36
All analyses involved in the generalised pair-wise modelling (GPM) framework were conducted using MetaXL version 5.3 (EpiGear Int Pty Ltd.; Brisbane, Australia) developed by one of us (SD). Funnel and network plots were created in Stata version 14.1 (College Station, TX, USA).

Role of funding sources

This research was supported by Qatar University Internal Grant No. QUUG-CHS-CHS-15\16 -1. The findings detailed herein are solely the responsibility of the authors with no interference by the funder.
Results

Identified studies

Database searches, forwards and backwards citation search, and retrieving the first 20 similar articles from PubMed identified 2496 studies that were initially screened by title and abstract, from which 172 potentially relevant papers were selected. Of these, 44 met the inclusion criteria for the systematic review and were included in the network meta-analysis (Figure 1).

Characteristics of included studies

The 44 included studies were published between 1983 and 2015. Studies were conducted in Asia (2 countries [Korea and Iran], 2 studies), North America (1 country [USA]; 21 studies), and Europe (10 countries [Denmark, Finland, France, Germany, Italy, Netherlands, Poland, Spain, Sweden, and UK]; 21 studies).

Twenty studies had a comparison to basic dressing, and 31 studies to a hydroactive dressing; representing the two most common topical treatments. The remaining studies had a variety of topical treatment types. Complete healing was assessed at a median follow-up of 8 weeks (IQR 6.5 – 13 weeks) with a range of 1.5 – 52 weeks (Table 2).

Included topical treatments

A total of 13 topical treatment categories and 5 dressing wound groups were included in the network meta-analyses. Topical treatments within the same category were deemed exchangeable (Table 2). Figure 2A and 2B depict the network plot showing the comparison groups for each study.

Quantitative synthesis

Based on 44 studies examining treatment of PIs, when basic dressing was used as the reference treatment category, all topical treatment categories were found to have a better rank than basic dressing being negative pressure, film, and combined treatment the ones with the biggest effect size. Combined treatment (RR 1.88; 95%CI 1.08-3.25) was found to be the only dressing
category to have statistically significant improvement in healing when compared to basic dressings (Figure 3A). When hydrocolloid was used as the reference category in the analysis, the ranking of the dressing categories dramatically changed (Figure 3B). It is clear from the results that the network with 13 dressing categories was sparse, the point estimates were not reliable, and the ranking of the treatments was not stable. This analysis was not informative and therefore we proceeded with the next analysis.

When the analysis was carried out using the 5 wound dressing groups as defined by Horn;\(^\text{29}\) 40 studies were included, 4 studies\(^{37-40}\) were excluded because they compared wound dressings within the same group. The basic wound dressings was used as the reference group, all dressing groups were better in rank than basic dressings. In ascending order of efficacy based on the point estimate, the ranking was other, hydroactive, active, and foam dressings and only the latter being statistically significantly better (Figure 4A). The ranking of dressing groups remained unchanged when the hydroactive dressings was used as the reference (Figure 4B and supplementary material S3) revealing a stable (non-sparse) network with reliable results.

Analysis using a conventional approach (i.e. multivariate frequentist framework) did not alter the ranking nor the pooled estimates significantly, but differed in terms of error estimation (confidence intervals) (supplementary material S4).

Sensitivity analysis and assessment of bias

Sensitivity analysis restricting the network to studies that assessed healing between 6-12 weeks after treatment (n=28), showed that the results remain robust to these changes in the selection criteria revealing that foam, active wound dressing, and hydroactive wound dressing are the only treatment options (supplementary material S5).

The most common deficiencies in safe-guarding against bias were: participants and personnel not blind to study group allocation (6 studies) or not clearly stated (354 studies); allocation concealment not properly conducted (4 studies) or not stated (32 studies); and outcome
assessors not blind to study group allocation (6 studies), or not stated (26 studies) (supplementary material S2). Results after application of the quality effects model35 were not different to the main results (supplementary material S6).

