Amino Acid Kinetics and the Response to Nutrition in Patients with Cancer

van der Meij, Barbara S; Teleni, Laisa; Engelen, Marielle Pkj; Deutz, Nicolaas Ep

Published in:
International Journal of Radiation Biology

DOI:
10.1080/09553002.2018.1466209
10.1080/09553002.2018.1466209

Published: 01/04/2019

Document Version:
Peer reviewed version

Licence:
Unspecified

Link to publication in Bond University research repository.

Recommended citation(APA):
Amino Acid Kinetics and the Response to Nutrition in Patients with Cancer

Barbara S van der Meij1,2, Laisa Teleni3, Marielle PKJ Engelen3, Nicolaas EP Deutz3

1. Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
2. Nutrition and Dietetics, Mater Group, Brisbane, Australia
3. Center for Translational Research in Aging & Longevity.: Dept. Health and Kinesiology, Texas A&M University, College Station, TX, USA

Barbara S van der Meij - corresponding author (BM)
Mater Group
Salmon Building, Raymond Terrace
South Brisbane QLD 4101
Australia
Email: barbara.vandermeij@mater.org.au
Phone: +61-413 835739
Orcid ID: 0000-0002-0412-2801
LinkedIn: https://www.linkedin.com/in/barbara-van-der-meij-6478b1b/

Laisa Teleni (LT)
Bond Institute of Health and Sport
2 Promethean Way
Gold Coast QLD 4226
Australia
Email: laisa.teleni@student.bond.edu.au
Phone: +61-420 528857
Orcid ID: 0000-0001-9321-9586
LinkedIn: www.linkedin.com/in/laisateleni

Marielle PKJ Engelen (ME)
Texas A&M University
Keywords:
Amino acids, anabolic response, protein metabolism

Word Count (excluding abstract, references, figure and tables):
6047
Abstract

Purpose

Amino acids are involved in many physiological processes in the body and serve as building blocks of proteins which are the main component of muscle mass. Often patients with cancer experience muscle wasting, which is associated with poor outcomes. The purpose of this paper is to discuss amino acid kinetics in cancer, review the evidence on the response to nutrition in patients with cancer, and to give recommendations on the appropriate level of amino acid or protein intake in cancer.

Current evidence shows that amino acid kinetics in patients with cancer are disturbed, as reflected by increased and decreased levels of plasma amino acids, an increased whole body turnover of protein and muscle protein breakdown. A few studies show beneficial effects of acute and short-term supplementation of high protein meals or essential amino acid mixtures on muscle protein synthesis.

Conclusion

Cancer is associated with disturbances in amino acid kinetics. A high protein intake or supplementation of amino acids may improve muscle protein synthesis. Future research needs to identify the optimal level and amino acid mixtures for patients with cancer, in particular for those who are malnourished.
Introduction

Amino acids are the building blocks of proteins and polypeptides and regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are key precursors for hormone synthesis and other nitrogenous substances involved in body functions. As such, maintaining physiological concentrations of amino acids and their metabolites (e.g. nitric oxide or serotonin) are essential and in contrast cases elevated levels of amino acids and related products (e.g. ammonia or homocysteine) can be harmful and cause neurological disorders, oxidative stress and cardiovascular disease (Deutz et al. 2017). For homeostasis, the body requires an optimal balance of amino acids in the diet and the circulation (Wu 2009).

The growth of cancer leads to alterations in the host’s metabolism. For example, proinflammatory cytokines produced by or in response to the tumor stimulate the synthesis of acute phase protein reactants and can interact the neuroendocrine axis resulting in anorexia and increased energy expenditure, increasing the requirements for protein and energy. Under these circumstances, there is an ongoing, progressive, breakdown of muscle mass and fat tissue (Khalid et al. 2007; Engelen M.P. et al. 2016; Argilés 2017). However, there is a variability in energy demands in cancer with some patients showing to be hypometabolic (REF Lelbach 2007). In these instances, there is evidence to suggest that patients compensate with reduced physical activity levels (REF Moses 2004). Despite metabolic alterations, a few studies have demonstrated that patients with cancer can reach muscle protein anabolism with oral or parenteral amino acid nutrition supplements or protein-rich meals (Deutz et al. 2011; Peters et al. 2011; van Dijk et al. 2015; Engelen M. P. et al. 2016). However, tumor-induced anorexia and
physiological changes associated with the tumor, such as obstruction and dysphagia and potential malabsorption and maldigestion often diminish food intake (Argilés 2017). This can be exacerbated by anti-cancer treatment-related side effects such as nausea, vomiting and dysgeusia (Sánchez-Lara et al. 2010; Hébuterne et al. 2014; Arends et al. 2017).

Weight loss (DeWys et al. 1981; Prado et al. 2013; Hébuterne et al. 2014; Martin et al. 2014) and malnutrition are prevalent in patients with cancer. Recent studies have shown that up to 50% of patients with cancer are malnourished or at risk of malnutrition based on their degree of involuntary weight loss (usually more than 5% in 1 month, or more than 10% in 6 months) (Hébuterne et al. 2014; Gioulbasanis et al. 2015).

