
Bond University
Research Repository

An ultra-lightweight Java interpreter for bridging CS1

Stocks, Philip

Published in:
Proceedings of the 3rd Annual International Conference on Computer Science Education: Innovation and
Technology CSEIT 2012

Licence:
Unspecified

Link to output in Bond University research repository.

Recommended citation(APA):
Stocks, P. (2012). An ultra-lightweight Java interpreter for bridging CS1. In B. P. Varthini (Ed.), Proceedings of
the 3rd Annual International Conference on Computer Science Education: Innovation and Technology CSEIT
2012 (pp. 1-8). Global Science and Technology Forum.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository
coordinator.

Download date: 28 Apr 2024

https://research.bond.edu.au/en/publications/67a10a96-6377-4349-b5ff-497af27f4029


An Ultra-lightweight Java Interpreter for Bridging CS1

P. A. Stocks

School of Information Technology
Bond University

Gold Coast, QLD 4229, Australia
Email: pstocks@staff.bond.edu.au

To appear CSEIT 2012

Abstract

This paper presents an ultra-lightweight Java inter-
preter for use in teaching CS1 courses. The inter-
preter is targeted specifically at complete beginner
programmers and addresses aspects particularly rele-
vant or troublesome to novices, such as expressions,
method calls, method calls as sub-expressions, and
recursion. The interpreter works on a subset of Java
and is intended as a bridge to a more complete en-
vironment. Experiences using the interpreter in a
semester of CS1 are favourable, and an analysis of
its deployment is presented.

Keywords: Java Interpreter, CS1, Introductory Pro-
gramming, Computer Science Education

1 Introduction

This paper presents JULI, a Java Ultra-Lightweight
Interpreter for use in introductory programming
courses. The intention is to provide a more pedagog-
ically useful learning environment for absolute begin-
ner programmers to be used as a stepping stone to a
more comprehensive programming environment, such
as BlueJ. Dissatisfaction with current Java environ-
ments for teaching beginners motivates this work.

The choice of programming language and envi-
ronment for teaching introductory programming is
a topic of ongoing discussion and disagreement in
the Computer Science community (e.g., (Mannila &
de Raadt 2006)). There is pressure from both the
students and the curriculum developers, in terms of
necessary pre-requisites, to teach using commercial
programming languages such as Java from the outset.
Nevertheless, there seems general agreement in the
acadaemic community that such languages are poor
vehicles for pedagogy (e.g., (Allen et al. 2002, Bloch
2008, McIver & Conway 1996, Miller & Ranum 2005,
Paul 2006, Radenski 2006)).

Identified requirements for an introductory teach-
ing language are an easy syntax, a high level of ab-
straction, a small and consistent set of concepts and
features, and a transition path to a commercial lan-
guage (Kölling 1999, McIver & Conway 1996, Muziol
2008). Java fails spectacularly against all these crite-
ria except the last. Java is a large and sophisticated
language with a difficult and often counter-intuitive
syntax. In particular, there is a lot of incomprehen-
sible scaffolding required to write even the simplest
working program in Java, which is a confusing bar-
rier for new students.

Nevertheless the pressure to teach introductory
programming in a language such as Java is real, and
Java is currently used to teach introductory program-

ming at Bond University, amongst many others. The
choice of language to use in CS1 is not always up to
the instructor. At Bond University, the role CS1 plays
as a pre-requisite to other subjects requires the stu-
dents to learn Java. There is no room in the curricu-
lum for a stepping-stone course as is common practice
at larger universities. This paper is not advocating
which language to use to teach CS1, rather the goal
is to provide a tool, and suggest an approach, to mit-
igate the worst problems faced by students learning
CS1 using Java.

Several Java programming environments have
been developed, some specifically to aid in teaching
using Java. The next section examines current envi-
ronments and argues the scope for a new environment
and what benefits are expected from JULI. Section 3
presents the design of JULI. Section 4 presents expe-
riences and analysis of using the trial prototype tool
described in Section 3.7 in a semester of CS1. Sec-
tion 5 presents directions for future work and Section
6 presents conclusions.