Comparison-adjusted funnel plots (supplementary material S7) demonstrated little evidence of asymmetry. There was minimal inconsistency across treatment networks, with $\bar{H} = 1.20$. There was little inconsistency across direct and indirect effects ($H<3.0$) for each of the treatment comparison pairs, including when the network was restricted in sensitivity analyses.
The results of the network meta-analysis that included 40 RCTs involving 1,757 participants, comparing five dressing groups revealed that foam and active dressings are the most effective treatments for healing PIs. While the effect size of all dressing groups was higher than basic wound dressings, the uncertainty was also high, which means that these results need confirmation.

A major issue in the recent network meta-analysis may have been the approach the researchers used to grouping PI topical treatments leading to a sparse network, and we avoided this by creating groups of tentatively similar mechanisms of action. Another key strength of the current study is the use of the GPM framework which does not require assumptions that are not stated explicitly or cannot be verified when the method is applied. In comparison, the multivariate frequentist framework commonly used in other network meta-analyses assumes that if there is no common comparator in the network, this then has to be handled by augmenting the dataset using fictional arms with high variance. This requires a decision as to what constitutes a sufficiently high variance and therefore may not always be impartial. Additionally, the GPM framework has fewer assumption (i.e. transitivity and independence of treatment effects between studies) than the multivariate frequentist framework that also requires distributional assumptions as well as augmented datasets (using fictional study arms of high variance) when studies lack the reference treatment.

The absence of robust research in this area and the extensive heterogeneity of dressings makes it difficult for researchers to provide clear advice to clinicians and decision-makers about safe and effective PI treatment options for patients. While the findings from our analysis contribute to decision-making related to choice of therapy, topical treatments, they should be considered carefully. Given the huge variety of treatment options now available within the health industry, clinicians should also consider contextual factors such as wound characteristics, patient preference and cost. However, the results of this study do indicate that basic dressings should be abandoned in favor of the better options in terms of wound healing.
Despite the methodological strengths of our study, we acknowledge some limitations. Firstly, the topical treatments included in the designated categories may have been developed by different manufacturers, had slightly different compositions, and had variation in duration of interventions between studies. Additionally, the assumption of exchangeability within category was an empirical judgement and should be considered a limitation of this network meta-analysis. Secondly, the network meta-analysis only focused on complete wound healing. Other outcomes such as time to complete healing, reduction in ulcer size, adverse events, cost, and patient quality of life should also be considered in future analyses.

Conclusion

Findings from this systematic review and network meta-analysis demonstrate evidence for the discontinuation of use of basic dressings. Hydroactive dressings are the mainstay practice, but our analysis suggests that the use of foam or active wound dressings may be more effective strategies for healing PIs. This should not be considered conclusive and more high-quality, rigorous research about the effectiveness of the dressings within these two groups is needed to confirm if these are indeed better than the current standard of hydroactive dressings.
Contributors’ statement

RW, BG, SD, and LT conceived and designed the review protocol. JC built the search strategies and performed the database search. LFK and RW screened the articles. LFK, RW, BG, and SD assisted with the data extraction and quality assessment. LFK, RW, SD, and LT conducted the statistical analysis and/or drafted the initial version of the manuscript. All authors contributed to editing and revising the manuscript. All authors approved the final version of the manuscript.

Declaration of interests

The authors declare no competing interests.

Acknowledgements

The authors pay tribute to the late Jan Barendregt of Epigear International Pty Ltd, who passed away during preparation of this work, for his unwavering commitment to excellence in epidemiological modelling and whose support has greatly enhanced this research.

The authors would like to thank Faseela Chakkalakkal Abdullakutty for her assistance during the data extraction.

Funding source

This research was supported by Qatar University Internal Grant No. QUUG-CHS-CHS-15\16\-1. The findings detailed herein are solely the responsibility of the authors with no interference by the funder.
References

Figures titles

Figure 1. PRISMA flow diagram of study selection for quantitative synthesis

Figure 2. Network plot showing the A) 13 topical treatment categories and B) 5 wound dressing groups. The circle size is proportional to the number of arms while the width of the lines is proportional to the number of pairs.