The progressive loss of skeletal muscle mass and strength or physical function is known as sarcopenia (REF Cruz-Jentof, 2010). When seen in patients with a high percentage of body fat, it is called ‘sarcopenic obesity’ (Carneiro et al. 2016). On average, 39% (11-74%) of patients with cancer experience muscle wasting or sarcopenia (Pamoukdjian et al. 2017) depending on the stage and type of cancer (Shachar et al. 2016).

Cancer cachexia is also a syndrome of progressive weight loss and muscle wasting that is also characterized by anorexia, inflammation, insulin resistance and muscle protein breakdown (Fearon K et al. 2011; Cederholm et al. 2017). By definition, the muscle loss in cancer cachexia cannot be fully reversed by conventional nutrition support (i.e. provision of oral, enteral or parenteral nutrition to maintain or restore optimal nutrition status and health (REF ASPEN: http://www.nutritioncare.org/About_Clinical_Nutrition/What_is_Nutrition_Support_Therapy/) (Fearon K et al. 2011). This is due to the complexity of the cancer cachexia syndrome and the
suspected anabolic resistance, in particular in advanced disease (‘refractory cachexia’) (REF Fearon 2011).

Both the amount and the quality of muscle in the body are relevant to patients with cancer. A low muscle mass is associated with a poorer quality of life (Hung et al. 2013), postoperative complications (Härter et al. 2017; Rutten et al. 2017), higher treatment toxicity and shorter survival (Deans et al. 2009; Prado et al. 2013; Martin et al. 2014; Tanaka et al. 2017). Sarcopenia is associated with muscle weakness (Cruz-Jentoft et al. 2010; Biolo Gianni et al. 2014; Naito et al. 2017). Several studies show that patients with cancer experience muscle weakness in those undergoing chemotherapy (Gilliam and St Clair 2011; Vermaete et al. 2014; Midgley et al. 2017; Teodozio et al. 2017), stem cell transplant (Tanaka et al. 2017) and even those without active treatment (Norman Kristina et al. 2010; Vermaete et al. 2014; Owusu et al. 2017). Muscle quality refers to the amount of contractile vs. non-contractile muscle and muscle composition, including the amount of intramuscular fat droplets (reflected by muscle attenuation on CT scans). Skeletal muscle attenuation is associated with increased postoperative complications and shorter survival (Sjøblom et al. 2016; Silva de Paula et al. 2018).

Certain chemotherapy regimens and hormonal alterations affect protein and fat metabolism and food intake (Argilés et al. 2015). This often results in weight gain and fat deposition in so-called ‘adiposity-related cancers’, such as breast, endometrial and prostate cancer (Allott and Hursting 2015; Keum et al. 2015; van den Berg et al. 2017). This side effect of cancer treatment is also problematic, as obesity or a high percentage of body fat are associated with shorter survival (Martin et al. 2013).
To develop and test interventions targeting muscle wasting in cancer, we need to understand the metabolic processes behind muscle wasting. The aim of this review is to discuss amino acid kinetics in cancer and the response to nutrition in patients with cancer. We will provide recommendations about the optimal intake of amino acids for patients with cancer and discuss areas for future research.
Changes in plasma and muscle amino acids in cancer

Disturbances in amino acid metabolism

Amino acids are basic metabolites and metabolic regulators that circulate in the plasma for transport to peripheral tissues (Lai et al. 2005). In the presence of a tumor the demand for amino acids increases and there is a corresponding increase in protein turnover (i.e., the balance between muscle protein synthesis and breakdown) (Jeevanandam et al. 1984). This is exacerbated by inflammation as there is an increased proportion of splanchnic amino acids that are extracted to support the hepatic synthesis of acute phase protein response reactants (Jonker et al. 2012). There is preferential consumption of certain amino acids, in particular essential amino acids (EAAs) (Proenza et al. 2003; Jonker et al. 2012). In terms of non-essential amino acids (NEAAs) there is a demand for glutamine, glycine and aspartate to support tumor growth and serine for membrane lipid component synthesis.

Skeletal muscle is a reservoir of amino acids, glucose and intramuscular lipids that can support protein synthesis or energy production elsewhere in the body, for instance for the formation of glucose or glycogen (Perriello et al. 1997; Brook et al. 2017). In cancer, the homeostatic regulation of protein turnover is disturbed. The increased demands for energy can upregulate muscle protein breakdown to provide amino acid substrates for glucose and glycogen formation, causing protein depletion and loss of skeletal muscle mass (Brook et al. 2017). Further, muscle protein synthesis is diminished (as discussed later) and increased muscle apoptosis contributes to a negative muscle protein balance (Argilés 2017).

Energy balance can be altered by decreased food intake and hypermetabolism. One of the factors of hypermetabolism is mitochondrial dysfunction, which causes decreased ATP
synthesis and oxidative phosphorylation uncoupling and reduces energy efficiency (Argilés 2017). Triggered by inflammatory mediators, white adipose cells are converted into brown adipose cells, which promote heat production and energetic inefficiency (Argilés 2017). The severity of metabolic disorders in cancer depends on the extent of the host response, which is dependent on the stage and type of the cancer (Fearon K et al. 2011). The following paragraphs give an overview of studies investigating alterations in plasma and muscle amino acids in patients with cancer.