2 Requirements for an Introductory Pro-
gramming Environment and Shortfalls of
Existing Environments

The goal of this work is to provide a simple envi-
ronment for learning and practicing the fundamental,
and often troublesome, programming elements of ex-
pressions, methods and method calls, method calls as
arguments, and recursion, without the distractions of
the program scaffolding. An interpretive environment
accepting snippets of Java code seems most suitable
for this purpose.

Paul (2006) notes the huge benefit of a prompt
feedback cycle for novice programmers, such as is pro-
vided by an interpretive environment as opposed to
a compilation-based environment. Periodic moves to
teach CS1 in languages such as Scheme and Python
(e.g., (Bloch 2008, Agarwal & Agarwal 2005)) suggest
awareness of this benefit,1 and, indeed, Chakravarty
& Keller (2004) note that perhaps the primary bene-
fit of a move to teach CS1 using a purely functional
language was the interpretive environment.

McIver & Conway (1996) identify two further qual-
ities for an introductory programming language other
than those mentioned in the previous section: that
the syntax of the language/environment should be
separated as much as possible from the semantics,
and that better error diagnosis be available.

Current, prominent, Java interpretive environ-
ments can be improved upon when measured against
these and other requirements relevant to complete
beginners. BlueJ’s codepad (Kölling & Rosenberg

1along with other benefits of using such languages



1996, Kölling 1999, Fisker & Kölling n.d.), BeanShell
(BeanShell n.d.) Dynamic Java (Dynamic Java n.d.)
and Dr Java (Allen et al. 2002, Stoler 2002) are con-
sidered. Other notable Java environments are the Je-
liot and jGrasp visualisers (Moreno et al. 2004, Cross
& Hendrix 2007), and the Ville pedagogic environ-
ment (Rajala et al. 2007). While thoroughly excellent
environments, they don’t, nor are intended to, work
at the sub-program code snippet level, and are thus
orthogonal to this discussion.

BlueJ is an excellent pedagogical environment,
and its facility to instantiate and manipulate objects
is extremely useful, but BlueJ is primarily a compi-
lation environment. Recent versions have introduced
the codepad interpreter, which is a useful addition
that lets a learning programmer try very small code
snippets before putting them into code to be com-
piled. Nevertheless, codepad is clearly not intended
to be used alone as an initial training environment.
It is a secondary piece of a larger environment. The
language subset it supports is too small for signifi-
cant use beyond its intended purpose. In line with its
intended use in an objects first approach, it doesn’t
allow definition of methods, which is too limiting for it
to be used in isolation. Also, and rather surprisingly
given the BlueJ developers’ efforts in this direction,
the error reporting of codepad is very unhelpful.

BeanShell is an excellent scripting environment for
quick interpretation of Java code fragments. It is
not, however, intended for any pedagogical purpose,
but rather for use by competent programmers. It is
more complex than necessary for introductory pro-
gramming purposes. The various syntactic laxities it
allows, such as loose-typing, while great for experi-
enced programmers, are very counter to requirements
for an environment to learn Java and programming
fundamentals. Also, its error-reporting is not useful
for beginner programmers.

Dynamic Java is a flexible interpretive/scripting
environment, but again is not intended for pedagogy.
It has several features which are only going to be
problematic for beginners. Two examples are optional
variable declaration and requiring expressions to be
terminated by semi-colons in order to be evaluated.
This kind of syntactic training will be disastrous for
complete beginners. Error reporting in Dynamic Java
is, again, not helpful for beginners.

Dr Java is an excellent pedagogical compilation
and interpretation environment for Java coding, fol-
lowing on from the success of Dr Scheme. The pro-
vision of different language levels of increasing com-
plexity is a very attractive feature. Less attractive
features of Dr Java’s interpreter are that it allows du-
plicate variable declarations and the semi-colon lax-
ity of allowing a statement to be entered and exe-
cuted without a terminating semi-colon, unless part
of a compound statement or loop body. Dr Java’s
interpretation of semi-colons seems to be as separa-
tors rather than the terminators they are in Java’s
syntax. This kind of contradictory syntactic training
is harmful to complete beginners. These seem like
very minor flaws, but, when added to Dr Java’s er-
ror messages being not fully helpful for beginners and
the fairly daunting complexity of the environment for
beginners, are enough to suggest there is a place for a
simpler interpretive environment only for novices and
at an even lower level than Dr Java’s language level
1.