Figure 3. Network forest plot based on 44 studies ranking comparisons based on their relative risk for wound healing using A) basic and B) hydrocolloid as the reference topical treatment category. When the reference treatment category changes, the ranking changes as well due to sparseness in the network making these results unreliable.

Figure 4. Network forest plots based on 40 studies ranking comparisons based on their relative risk for wound healing using A) basic and B) hydroactive as the reference dressing group. This network is non-sparse and stable, thus rankings remain reliable when the reference dressing group changes.
Table 1. Classification of the dressings

<table>
<thead>
<tr>
<th>Topical treatment categories</th>
<th>Wound dressing groups</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAS Basic (e.g. saline gauze, placebo)</td>
<td>BWD Basic</td>
<td>Inactive dressings can pick up secretions from the wound, but do not create a specific microenvironment that promotes wound healing.</td>
</tr>
<tr>
<td>HCD Hydrocolloid (e.g. DuoDerm, Comfeel Plus, Tegaderm)</td>
<td>HWD Hydroactive</td>
<td>Hydroactive wound dressings accelerate wound healing by altering the microclimate of the wound and imitating the physiological process to form a moist wound environment.</td>
</tr>
<tr>
<td>HGD Hydrogel (e.g. Askina Transorbent, BioFilm hydrogel, Acemannan hydrogel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRD Moisture retentive (e.g. UrgoSorb, Aquacel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOA Foam (e.g. Epi-Lock dressing, Allevyn hydrocellular foam, Spyrosorb)</td>
<td>FOA Foam</td>
<td>Foam dressings absorb wound exudate, insulate the wound and provide a moist wound healing environment.</td>
</tr>
<tr>
<td>COL Collagen (e.g. Promogran, Medifil Collagen Particles)</td>
<td>AWD Active</td>
<td>Active dressings have a defined mechanism of action through which they intervene in the pathophysiological processes in the wound by substitution / suppression or alteration of factors.</td>
</tr>
<tr>
<td>GRF Growth factor (e.g. Dermagraft, Transforming growth factor beta-3, Recombinant platelelderived growth factor-BB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD Antimicrobial (e.g. Cadexomer iodine, povidine soaked wet gauze, Dakin's solution)</td>
<td>OWD Other</td>
<td>Wound dressings with other mechanisms of action.</td>
</tr>
<tr>
<td>CLD Collagenase (e.g. Iruxol monooointment)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIL Film (e.g. 3M Tegaderm Absorbent Clear Acrylic Dressing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPD Negative pressure (e.g. V.A.C. therapy system)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHD Radiant heat (e.g. Augustine Medical warm-up)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM Combined – multiple active components</td>
<td>Classified in a dressing group depending on the type of combination of the active ingredients.</td>
<td></td>
</tr>
</tbody>
</table>

- Topical treatment categories: AMD antimicrobial; BAS basic; CLD collagenase; COL collagen; COM combined treatment; FIL film; FOA foam; GRF growth factor; HCD hydrocolloid; HGD hydrogel; MRD moisture retentive; NPD negative pressure; RHD radiant heat.
- Wound dressing groups: AWD active; BWD basic; FOA foam; HWD hydroactive; OWD other wound dressing.
Table 2. Characteristics of the included studies