Plasma amino acid concentrations

Profiles of plasma free amino acids in cancer can be influenced by several factors, one of them being dietary intake. When protein from the diet is digested and absorbed by the gut, amino acids are extracted by the splanchnic area or released into the systemic circulation. In this way, dietary protein intake and starvation impact on plasma amino acid concentrations (Jonker B J Nutr2012, S139-S148). Further, disease, inflammation and anti-cancer treatments may alter the absorption, digestion or utilization of amino acids resulting in enhanced endogenous protein breakdown consequently altering plasma amino acid profiles. In cancer this could be more profound because of the metabolic demands of the tumour, requiring amino acids for protein synthesis and tumour growth (Jonker B J Nutr2012, S139-S148, then Have 2007 S23-S36).

Several studies investigated plasma amino acid profiles (Table 1) and documented significant differences between patients with cancer and healthy subjects. Few studies have investigated differences between early and late stage cancers, and some explored these profiles in patients with anorexia and weight loss. This section discusses studies investigating
plasma amino acid concentrations in cancer that have been published in the last 15 years (Vissers et al. 2005; Miyagi et al. 2011; Shen et al. 2013; Ihata et al. 2014; Ma et al. 2014; Fukutake et al. 2015).

Lai et al. (2005) reviewed 13 clinical studies in patients with heterogeneous cancer types. Lai proposed that patients with cancer exhibited a specific ‘cancer-related’ amino acid profile, of reduced levels of plasma alanine, arginine, aspartate, citrulline, cysteine, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, taurine, threonine, tryptophan, tyrosine and valine, and elevated levels of plasma ornithine. More specifically, Lai et al. (2005) found that plasma amino acids were frequently elevated in breast cancer (specifically alanine, arginine, proline and tryptophan). Similarly, Miyagi et al. (2011) found increased levels of amino acids in patients with breast cancer. In contrast to Lai et al. (2005) and Miyagi et al. (2011), our investigation of the metabolism of arginine and the interrelated amino acids glutamine and citrulline in cancer (see Figure 1) revealed lower plasma arginine, citrulline and glutamine concentrations in pre-surgical patients with early stage breast cancer compared with healthy controls (Engelen M.P. et al. 2016). Further we found that weight-stable patients with T1 to T3 breast cancer had decreased plasma arginine (not glutamine or citrulline) and other amino acids such as tryptophan and arginine (Vissers et al. 2005). This was especially visible in those with ripple-negative breast cancer. Thus, findings in patients with breast cancer are inconclusive, which could be explained by differences between individual studies in the type and stage of breast cancer and the type of treatment (e.g. surgery vs. palliative care).
Further to the findings in breast cancer, Lai et al. (2005) found that plasma amino acids were frequently depressed in digestive organ cancers, but there were no discernable trends in other cancers. Miyagi et al. (2011) also found decreased levels in patients with gastric and colorectal cancers. Our group showed similar results where plasma levels of arginine were decreased in patients with colonic (Vissers et al. 2005), pancreatic (Vissers et al. 2005) as well as lung (Engelen M.P. et al. 2016) cancer. In gynecological cancers, plasma amino acids have been investigated as potential biomarkers for diagnosis and monitoring of disease. Turkoglu et al. (2016) systematically reviewed metabolomics studies in human ovarian cancer and concluded that plasma concentrations of glutamine, glutamate, cysteine, glycine and threonine were increased and L-tryptophan and phenylalanine were decreased in ovarian cancer. Plasma valine and alanine could be either increased or decreased (Turkoglu et al. 2016). In endometrial cancer, plasma valine, tryptophan and phenylalanine were decreased in patients with cancer compared to age- and BMI-matched control subjects (Ihata et al. 2014).

Importantly, advanced disease and malnutrition were associated with more profound changes in plasma amino acids in some studies, as indicated by Lai et al. (2005). It has been suggested that increased muscle protein breakdown provides substrates for enhanced gluconeogenesis in the liver and enhanced branched chain amino acid (BCAA) oxidation in muscle. This would result in normal or higher BCAA levels in early-stage cancer. In late-stage cancer, muscle protein breakdown can cease as the tumor progresses, as reflected by lower levels of BCAA and EAA (Lai et al. 2005; Turkoglu et al. 2016). This hypothesis is in contrast with Miyagi et al. (2011) findings that changes in plasma amino acids are independent of malnutrition or tumor progression. Miyagi reported decreased concentrations in plasma amino
acids profiles in patients with both early and late stage disease, where patients with early stage
disease did not have significant weight loss, anorexia or serum albumin depletion.

In order to assess cancer cachexia risk by examining amino acid concentration and
analyzing amino acid balance, Kitagawa et al. (2017) conducted a retrospective chart review of
consecutive patients with unresectable advanced gastrointestinal cancer (stage IV) receiving
chemotherapy treatment. Results showed that an increase in psoas (hip flexor) muscle index
over time was related to a lower EAA/total amino acid (TAA) ratio. Serum C-reactive protein
(CRP), leucine, and isoleucine were negatively correlated with increases in muscle index and
there was a strong negative correlation between serum CRP and change in muscle index. This
suggests that when EAAs are used for muscle build up plasma EAA/TAA ratios decline, whereas
skeletal muscle protein breakdown was associated with higher plasma EAA/TAA ratios.