Experience teaching novice programmers in Java
shows that they have serious trouble grasping the
most elementary aspects of the language and pro-
gramming. They struggle with expressions and
types and the overburdening syntax. They struggle

with what should be the clear distinction between a
statement and an expression, and consequently with
method calls, method calls in arguments, and the dif-
ference between a void method and one returning a
value. Finally, and consistent with the findings of
Lahtinen et al. (2005), they find recursion extremely
difficult.

The goal of JULI is to target these problem areas,
while addressing the requirements for an introductory
environment and shortfalls of existing environments
outlined above. The JULI environment is at a lower
level than Dr Java’s language level 1 with a much
simpler and more rigorous interface, designed for ab-
solute beginner programmers only.

A key JULI feature is that it requires specific di-
rectives from the user indicating the semantic role of
code before it is interpreted, thus supporting separa-
tion of syntax from semantics and enforcing learning
of grammatical concepts. This reinforces conceptual
aspects of programming as opposed to linguistic as-
pects (Paul 2006). No laxity in syntax is allowed.
JULI is not intended to be used for a complete CS1
subject, but only in the first stages of the course to
provide a stronger foundation in the basic elements
of programming. With this foundation, the students
can move confidently to a more comprehensive envi-
ronment for the remainder of the course.

These two aspects of the design facilitate more
precise and useful error reporting, targeted at novice
programmers, since the messages can be tailored for
beginners, and also since the user has declared their
purpose as well as their code.

3 JULI Design

JULI is an interpreted Java programming environ-
ment designed for learning introductory program-
ming. It is by no means a full-scale development en-
vironment, and only supports a subset of the Java
language. Its purpose is to provide an environment
for practising with Java expressions and simple state-
ments in isolation from a large program. This sec-
tion discusses aspects of JULI that are not features
of other Java interpreters and the prototype imple-
mentation.

3.1 Language Subset

JULI understands Java at the sub class level. Arbi-
trary expressions and statements are understood, as
well as declarations of both variables and methods.
Classes cannot be defined, and access modifiers such
as public are not understood. The keyword static
makes no sense in this context. To JULI, everything
is implicitly static. Importing libraries is also not un-
derstood, though, technically, library classes can be
used through their full path class name.

Essentially, JULI is providing access to the non-
object-oriented parts of Java. Classes, notably class
String, can be used as types, instance values can be
created, and methods can be called, but the definition
of classes and the significance of instance variables is
hidden or deferred.

JULI is intended to be used for only part of an
introductory subject, to give students a grounding in
the basic elements of the language and in program-
ming fundamentals, before moving to a more com-
plete environment. It is clearly not intended for an
objects first approach. Contributing to the debate
on objects first and its merits (e.g., (Bennedsen &
Schulte 2007, Hu 2004)) is not a topic of this paper.

2



Figure 1: Basic JULI directives

There are people who do not teach objects first, and
this work is aimed to support them.

Further restrictions on the language to disallow
counter-intuitive aspects like assignments as expres-
sions, not-worth-their-trouble elements like switch
and x++, and the less used primitive types are possi-
ble, but currently not in place. Finally, as discussed
in Section 3.4 below, standard input and output is
disabled in JULI.

3.2 Interaction Through Directives

JULI is an interactive system. At the JULI prompt,
the user enters directives using this simple syntax:

<directive> : [<argument>]

The directives for processing Java code are decl,
expr, stmt, and type. The argument to these di-
rectives is Java code. These directives behave as one
would expect. Directive decl expects the argument
to be a variable or method declaration and enacts
it. Directive expr expects the argument to be an ex-
pression and evaluates it. Directive stmt expects the
argument to be a statement and executes it. Directive
type expects the argument to be an expression and
determines its type. Figure 1 shows a screenshot of a
simple session showing examples of these directives.

The idea behind these directives is to force the user
to understand the grammatical role and purpose of
the code snippet they are entering. It is an immensely
simple and easy-to-use system that reinforces the very
fundamental difference between declarations, expres-
sions, and statements. It effectively makes the dis-
tinction between a method declaration and a method
call, and also clears up confusion about the difference
between a call to a void method, which is a statement,
and a call to a method returning a value, which is an
expression.