<table>
<thead>
<tr>
<th>Serial number</th>
<th>First author and year of publication</th>
<th>Study location</th>
<th>Follow-up duration</th>
<th>Topical treatments</th>
<th>Topical treatment category</th>
<th>Wound dressing group</th>
<th>Number of participants (healed/ treated)</th>
<th>Criteria for complete healing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alm (1989)[42]</td>
<td>Sweden</td>
<td>6 weeks</td>
<td>Hydrocolloid - Hydrocolloid - Saline gauze</td>
<td>HCD - BAS</td>
<td>HWD - BWD</td>
<td>17/31 - 4/25</td>
<td>Area of the PI equal to zero</td>
</tr>
<tr>
<td>2</td>
<td>Anguilo-Sanchez (2001)[43]</td>
<td>Spain</td>
<td>7 weeks</td>
<td>Alginate and hydrocolloid - Alginate and hydrocolloid - Saline gauze</td>
<td>COM - BAS</td>
<td>HWD - BWD</td>
<td>20/35 - 10/35</td>
<td>Not reported</td>
</tr>
<tr>
<td>3</td>
<td>Ashby (2012)[44]</td>
<td>UK</td>
<td>26 weeks</td>
<td>Hydrocolloid, alginate - Negative pressure dressing</td>
<td>COM - NPD</td>
<td>HWD - OWD</td>
<td>0/6 - 1/6</td>
<td>Epithelialisation and cessation of treatment to achieve healing</td>
</tr>
<tr>
<td>5</td>
<td>Banks (1994a)[46]</td>
<td>UK</td>
<td>6 weeks</td>
<td>Semi-permeable polyurethane dressing - Hydrocolloid</td>
<td>FOA - HCD</td>
<td>FOA - HWD</td>
<td>11/13 - 10/16</td>
<td>Not reported</td>
</tr>
<tr>
<td>6</td>
<td>Banks (1994b)[47]</td>
<td>UK</td>
<td>12 weeks</td>
<td>Polyurethane dressing - Hydrocolloid</td>
<td>FOA - HCD</td>
<td>FOA - HWD</td>
<td>12/20 - 10/20</td>
<td>Not reported</td>
</tr>
<tr>
<td>7</td>
<td>Belmin (2002)[48]</td>
<td>France</td>
<td>8 weeks</td>
<td>Hydrocolloid - Calcium alginate and hydrocolloid</td>
<td>BAS - MRD</td>
<td>BWD - HWD</td>
<td>31/53 - 43/57</td>
<td>Surface area reduction ≥40%</td>
</tr>
<tr>
<td>8</td>
<td>Brod (1990)[49]</td>
<td>USA</td>
<td>8 weeks</td>
<td>Polyhexa dissolved in polyethylene glycol - Hydrocolloid</td>
<td>HGD - HCD</td>
<td>HWD - HWD</td>
<td>14/27 - 10/16</td>
<td>Not reported</td>
</tr>
<tr>
<td>9</td>
<td>Brown-Etris (1996)[50]</td>
<td>USA</td>
<td>10 weeks</td>
<td>Hydrogel - Hydrocolloid</td>
<td>HGD - HCD</td>
<td>HWD - HWD</td>
<td>39/77 - 37/77</td>
<td>Not reported</td>
</tr>
<tr>
<td>10</td>
<td>Brown-Etris (2008)[49]</td>
<td>USA</td>
<td>8 weeks</td>
<td>Hydrocolloid - Transparent absorbent acrylic</td>
<td>HCD - FIL</td>
<td>HWD - OWD</td>
<td>22/37 - 21/35</td>
<td>Closed PI wounds</td>
</tr>
<tr>
<td>12</td>
<td>Colwell (1993)[52]</td>
<td>USA</td>
<td>12 weeks</td>
<td>Hydrocolloid wafer dressing - Hydrocolloid wafer dressing - Saline gauze</td>
<td>HCD - BAS</td>
<td>HWD - BWD</td>
<td>11/33 - 1/37</td>
<td>PI completely covered with epithelial tissue</td>
</tr>
<tr>
<td>13</td>
<td>Darkovich (1990)[53]</td>
<td>USA</td>
<td>8.5 weeks</td>
<td>Hydrocolloid - Hydrocolloid - Biofilm hydrogel</td>
<td>HCD - HGD</td>
<td>HWD - BWD</td>
<td>9/36 - 12/35</td>
<td>PI wound closure</td>
</tr>
<tr>
<td>14</td>
<td>Ford (2002)[54]</td>
<td>USA</td>
<td>6 weeks</td>
<td>Vacuum assisted closure - VAC system - Healthpoint system</td>
<td>NPD - COM</td>
<td>OWD - HWD</td>
<td>27/21 - 2/15</td>
<td>Not reported</td>
</tr>
<tr>
<td>15</td>
<td>Gorse (1987)[55]</td>
<td>USA</td>
<td>11 weeks</td>
<td>Hydrocolloid - Wet-to-dry dressing with Dakin solution</td>
<td>HCD - AMD</td>
<td>HWD - OWD</td>
<td>54/76 - 26/52</td>
<td>Not reported</td>
</tr>
<tr>
<td>16</td>
<td>Graumlich (2003)[56]</td>
<td>USA</td>
<td>8 weeks</td>
<td>Hydrocolloid - Collagen</td>
<td>HCD - COL</td>
<td>HWD - AWD</td>
<td>15/30 - 18/35</td>
<td>Not reported</td>
</tr>
<tr>
<td>17</td>
<td>Hirshberg (2001)[57]</td>
<td>USA</td>
<td>16 weeks</td>
<td>TGF-b3 1 ug/cm² - TGF-b3 2.5 ug/cm² [excluded arm] - Placebo gel</td>
<td>GRF - BAS</td>
<td>AWD - BWD</td>
<td>0/4 - 0/5</td>
<td>Not reported</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Duration</td>
<td>Treatment</td>
<td>Follow-up</td>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollisaz (2004) &</td>
<td>Iran</td>
<td>8 weeks</td>
<td>Hydrocolloid, Saline gauze, Phentoin cream [excluded arm]</td>
<td>HCD</td>
<td>Intact dermis and epidermis, no abrasion or ulceration.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim (1996)</td>
<td>Korea</td>
<td>7.6 weeks</td>
<td>Hydrocolloid, Wet-to-dry dressing with povidone iodine</td>
<td>HCD</td>
<td>When no further dressing was required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraft (1993)</td>
<td>USA</td>
<td>24 weeks</td>
<td>Saline gauze, Epi-lock dressing</td>
<td>BAS</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuflik (2001)</td>
<td>USA</td>
<td>6 weeks</td>
<td>ResurfrixR, Petroleum jelly</td>
<td>COM</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landi (2003)</td>