In conclusion, many studies have shown that patients with cancer have altered levels of
plasma amino acids. Alterations in plasma amino acids can be present in early-stage patients
who are in a good nutritional status. There is conflicting evidence whether plasma amino acid
variations are more profound in patients with metabolic alterations, metastatic cancer,
anorexia, weight loss and/or malnutrition. Although most studies investigated fasted plasma
samples, this was unclear for a few studies, complicating the interpretation and collation of
results. Also, more controlled research is needed to clarify the value of using plasma amino acid
profiles to be used as a marker for cancer screening and diagnosis.

Cancer, muscle wasting, sarcopenia and cachexia can alter the plasma profile of amino
acids, but whether there is a resultant change in the amino acid profile of muscle tissue is less
clear. Muscle serves as a major reservoir of amino acids, containing approximately half of the
body’s free amino acid pool (de Blaauw et al. 1997). Evaluating muscle amino acids requires invasive techniques such as muscle biopsy. Therefore, in patients with cancer, whole body protein turnover is often evaluated using radioactive or, more commonly, stable isotope techniques.

In a recent review by Engelen MPKJ et al. (2016), it was noted that the rate of whole body protein turnover was highly variable across patients with cancer and likely influenced by the presence and magnitude of inflammation associated with cancer. For example, in a study of 11 mostly malnourished patients with colorectal cancer, Carmichael et al. (1980) showed whole body protein turnover was significantly higher in patients with cancer than in non-cancer controls. In these patients, the rate of protein synthesis and breakdown increased with the advancement of cancer, but was significantly lower in patients with anorexia. When compared with weight-stable controls, van Dijk et al. (2015) found that patients with pancreatic cancer had higher whole body protein turnover where protein breakdown was associated with CRP. Both the rate of protein breakdown and synthesis were significantly higher in weight-losing patients versus weight-stable non-cancer controls. The rate of protein synthesis in the cancer group did not respond to sip feeds, but the rate of protein breakdown decreased enabling patients to reach a positive protein balance. Similarly, Williams et al. (2012) showed that pre-operative fasted muscle protein synthesis rates of colon cancer patients were comparable to those of healthy controls. However, unlike healthy controls, there was no muscle synthetic response to feeding. There was a trend for increases under fed and fasted conditions in pre-operative muscle protein breakdown compared with healthy controls, but this was not
Fearon KC et al. (1988) showed that patients with lung and colon cancer had significantly higher rates of whole body protein turnover and breakdown but comparable rates of synthesis compared with non-cancer controls. When analyzed by weight status, there were no differences between weight-losing (>5% weight loss) and weight-stable patients with cancer. In contrast, MacDonald et al. (2015) found that myofibrillar protein breakdown was comparable, but there were significantly higher protein synthetic rates in weight-losing versus weight stable patients with early stage gastric cancer.

In Dworzak et al. (1998) found the rate of whole body protein turnover was comparable between patients with advanced gastric cancer and healthy controls. When evaluated across the forearm muscle, the rate of muscle protein synthesis was significantly lower in the cancer group. These studies suggest that differences in whole body protein turnover are likely associated with inflammation, nutritional status, tumor presence and cancer stage.

Anabolic stimuli in cancer

Dietary protein

Many factors contribute to the activation of protein breakdown in cancer. The expression of proteolysis-inducing factor (PIF) by tumors induces enhanced protein breakdown (Argilés 2017). The ubiquitin-proteasome and autophagic-lysosomal pathways are upregulated exacerbating skeletal muscle protein breakdown. There are changes in the rate of myogenesis and apoptosis, decreasing the regenerative capacity of skeletal muscle and
increasing the rate of cell death. Other factors include inflammatory cytokines, the activation of NF-kappa B and the suppression of mTOR activity.

As a result of the enhanced inflammatory response and protein breakdown, there is an increased need for dietary protein in cancer (Guadagni and Biolo 2009). However, often patients with cancer have a reduced nutritional intake as a consequence of anorexia and symptoms related to the tumor or caused by cancer treatments (Sánchez-Lara et al. 2010; Coa et al. 2015). A few studies investigated the relation between protein intake and clinical outcomes in patients with cancer. Stobaus et al. (2015) showed that in 285 patients with mixed types of cancer undergoing chemotherapy, 66% had a low protein intake (<1 g/kg body weight)(REF Arends 2017), and a low protein intake was associated with a more than twofold higher risk of cancer-related fatigue and 6-month mortality. In a smaller study in 41 patients with breast cancer undergoing chemotherapy, dietary intake was not correlated with health-related quality of life (Lua et al. 2012). In a study in 50 patients with cancer admitted to the hospital, 33% of all patients did not reach daily energy requirements of 25 kcal/kg and 23% had a dietary protein intake of less than 1 g protein/kg/day. A protein intake of < 1 g/kg/day was associated to a poorer self-reported physical functioning and fatigue. No significant differences were found regarding caloric intake and QoL (Trabal et al. 2006). Bosaeus et al. (2002) investigated dietary intake, energy metabolism and weight loss in 297 patients with generalized malignant disease undergoing palliative care involving anti-inflammatory treatment and nutritional counselling during 4 months. At enrollment, dietary energy and protein intake were low. Energy intake slightly increased during the intervention period and a higher dietary energy intake predicted longer survival. There was no correlation between protein intake and survival.
A study in outpatients with mixed types of cancer who were at high risk of malnutrition or malnourished showed that individual nutritional therapy provided by a dietitian vs. standard care for 3 months improved daily energy and protein intake (+379 kcal and +10 g protein, respectively, P<0.05), but this was not associated with improvements in nutritional status, physical functioning, or quality of life (Uster et al. 2013). In a RCT in head and neck cancer, patients who received dietary counseling had a higher energy and protein intake during radiotherapy compared to patients receiving only supplements or usual care (+521 kcal vs. +322 kcal and -400 kcal, and +26 g, +35 g, -15 g protein, respectively, P<0.01). They also reported a better QoL and a reduced incidence or severity of RT toxicity symptoms after 3 months (Ravasco et al. 2005). Baldwin et al systematically reviewed effects of oral nutritional interventions for patients with cancer, and showed that these are effective at increasing energy intake with 432 kcal/d and improving some aspects of quality of life (Baldwin et al. 2012). In conclusion, nutritional counseling and oral nutritional interventions in patients with cancer improve dietary intake and quality of life, however body composition and survival were not investigated in these studies.