Other directives exist for interactions with JULI
rather than for processing Java code, such as for
getting help, showing current declarations and state-
ments, loading and saving scripts, and clearing dec-
larations and statements. Each directive may be ex-
pressed in full or by provided abbreviations. For ex-
ample, expression:, expr:, and e: are equivalent.
A full list of directives is shown in Appendix A.

3.3 Sessions and Scripting

Typical scripting environments add any declaration
to the currently available declarations and evaluate
expressions or execute statements in the context of
the current state, i.e., the values of all available vari-
ables given all the statements so far. JULI supports
this behaviour, but also allows the user to declare

Figure 2: The show: directive

that declarations or statements or both are not to
be remembered. When declaration recording is off,
each declaration becomes the only extant declaration.
When statement recording is off, each statement be-
comes the only statement executed and context of
previous statements is lost. Since the declaration
and statement directives are separate, all four pos-
sible combinations of recording are available in JULI,
and there are JULI directives to set what is to be
recorded.

The collection of declarations and statements cur-
rently available can be retrieved using the show: di-
rective. An example is shown in Figure 2. The decla-
rations and statements are numbered for reference in
JULI directives that remove them from their respec-
tive lists.

JULI maintains a command history that can be
navigated.

Finally, JULI allows the current collection of dec-
larations and statements to be saved in a text file as
a script. Similarly, scripts can be loaded from file
and become the current collection of declarations and
statements. The load: and save: directives, respec-
tively, are used for this and can either be given a file
path or, by default, open a file browser dialog. If the
syntax of the show: format is used, a JULI script can
be created using any text editor.

3.4 Interaction vs STDIO

McIver & Conway (1996) suggest an introductory
programming environment needs to be careful with
IO. The trial version of JULI does not include stan-
dard input and output. This is for conceptual reasons,
and also reasons of simplicity. Looking at Java from
the perspective of a program that is to be compiled,
standard IO is an obvious requirement. But, from
the perspective of an interpreter of Java expressions
and statements, it is no longer an obvious inclusion.
The rationale for not including standard IO in JULI
is outlined below.

First, to be consistent with Java’s operational
model, standard IO should be through a console win-
dow, and this should be separate from an interpreter
window.2 That significant extra complexity needs sig-
nificant justification in terms of value. JULI is in-
tended to be used only in the beginning of a course to

2as is the case with BlueJ’s codepad, though not Dr Java

3



gain familiarity with basic Java elements like expres-
sions and methods. It is definitely not intended for
writing programs as opposed to methods. Construc-
tion of a program as a complex state-changing entity
is deferred until later in the course at a point where a
different and more complete environment supporting
IO can be used. Stylistically, arbitrary use of println
statements is discouraged and instead students are
encouraged to view a method as an input to out-
put transformer through its parameters and return
value. Rather than a confused jumble of printlns
across several methods, students are encouraged to
construct strings as return values, and develop habits
of structuring their methods calls, and future pro-
grams, accordingly. Design goals of JULI are to re-
inforce the concepts of expressions, method calls as
expressions, and methods as type converters, similar
to the experiences reported by Chakravarty & Keller
(2004).

The strong desire for IO in a standard Java pro-
gram is to make the system interactive, but an inter-
preter is interactive by nature. The default behaviour
is a response, or output, and the user is always enter-
ing instructions composed of expressions, the same as
input. There is actually very little utility to be had
from IO in an introductory interpretive environment.
This way of thinking is somewhat of a paradigm shift
for those trained in the standard imperative model,
but it is conceptually intuitive and beginners without
such training do not find it strange.

3.5 Error Reporting

Error reporting in JULI benefits from these aspects:

1. JULI is a command interpreter. The location of
the error is restricted: It must be in what the
user just entered.

2. The user has declared their purpose as well as
their code.

3. Error messages targetted only for complete be-
ginners can be used.

In the event of an error, JULI shows the erroneous
code highlighted, the compiler error message, and an
additional explanation of what the error might be,
targetted for beginners. These messages are modelled
after the ones from BlueJ but even further simplified
for absolute beginners.

Figure 8 shows examples of common errors.