<td>Italy</td>
<td>6 weeks</td>
<td>Topical nerve growth factor, Balanced salt solution</td>
<td>GRF</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matzen (1999)</td>
<td>Denmark</td>
<td>12 weeks</td>
<td>Saline gauze, Hydrocolloid</td>
<td>BAS</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moberg (1983)</td>
<td>Sweden</td>
<td>8 weeks</td>
<td>Saline, enzyme debriding, or nonadhesive dressing, Cadexomer iodine</td>
<td>COM</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muller (2001)</td>
<td>Netherlands</td>
<td>14 weeks</td>
<td>Collagenase ointment, Hydrocolloid</td>
<td>CLD</td>
<td>Total epithelialization of PIs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mustoe (1994)</td>
<td>USA</td>
<td>26 weeks</td>
<td>rPDGF-BB 100 ug/ml, rPDGF-BB 300 ug/ml [excluded arm], Placebo, Growth factor excluded</td>
<td>GRF</td>
<td>Area of opening being equal to zero</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neill (1989)</td>
<td>USA</td>
<td>8 weeks</td>
<td>Hydrocolloid, Saline gauze</td>
<td>HCD</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nisi (2005)</td>
<td>Italy</td>
<td>26 weeks</td>
<td>Povidone iodine plus paraffin, Protease modulating matrix</td>
<td>AMD</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleske (1986)</td>
<td>USA</td>
<td>1.5 weeks</td>
<td>Polyurethane self-adhesive foam dressing, Saline gauze</td>
<td>FOA</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payne (2001)</td>
<td>USA</td>
<td>52 weeks</td>
<td>GM-CSF, Placebo, bFGF [excluded arm], Sequential GM-CSF and bFGF [excluded arm]</td>
<td>GRF</td>
<td>Wound closure ≥85%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payne (2004)</td>
<td>USA</td>
<td>24 weeks</td>
<td>Saline gauze, Dermagraft</td>
<td>BAS</td>
<td>Full epithelialization and the absence of drainage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payne (2009)</td>
<td>USA</td>
<td>4 weeks</td>
<td>Self-adhesive polyurethane foam dressing, Saline gauze</td>
<td>FOA</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piatkowski (2012)</td>
<td>Germany</td>
<td>3 weeks</td>
<td>Polyurethane foam dressing + Collagen, Polyurethane foam dressing</td>
<td>COL</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price (2000)</td>
<td>UK</td>
<td>6 weeks</td>
<td>Algimates, Radiant heat dressing</td>
<td>MRD</td>
<td>Not reported</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramos-Torrecillas (2015)</td>
<td>Spain</td>
<td>5 weeks</td>
<td>Saline gauze, PRGR, 2 doses of PRGF [excluded arm], PRGR + hyaluronic acid [excluded arm]</td>
<td>BAS</td>
<td>Total closure of the PI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Duration</td>
<td>Treatment Details</td>
<td>Buoyant</td>
<td>Buoyant</td>
<td>Healing Rate</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Rees (1999)</td>
<td>USA</td>
<td>16 weeks</td>
<td>- Saline gauze
- Bepalamin gel 100 ug/g only
- Bepalamin gel 100 ug/g alternated with placebo [excluded arm]
- Bepalamin gel 300 ug/g alternated with placebo [excluded arm]</td>
<td>BAS</td>
<td>BWD</td>
<td>0/31</td>
<td>100% healed Pls</td>
<td></td>
</tr>
<tr>
<td>Scevola (2010)</td>
<td>Italy</td>
<td>14 weeks</td>
<td>- Allogenic platelet gel
- Standard treatment</td>
<td>GRF</td>
<td>COM</td>
<td>AWD 0/8</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Sebern (1986)</td>
<td>USA</td>
<td>8 weeks</td>
<td>- Moisture vapo permeable dressing
- Wet-to-dry gauze</td>
<td>FIL</td>
<td>BAS</td>
<td>OWD 14/22</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Seeley (1999)</td>
<td>USA</td>
<td>8 weeks</td>
<td>- Hydrocolloid
- Hydrocolloid foam</td>
<td>HCD</td>
<td>HWD</td>
<td>FOA 8/19</td>
<td>Closed PI</td>
<td></td>
</tr>
<tr>
<td>Sipponen (2008)</td>
<td>Finland</td>
<td>26 weeks</td>
<td>- Sodium carboxymethylcellulose hydrocolloid polymer
- Resin salve of the Norway spruce</td>
<td>MRD</td>
<td>AMD</td>
<td>HWD 4/9</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Sopata (2002)</td>
<td>Poland</td>
<td>8 weeks</td>
<td>- Lyofoam
- Hydrogel</td>
<td>FOA</td>
<td>HWD</td>
<td>FOA 15/18</td>
<td>Closed PI wounds</td>
<td></td>
</tr>
<tr>
<td>Thomas (1998)</td>
<td>UK</td>
<td>10 weeks</td>
<td>- Acemannan hydrogel
- Saline gauze</td>
<td>HGD</td>
<td>BAS</td>
<td>HWD 10/16</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Thomas (2005)</td>
<td>UK</td>
<td>12 weeks</td>
<td>- Hydrocolloid
- Radiant heat dressing</td>
<td>HCD</td>
<td>HWD</td>
<td>FOA 7/20</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Xakellis (1992)</td>
<td>USA</td>
<td>10 weeks</td>
<td>- Hydrocolloid
- Saline gauze</td>
<td>HCD</td>
<td>BAS</td>
<td>HWD 16/18</td>
<td>PI had epithelial covering</td>
<td></td>
</tr>
</tbody>
</table>