We only identified two studies on the relationship between dietary intake and muscle mass in patients with cancer. There are a few, small studies investigating the short-term effect of protein and amino acid-enriched nutrition supplements on muscle anabolism in patients with cancer. Although some amino acid-enriched nutrition supplements (e.g., BCAAs) appear to overcome the anabolic resistance of muscle in cancer, it is less clear whether the anabolic effects would be sustained with longer-term supplementation and what the overall effects on muscle quantity, quality and function would be. Studies on supplementation of glutamine in
catabolic conditions looking at effects on chemotherapy toxicity show inconsistent results. There are currently no guidelines with regards to the minimal threshold of protein per meal or mid-meal, and the optimal number and frequency of high-protein meals throughout the day.

In conclusion, dietary protein intake is often suboptimal in patients with cancer. Some studies found an association between protein intake levels, either or not established by nutritional therapy or supplements, and quality of life and survival, but more research is needed to confirm this.

What is the optimal amount of amino acids/protein in patients with cancer?

The most recent evidence-based dietary guidelines for patients with cancer, published by the European Society for Clinical Nutrition and Metabolism (ESPEN), recommend a protein intake of at least 1 g per kg body weight per day, if possible up to 1.5 g/kg/day (Arends et al. 2017). Expert opinions suggest the optimal range of dietary protein for patients with cancer to be 1.0-2.0 g/kg/day. This is based on existing acute studies focused on metabolic endpoints and benefits, not on long-term studies showing benefits on muscle maintenance. These studies showed that an elevated protein intake promoted muscle protein anabolism in patients with cancer (Winter et al. 2012; Baracos 2015; MacDonald et al. 2015). A critical literature appraisal by Bozzetti (2013) concluded that the dose of amino acids capable of supporting a positive protein balance in patients with cancer might be close to 2 g/kg/d. The ESPEN committee also stated that protein in doses up to and above 2 g/kg/d are safe; in patients with acute or chronic renal failure protein supply should not exceed 1.0 or 1.2 g/kg/d, respectively (Arends et al. 2017). The clinical guidelines of the American Society of Parenteral and Enteral Nutrition
(ASPEN) for nutrition support during adult anticancer treatment do not provide specific guidelines for amino acids or protein (August and Huhmann 2009).

There is concern that estimating equations based on body weight would fail to account for the variability in body composition (Geisler et al. 2016). This concern is particularly relevant in cancer where sarcopenia, especially sarcopenic obesity and cancer cachexia are prevalent. Current recommendations of 1g/kg body weight/day might under- or over-estimate protein requirements for lean mass.

This concept was explored by Geisler et al. (2016) in a recent theoretical exercise where protein requirements were estimated based on lean mass instead of body weight. Geisler et al. (2016) calculated lean mass (CT at the L3 landmark), and assumed a dietary protein intake of 0.8g/kg BW/day for 547 patients with stage III/IV non-small cell lung cancer. Under these assumptions, 97.4% of patients would present with low protein intake per kg of lean mass. Although this exercise was based on multiple assumptions (for example, assumed dietary protein intake based on data from healthy subjects), the variation in lean mass of patients with cancer indicates that further study is required. Protein quality is the extent to which the amino acids of a certain protein match the amino acid needs of the consumer, and the efficiency with which the amino acids are extracted from the diet and uses them for growth or maintenance purposes (Marinangeli and House 2017). In 2012, the FAO suggested to express protein quality as the ‘digestible indispensable amino acid score’ or DIAAS which takes into account the content, pattern and bioavailability (including digestibility) of EAAs (Marinangeli and House 2017). Protein quality differs between dietary sources, and therefore the FAO recommends a consumption of a significant amount of high-quality proteins on a daily basis for all healthy
subjects. Table 2 displays the DIAAS for common protein-rich foods and shows that in general, animal-based foods have a higher DIAAS than plant-based foods. The ESPEN guidelines (Arends et al. 2017) also recommend good quality protein from animal, fish, dairy and plant sources for the majority of patients with cancer requiring nutrition support for a short period of time. Increasing dietary protein intake should satisfy any increase in protein demand thereby preventing muscle wasting. There has been little success of nutrition interventions in reversing or preventing muscle wasting suggesting muscle protein anabolic resistance.