3.6 Error Logging

JULI maintains logs of all errors made by users. Each
error is tagged by a user name, a session ID, and the
system time when the error occurred. This informa-
tion is hashed internally so that the individual errors
can be grouped appropriately, but the user is anony-
mous. The logs are compiled in a central, networked
repository. This enables the kinds and frequencies of
errors made by the students to be measured. Further,
error grouping according to session and time can be
measured, and thus the effectiveness of the students’
attempts to resolve the errors can be gauged.

This data will also be used to tailor error reporting
and handling in future versions of JULI, and will also
drive additions or extensions to JULI. Furthermore,
it will serve as control data for those improvements
to measure their effectiveness.

Figure 3: Error reporting

3.7 Prototype

An initial version of JULI has been implemented for
trial in a CS1 class. It is implemented in Java 1.6 be-
cause it currently packages user input and ships it to
the Java compiler available through the ToolProvider
API. Future versions of JULI are expected also to
be implemented in Java to take advantage of existing
parser interfaces or to use Java’s run-time type inter-
face for creating and interacting with objects such as
strings.

Figure 4 is an extended example showing a method
declaration, expression evaluation, and a statement
calling the method. The @ character is the proto-
type’s temporary implementation of multi-line input.
Figure 5 provides another example showing some eval-
uation and exploration of strings.

4 Trial Deployment and Analysis

JULI was used in a semester of introductory program-
ming at Bond University. It was used for the first
5 lecture weeks of a 12 lecture week course to cover
types and expressions, declarations and assignment, if
statements, loops, method declarations and calls, re-
cursion, and arrays. BlueJ was used for the remainder
of the course, which is the environment that previous
incarnations of the course have used.

There are two chiefly interesting aspects of this
course arrangement. First, standard input and out-
put is not covered until week 6 and the students don’t
see a complete Java program with main method until
then. Secondly, recursion is covered very early in the
course and not just as a painful afterthought at the
end (or not at all) as is the case in several CS1 courses.
In fact, recursion fits in naturally and seamlessly in
the early stages.

The absence of standard IO was not felt amongst
the students. Instead, they received a good ground-
ing in basic expressions and statement structure.

4



Figure 4: Method example

Figure 5: String exploration

Cohort GPA A1 A2 A3 M P F

May 2005 61 45 37 37 47 51 63
Sep. 2005 66 47 42 42 38 27 32
May 2006 61 74 60 56 55 46 49
Sep. 2006 65 70 92 67 70 57 69
May 2007 57 73 54 44 71 44 49
May 2008 67 68 56 55 52 59 66
May 2009 74 76 70 57 59 67 77
May 2010 68 80 74 50 57 59 74
Sep. 2010 69 81 63 71 66 64 63

Averages 65 68 61 53 57 53 60

Trial group 65 91 70 58 66 54 56
(May 2011)

Figure 6: Assessment results of students using JULI.
Numbers shown are percentages scored on assessment
items: Three programming assignments, a Midterm
exam, a Practical exam, and a Final written exam

They made the transition to full programs and BlueJ
smoothly and easily, and the impression of the teach-
ing staff is that this presentation of Java was easier
to deliver and easier to receive.

In terms of the original design goals of JULI, the
trial deployment was very successful. Every student,
even the weak ones, fully grasped the distinction be-
tween expression and statement, that a method call
returning a value is an expression, and that method
calls could therefore be used in expressions and as ar-
guments. These have been major stumbling blocks for
students in previous semesters, despite special con-
centration and emphasis on the topics.

Furthermore, from an instructor’s perspective, re-
cursion was vastly easier to deliver with JULI and
using this course structure. This is believed to be a
consequence of the ability to write and call a method
in isolation, and of the emphasis on method calls as
expressions. The anecdotal experience of the teaching
staff is that even the weak students seemed to grasp
the idea, and it carried none of the arcane intimi-
dation common in previous semesters. Nevertheless,
recursion remains a difficult topic as borne out by the
empirical results in the next section.

4.1 Empirical Results of Acadaemic Perfor-
mance

Figure 6 summarises the acadaemic performance of
students in the trial semester of JULI against previ-
ous semesters at Bond University. Each cohort is pre-
sented with the average GPA before the semester of
all enrolled students, and the averages of the marks
of the assessment items in the course: 3 program-
ming assignments, a written midterm exam, a practi-
cal exam, and a written final exam. These semesters
were all taught by the same lecturer and had similar
assessment goals and requirements.