* Belmin (2002): Both intervention arms received hydrocolloid, the effect of hydrocolloid cancels and the comparison will be saline (BAS) versus calcium alginate (MRD).
* Hirshberg (2001): Contains three intervention arms (2 active [GRF] and 1 control [BAS]), the active arm with the lowest dose and the control were included in the analysis.
* Hollisaz (2004): Contains three intervention arms, phenytoin cream was excluded from the analysis as it does not fit in any of the pre-specified dressing categories.
* Kuflik (2001): Both intervention arms contain petrolatum, the effect of petrolatum jelly cancels and the comparison will be saline (BAS) versus combine treatment (COM).
* Mustoe (1994): Contains three intervention arms (2 active [GRF] and 1 control [BAS]), the active arm with the lowest dose and the control were included in the analysis.
* Payne (2001): Contains four intervention arms (3 active [GRF] and 1 control [BAS]), the active arm with the GM-CSF and the control were included in the analysis.
* Piatkowski (2012): Both intervention arms received foam dressing, the effect of foam dressing cancels and the comparison will be saline (BAS) versus collagen (COL).
* Ramos-Torrecilla (2015): Contains four intervention arms (3 active [GRF] and 1 control [BAS]), the active arm with the lowest dose and the control were included in the analysis.
* Rees (1999): Contains four intervention arms (3 active [GRF] and 1 control [BAS]), the active arm with the lowest dose and the control were included in the analysis.