When excluding studies that investigate the effects of high-protein supplements or sip feeds, two studies have investigated the relation between dietary protein intake and muscle mass in patients with head and neck cancer. In 69 patients, BIA was used to assess body composition before, during and at the end of radiotherapy or chemoradiation. All patients received nutritional counselling, with the majority (95%) receiving ONS. A dietary intake of ≥75% of the recommended energy and protein intake was considered as compliant (n=18). They found that compliant patients maintained weight and fat free mass over time, whereas in noncompliant patients these decreased significantly. A limitation of this study was that mucositis was less common in compliant patients than in noncompliant patients (11.1% versus 88.9%, resp.) (Hopanci Bicakli et al. 2017). Pistoia et al. (2012) investigated food intake in 62 patients with head and neck cancer undergoing radiotherapy. In three weeks, dietary energy intake reduced from 26.5 to 21.3 kcal/g/d and protein intake from 1.19 to 0.93 g/kg/d and there were significant reductions in arm muscle area and arm muscle circumference.

In addition to the studies on dietary protein intake in relation to clinical outcomes which will be discussed in the next paragraph, studies investigating the anabolic potential of muscle
generally employ stable isotope techniques that enable the calculation of muscle protein synthesis and breakdown rate in response to feeding. For example, Emery et al. (1984) study of 5 weight-losing men with cancer, anorexia and reduced dietary intake vs healthy controls showed that the rate of muscle protein synthesis in the fed state was significantly lower than in the healthy controls. Similarly, Williams et al. (2012) found that although muscle protein breakdown was comparable between preoperative patients with colon cancer and non-cancer controls, the increases in muscle protein synthesis in response to feeding were not evident in the patients with cancer. Conversely, there is some clinical evidence that patients with cancer do have a muscle protein anabolic potential. In a study of 3 month body composition analysis, Prado et al. (2013) showed that in 368 advanced patients with cancer, 45% maintained and 15% gained muscle mass. Medical chart review demonstrated that this was likely due to periods of stable disease, symptom control as well as a patient’s ability to eat and function.

In summary, patients with cancer experience a disturbed amino acid metabolism, upregulated catabolic processes (enhanced ubiquitin mRNA levels and proteasome activity) in skeletal muscle and hepatic acute phase response. The current guidelines regarding the use of dietary amino acids and protein are unlikely to satisfy the aims of nutrition therapy, mitigate metabolic derangements and maintain skeletal muscle mass.

The effect of amino acids supplementation on metabolism and clinical outcomes

It is possible that muscle protein synthesis cannot be stimulated with conventional nutrition support in patients with cancer who exhibit muscle wasting, sarcopenia and/or cachexia. For example, although van Dijk et al. (2015) found that a commercially available
supplement stimulated an anabolic response comparable to that of non-cancer controls, this was only achieved through the reduction of protein breakdown as there was no corresponding response in protein synthesis.

There is still potential for specialized nutrition interventions that target anabolic pathways and provide the substrates for muscle protein synthesis. These may include EAA mixtures or high quality proteins, potentially combined with immune-modulating nutrients such as omega-3 polyunsaturated fatty acids. This idea was explored in Engelen MPKJ et al. (2016) review of whole body protein turnover studies who state it is possible to at least partly overcome anabolic resistance through the provision of high quality proteins. Amino acids are the principal nutrient responsible for stimulating muscle protein synthesis (Wolfe 2002). However, when supplementing with amino acids to simulate synthesis a number of factors should be considered. Firstly, only EAAs are required to stimulate muscle protein synthesis. Tipton et al. (1999) and Wolfe (2002) both showed that NEAAs confer no additional benefit over providing the same amount of EAAs alone. Secondly, it appears that the increasing plasma concentration of EAAs in response to supplementation trigger synthesis, irrespective of the absolute plasma concentration (Wolfe 2002). Thirdly it is possible that there is a limit to the extent to which synthesis can be stimulated during constant intake, with doses of amino acids exceeding 20g already exceeding the maximal effective dose in healthy volunteers (Wolfe 2002). Conversely, Engelen MPKJ et al. (2016) showed a linear relationship between dietary EAA availability and net protein gain existed in weight-stable patients with non-small cell lung cancer and weight-losing patients with pancreatic cancer that was comparable to healthy
controls. This model suggests that higher amounts of EAAs might be useful to patients with cancer.

Branched Chain Amino Acids (BCAA)

Arguably the most important amino acids are the BCAAs; a subset of EAAs comprised of leucine, isoleucine and valine. Not only are they *substrates* for muscle protein synthesis and energy metabolism, but leucine is also a *key regulator* of protein synthesis and breakdown. Under normal conditions, the oxidation of BCAA provides up to 7% of energy, but in highly catabolic states this can be as high as 20% (Choudry et al. 2006). The ESPEN guidelines state that there is some evidence that parenteral nutrition containing BCAA result in an improved protein accretion and albumin synthesis when compared to a standard amino acid solution. A number of trials in patients with cancer comparing varying proportions (e.g., 25% vs 45% of protein) of BCAA-enriched parenteral nutrition in surgical patients with cancer have been reviewed (Choudry et al. 2006). Although early studies showed some potential benefits of BCAA provision, results from all clinical trials were generally inconsistent in terms of effect on indicators of muscle wasting, muscle amino acid uptake, morbidity and mortality (Choudry et al. 2006).