A standout result of Figure 6 is the trial group’s
performance on the first programming assignment.
Different to previous semesters, this assignment was
done in JULI. In terms of the problems being solved,
it was identical to previous assignments. The JULI
group averaged 91% for this assignment, despite hav-
ing an unimpressive class GPA coming in to the sub-
ject. This solid performance continued on in assign-

5



Cohort GPA R Cohort GPA R

May 2005 61 * May 2008 67 68
Sep. 2005 66 * May 2009 74 83
May 2006 61 * May 2010 68 87
Sep. 2006 65 70 Sep. 2010 69 66
May 2007 57 63

Average 67 72 Trial Group 65 63
(May 2011)

Figure 7: Assessment results as percentages for recur-
sion on practical exam (* indicates recursion not on
exam).

ment 2, now doing sub-object-oriented programming
with multiple (static) methods in BlueJ. The midterm
exam results are also a pleasing endorsement that the
basic elements of programming were better learned.
The remaining results reflect full object-oriented pro-
gramming and are consistent with previous years,
though this group’s performance on the final exam
is disappointing.

One of the hopes of using JULI was that it would
have a positive impact on teaching of recursion. Qual-
itatively, this was so, as discussed above. Quantita-
tively, Figure 7 shows the results for each cohort on
the recursion component of the practical exam, from
which it appears the trial group performed rather
poorly. However, the results that contributed to this
average were (50,100,0,100,100,90,0), which is a vastly
more bi-modal distribution of marks than in previous
semesters. In fact, the mode is 100! These results
show that either students attempted the question or
they did not, and when they did, they performed well.
This is unlike the spread of marks in any of the other
cohorts.

4.2 Empirical Results of Usage Errors

Figure 8 shows a break-down of all errors made in
sessions with JULI during the trial semester. JULI
only logs errors when the users are connected to the
University’s network, so any errors made by students
on their personal machines are not represented here.

These results show the two most common mistakes
are missing semi-colons (576/1477), and undeclared
variables (340/1477). Together they account for 60%
of all the errors, and occur an order of magnitude
more often than other errors! Other Java interpretive
environments (as described in Section 2) treat either
or both of these as not being errors, effectively prop-
agating 60% of mistakes to a future point where the
unwitting students have been trained to believe they
actually know what they are doing!

The other remarkable result from Figure 8 is that
incompatible types accounted for only 4 of the 1477
errors. This is nothing short of astounding!

5 Future Work

5.1 Further Empirical Work

There is little or no empirical work contrasting Java
teaching environments, nor on the general merits of
an interpretive framework for teaching introductory
programming. A major result of the JULI project is
the acquisition of empirical data. Class sizes at Bond
University are very small, so more data need to be

Avg. per
Error session Total Total %

Missing semi-colon 5.59 576 38.99
Undefined variable 3.30 340 23.02
Possible loss of precision 1.02 105 7.1
Illegal start of expression 0.88 91 6.16
Name already defined 0.60 62 4.2
.class expected 0.38 39 2.64
Illegal start of type 0.33 34 2.3
Can’t apply symbol 0.24 25 1.69
Not a statement 0.23 23 1.56
Unclosed character literal 0.21 22 1.49
Unexpected type 0.17 18 1.22
Illegal char 0.17 18 1.22
Else without if 0.16 16 1.08
Missing return statement 0.16 16 1.08
Unclosed string literal 0.16 16 1.08
Uninitialised variable 0.12 12 0.81
Operator can’t be applied 0.11 11 0.74
Illegal escape character 0.09 9 0.61
Reference to non-static 0.09 9 0.61
Repeated modifier 0.08 8 0.54
Int number too large 0.06 6 0.41
Unreachable statement 0.05 5 0.34
Incompatible types 0.04 4 0.27
Illegal line end in literal 0.03 3 0.2
Missing return type 0.03 3 0.2
Cannot dereference 0.02 2 0.14
Void not allowed here 0.01 1 0.07
Missing return value 0.01 1 0.07
Qualified name not found 0.01 1 0.07

Total: 1477

Figure 8: JULI usage Error classification

gathered from future course offerings. Further, the
error logs need to be mined for more correlations or
patterns.