- Topical treatment categories: AMD antimicrobial; BAS basic; CLD collagenase; COL collagen; COM combined treatment; FIL film; FOA foam; GRF growth factor; HCD hydrocolloid; HGD hydrogel; MRD moisture retentive; NPD negative pressure; RHD radiant heat.
- Dressing wound groups: AWD active; BWD basic; FOA foam; HWD hydroactive; OWD other wound dressing.
Figure 1. PRISMA flow diagram of study selection for quantitative synthesis.
Figure 2. Network plot showing the A) 13 topical treatment categories and B) 5 wound dressing groups. The circle size is proportional to the number of arms while the width of the lines is proportional to the number of pairs.

AMD antimicrobial; *BAS* basic; *CLD* collagenase; *COL* collagen; *COM* combined treatment; *FIL* film; *FOA* foam; *GRF* growth factor; *HCD* hydrocolloid; *HGD* hydrogel; *MRD* moisture retentive; *NPD* negative pressure; *RHD* radiant heat.

AWD active; *BWD* basic; *FOA* foam; *HWD* hydroactive; *OWD* other wound dressing.
Figure 3. Network forest plot based on 44 studies ranking comparisons based on their relative risk for wound healing using A) basic and B) hydrocolloid as the reference topical treatment category. When the reference treatment category changes, the ranking changes as well due to sparseness in the network making these results unreliable.

AMD antimicrobial; BAS basic; CLD collagenase; COL collagen; COM combined treatment; FIL film; FOA foam; GRF growth factor; HCD hydrocolloid; HGD hydrogel; MRD moisture retentive; NPD negative pressure; RHD radiant heat
Figure 4. Network forest plots based on 40 studies ranking comparisons based on their relative risk for wound healing using A) basic and B) hydroactive as the reference dressing group. This network is non-sparse and stable, thus rankings remain reliable when the reference dressing group changes.

AWD active; BWD basic; FOA foam; HWD hydroactive; OWD other wound dressing
Records identified through database searching
 • Standard search (n = 1392)

Records identified through other sources
 • Forwards/backwards citations + Pubmed similar articles (n = 1104)

Records screened (n = 2496)

Records excluded based on the title and abstract: (n = 2324)

Full-text articles assessed for eligibility: (n = 172)

Full-text articles excluded (n = 128)

Studies included in quantitative synthesis (meta-analysis) (n = 44)
Figure 4

Click here to download high resolution image