Dioguardi (2011) proposed an alternative nutrition formula of more than 80% EAAs (predominantly BCAAs). The NEAA tyrosine was included as it is only non-essential for the liver and the NEAA cysteine was included to prevent methionine from transforming into homocysteine (a toxic intermediate in the methionine to cysteine pathway *(Figure 2)*). This BCAA-enriched formulation has been trialed in few small studies to date reporting improvements in lean muscle mass of sarcopenic elderly subjects (Solerte et al. 2008) and
weight, albumin and total protein in hemodialysis patients (Bolasco et al. 2011). The most relevant study to cancer was a single-arm, uncontrolled trial conducted in 25 cachectic patients with advanced cancer. After 8 weeks of supplementation, patients had no significant change in weight, BMI, lean body mass (via BIA) or fatigue. There were significant improvements in hand grip strength, albumin and significant reduction in reactive oxygen species (Madeddu et al. 2010). The limitations of this study were its small sample size, lack of control group and heterogeneous mix of patients with cancer in relation to tumor type. Further research is needed to investigate long-term effects of supplementation with body composition analysis sensitive to small changes in muscle mass (e.g., CT).

Leucine and β-hydroxy-β-methylbutyrate (HMB)

One of the most potent activators of muscle protein synthesis is the BCAA leucine. The dose-response effect of leucine on muscle protein synthesis has been demonstrated in mouse cancer cachexia models where a leucine-enriched diet resulted in greater maintenance of lean muscle mass compared with those on a standard diet (Peters et al. 2011). Administration of amino acids as an oral nutrition supplement enriched in leucine and n-3 fatty acids in humans can increase muscle protein synthesis compared to a conventional supplement (Arends et al. 2017). For example, Deutz et al. (2011) demonstrated in a study where a leucine-enriched high protein medical food (27% calories as protein including 4.16g free leucine) increased muscle protein synthesis rate by 40% after 5 hours. Consistent with previous studies, the conventional medical food did not elicit a change in the rate of muscle protein synthesis.

About 0.1% of leucine is converted into β-hydroxy-β-methylbutyrate (HMB) (Engelen and Deutz 2018). Although HMB has been shown to reduce skeletal muscle protein breakdown
and inflammation as well as stimulate muscle protein synthesis, studies in cancer are limited. In an RCT of 32 weight-losing patients with cancer, a daily dose of 3g HMB/14g arginine/14g glutamine supplement versus an isonitrogenous mix of NEAAs resulted in a 1kg gain in fat-free mass in the supplement group (May et al. 2002). One of the larger trials of HMB/Arginine/Glutamine was conducted in 472 weight-losing patients with advanced cancer. Unfortunately, although there was a trend towards higher lean mass, statistical significance was not reached, possibly due to insufficient data with only 37% of participants completing the protocol (Berk et al. 2008).

Glutamine

BCAAs serve as precursors for alanine and glutamine synthesis (Figure 3) and much of their beneficial effects during catabolism are likely related to the subsequent synthesis of glutamine and blunted release of glutamine from skeletal muscle (Choudry et al. 2006). Glutamine is a key factor in maintaining cellular and vital organ function and modulating immune cell activity (Nicastro et al. 2012). In cachexia, the use of glutamine as a substrate by immune cells is greatly increased, dropping plasma levels. This is compounded by an increase in tumor and splanchnic tissue update and a decrease in skeletal muscle synthesis (Jonker et al. 2012).

Some studies have demonstrated that supplementation with glutamine may improve nutritional parameters and morbidity around surgery and chemotherapy. For example, in a 2 day crossover trial (Biolo G. et al. 2006) of 6 patients with colorectal and cervical cancer, 2 leg muscle metabolic studies were conducted within the first 48 hours of radical resection with intraoperative radiation therapy comparing an infusion of balanced amino acid with a BCAA-
enriched solutions (leucine/TAA(g) of 0.09 and 0.22, respectively). Biolo G. et al. (2006) found that although the balanced amino acid solution did not affect outcomes, the BCAA-enriched solution accelerated muscle protein turnover by increasing protein and de novo glutamine synthesis. In a review of the effects of glutamine supplementation on chemotherapy toxicity, Kuhn et al. (2010) found that only ⅓ of the studies using oral and ⅔ of those using parenteral glutamine reported a clinical benefit.

Arginine and citrulline

Arginine is a semi-EAA with required for adequate nitric oxide synthesis (Figure 1) and necessary for immune function, cell regeneration, tissue perfusion and wound healing. It has a direct and possible indirect stimulation of muscle protein synthesis through its regulation of the mTOR pathway and its role as an insulin secretagogue. In cachexia the metabolism of arginine is altered making it an EAA. Arginine has improved immunological status and survival in surgical, malnourished head and neck cancer (Buijs et al. 2010). Similar to, but more potent in its muscle protein synthesis stimulatory effects than arginine, is citrulline. It is suggested that the effectiveness of citrulline over arginine is due to its superior absorption from the gut and the fact that it avoids hepatic uptakes. However, its effectiveness has only been demonstrated in healthy individuals and is yet to be investigated in patients with cancer.