5.2 Further Implementation and Additional
Features

Continued analysis of error logs will direct enhance-
ments to JULI, from more constructive or refined er-
ror reports to restrictions on the input language.

In the longer term, there are two features of pri-
mary interest for adding to JULI. The first is syntax
lookup, whereby a student can request the syntax di-
agram for a kind of statement or structure. These di-
agrams are used in the lecture notes and other course
materials, but it would be reasonably straightforward
to add them as pop-ups in JULI, and this would be
more convenient for the students than having to scour
course materials.

The second is a tracing/debugging component to
provide a glass-box view of the system state as advo-
cated by Robins et al. (2003). The usefulness of this
concept is clear, but BlueJ already provides an ex-
cellent debugging environment, especially when com-
bined with Jeliot. Given that JULI is only intended
for initial use before transferring to an environment
such as BlueJ, this feature has lower priority.

5.3 Broader Deployment

The full implementation of JULI will be freely avail-
able for other teachers of CS1 classes to use. It is
distributed as a jar file, so it should also be easy to
incorporate it into BlueJ as an extension. A more
wishful deployment prospect is to see the ideas of
JULI’s directives incorporated into Dr Java as some
kind of plug-in language level 0 beneath level 1.

6



6 Conclusion

The design and usage experiences of an ultra-
lightweight Java interpreter for the early stages only
of an introductory programming subject have been
presented. The interpreter, which understands Java
at the sub class level, requires the user to precede their
code snippets by an indication of their grammatical
role. These two ideas target complete novices and also
allow the error reporting to be tailored specifically to
help beginners. JULI is concerned with trying to solve
a small problem effectively: that current Java peda-
gogical environments are still too complex or have
features unsuitable for absolute beginners. Environ-
ments like BlueJ and Dr Java are thoroughly excel-
lent, and this work is by no means a criticism of them.
Indeed, the intention is to begin with JULI and tran-
sition to such environments when the students have
a firm grounding in fundamental aspects of program-
ming and Java.

Beyond this role of a stepping stone, JULI also
tries to target perceived related problem areas for be-
ginning students of programming in Java: expressions
versus statements, methods, method calls, methods
as functions and type converters, method calls in ex-
pressions, and, finally, recursion. The functional pro-
gramming flavour of this is deliberate. JULI provides
a way to access sub class level Java in a simple and,
if desired, declarative way.

Experience with JULI in a semester of CS1 was
very positive, and empirical results suggest it had a
positive impact on learning outcomes. JULI sits well
in an introductory programming curriculum for cover-
ing basic elements before moving to a more complete
environment for larger programs.

References

Agarwal, K. K. & Agarwal, A. (2005), ‘Python for
CS1, CS2 and beyond’, Journal of Computing Sci-
ence in Colleges 20.

Allen, E., Cartwright, R. & Stoler, B. (2002), Dr Java:
A lightweight pedagogic environment for Java., in
‘Proceedings of the ACM 33rd SIGCSE Technical
Symposium on Computer Science Education.’.

BeanShell (n.d.), http://www.beanshell.org.

Bennedsen, J. & Schulte, C. (2007), What does
“objects-first” mean? An international study of
teachers’ perceptions of objects-first, in ‘Proceed-
ings of the Seventh Baltic Sea Conference on Com-
puting Education Research (Koli Calling 2007)’.

Bloch, S. (2008), ‘Teach Scheme reach Java: In-
troducing object-oriented programming without
drowning in syntax’, Journal of Computing Science
in Colleges 23.

Chakravarty, M. M. T. & Keller, G. (2004), ‘The risks
and benefits of teaching purely functional program-
ming in first year’, Journal of Functional Program-
ming 14, 113–123.

Cross, J. A. & Hendrix, T. D. (2007), ‘jGRASP:
An integrated development environment with vi-
sualizations for teaching Java in CS1, CS2, and
beyond.’, Journal of Computing in Small Colleges
23(2).

Dynamic Java (n.d.), http://old.koalateam.com/
djava/.