Creatine

Creatine is a NEAA popular in research into athletes due to its role in rapid energy provision to skeletal muscle. There have been two recent studies in cancer. In a 6 week pediatric study, Bourgeois et al. (2008) investigated the effects of creatine on attenuating the
effects of glucocorticosteroids on skeletal muscle during chemotherapy. Nine children with acute lymphocytic leukemia were supplemented with 0.1g/kg body weight/day for 32 weeks. Over the course of the study, supplementation had no effect on BMI, weight or fat-free mass, but did appear to attenuate gains in fat mass (Bourgeois et al. 2008). However, this study was highly heterogeneous with large variance of age, disease stage and corticosteroid use. In a larger, well controlled double blind randomized controlled trial, Norman K. et al. (2006) investigated the effects of creatine supplementation vs placebo as a coadjuvant treatment in colorectal cancer over 8 weeks. In this study, supplementation had a positive effect in HGS, but not muscle function, body cell mass, nutritional parameters or quality of life.

Conclusion

Alterations in amino kinetics in patients with cancer lead to increased demands for protein and amino acids and to muscle wasting, sarcopenia and cachexia, which are all related to poor outcomes. This paper reviews human studies on amino acid kinetics and the response to nutrition in patients with cancer. These patients have a higher rate of whole body protein turnover and alterations in plasma amino acids. The most recent evidence-based guidelines for patients with cancer recommend a dietary protein intake of 1.0-1.5 g/kg body weight per day. There are promising results from supplementing EAAs or BCAAs on muscle protein synthesis. More research is needed into the optimal amount and quality of protein intake in patients with cancer, and how to target to different cohorts of patients with cancer, such as treatments or stages.
Research gaps

Although there has been a lot of research done in healthy adults and older adults, in cancer there is a need for well-designed studies in homogenous groups of patients with cancer, investigating protein requirements and the effects of amino acids or proteins on muscle buildup and clinical outcomes. These are only a few examples for research questions to be addressed in the future:

- What is the optimal dose, duration, frequency and route of administration required to stimulate muscle protein synthesis and does this differ between stages, type of cancer, treatment regimen, age groups?
- What are the effects of long-term increased supplies of protein or modified protein quality / amino acid mixtures on muscle mass and clinical outcomes?
- What is the effect of glutamine enriched nutrition on radiation-related skin toxicity, chemotherapy-related neuropathy, and mucositis?
- What is the effect of combining an exercise program with protein supplementation on body composition, quality of life and clinical outcome, in curative as well as in palliative settings?
Geolocation information

BM and LT: Brisbane, Queensland, Australia (27.4698° S, 153.0251° E)

ME and NP: College Station, TX, USA (30.6280° N, 96.3344° W)

Acknowledgement(s)

Not applicable.

Biographical note

BM: Conjoint Senior Research Dietitian and expert on translational research on nutrition and muscle wasting in cancer and older adults, focusing on effects of nutritional support strategies such as omega-3 polyunsaturated fatty acids, essential amino acids and meal adaptations, on body composition and quality of life.

LT: Accredited Practising Dietitian and PhD student in nutrition in cancer. Focusing on nutrition assessment methods, the nutrition-related consequences of anti-cancer treatments and medical nutrition therapy.

ME: Associate Professor in the Center for Translational Research in Aging & Longevity on disturbances in protein and amino acid metabolism underlying muscle wasting, and the anabolic effects of clinical nutrition and exercise in the elderly and in chronic wasting diseases (i.e. Chronic Obstructive Pulmonary Disease, Cystic Fibrosis, and cancer).
ND: Professor in the Center for Translational Research in Aging & Longevity with research and interests in clinical nutrition and metabolism research in animals and humans. His clinical interest is using nutritional supplements to treat malnutrition in older adults, and during acute and chronic disease states.

Disclosure statement

BM, LT, ME and ND declare no conflicts of interest.

Funding

This work was supported by an Australian Government Research Training Program Scholarship.

Notes on contributor(s)

Not applicable

Nomenclature/Notation

Notes

Not applicable
References

Moses AWG, Slater C, Preston T, Barber MD, Fearon KCH. 2004. Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. British Journal of Cancer. 90:996-1002.

Figure captions

Figure 1. Interaction of the TCA cycle, Nitric Oxide cycle and Urea cycle [adapted from: Ward (2015)]

Figure 2. Methionine homocysteine cycle [adapted from Ward (2015)]

Figure 3. Muscle metabolism of branched chain amino acids (BCAAs), glutamine and alanine [adapted from Leguina-Ruzzi and Cariqueo (2017)]

Table captions

Table 1. Summary of disturbances in plasma amino acid levels in patients with cancer compared to healthy controls

Table 2. Digestible indispensable amino acid score (DIAAS) for common protein-rich foods [adapted from Marinangeli and House (2017)]