Fisker, K. & Kölling, M. (n.d.), ‘The BlueJ envi-
ronment reference manual (v2.0)’, http://www.
bluej.org/doc/bluej-ref-manual.pdf.

Hu, C. (2004), ‘Rethinking teaching objects-first’, Ed-
ucation and Information Technologies 9(3).

Kölling, M. (1999), The design of an object-oriented
environment and language for teaching., PhD the-
sis, The University of Sydney.

Kölling, M. & Rosenberg, J. (1996), An object-
oriented program development environment for the
first programming course., in ‘Proceedings of ACM
27th SIGCSE Technical Symposium on Computer
Science Education.’.

Lahtinen, E., Ala-Mukta, K. & Järvinen, H.-M.
(2005), A study of the difficulties of novice pro-
grammers, in ‘Proceedings of the 10th International
Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE’05)’.

Mannila, L. & de Raadt, M. (2006), An Objec-
tive Comparison of Languages for Teaching Intro-
ductory Programming, in ‘Proceedings of the 6th
Baltic Sea Conference on Computing Education
Research: Koli Calling 2006’.

McIver, L. & Conway, D. (1996), Seven deadly sins
of introductory programming language design., in
‘Proceedings of the 1996 International Conference
on Software Engineering: Education and Practice.’.

Miller, B. N. & Ranum, D. L. (2005), Teaching an In-
troductory Computer Science Sequence in Python,
in ‘Midwest Instruction and Computing Sympo-
sium’.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M.
(2004), Visualizing programs with Jeliot 3., in ‘Pro-
ceedings of the International Working Conference
on Advanced Visual Interfaces AVI 2004, Gallipoli
(Lecce), Italy’.

Muziol, L. (2008), ‘Teaching programming : Mod-
ern approaches using tools and dynamic lan-
guages.’, http://gride.googlecode.com/files/
lmuziol-teaching-summary.pdf.

Paul, J. (2006), What first? Addressing the critical
initial weeks of CS-1., in ‘Proceedings of the 36th
ASEE/IEEE Frontiers in Education Conference’.

Radenski, A. (2006), “Python First”: A Lab-Based
Digital Introduction to Computer Science, in ‘Pro-
ceedings of the 11th Annual SIGCSE Conference
on Innovation and Technology in Computer Science
Education’, ITICSE ’06.

Rajala, T., Laakso, M.-J., Kaila, E. & Salakoski, T.
(2007), VILLE - a language-independent program
visualization tool., in ‘Proceedings of the Seventh
Baltic Sea Conference on Computing Education
Research (Koli Calling 2007)’.

Robins, A., Rountree, J. & Rountree, N. (2003),
‘Learning and teaching programming: A re-
view and discussion’, Computer Science Education
13, 137–172.

Stoler, B. (2002), A framework for building pedagogic
Java programming environments., Master’s thesis,
Rice University.

7

http://www.beanshell.org
http://old.koalateam.com/djava/
http://old.koalateam.com/djava/
http://www.bluej.org/doc/bluej-ref-manual.pdf
http://www.bluej.org/doc/bluej-ref-manual.pdf
http://gride.googlecode.com/files/lmuziol-teaching-summary.pdf
http://gride.googlecode.com/files/lmuziol-teaching-summary.pdf


A JULI Directives

JULI commands
(abbreviations shown in parentheses)

clear :

Clear all current declarations and
statements (see show below)
(c)

clear-declaration : <arg>

Clear the given declaration number,
or all declarations if no argument
(cd, clear-decl)

clear-statement : <arg>

Clear the given statement number, or
all statements if no argument
(cs, clear-stmt)

declaration : <code>

Interpret the given code as a
declaration
(d, dec, decl)

expression : <code>

Interpret the given code as an
expression
(e, expr)

header : <arg>

Add a header comment to the code
(head)

help :

Show this help message
(h)

load : <filename>

Load declarations and statements
from file. Use <filename> if
present, otherwise open browser.

record : <on|off>

Set the recording status for
declarations and statements to on
or off. If recording is on, each
new declaration or statement is
appended. If recording is off,
each new declaration or statement
replaces the last. The default
status is off.
(r, rec)

record-status :

Show the record status for
declarations and statements
(rstat, rec-status)

record-declarations : <on|off>

Set the recording status for
declarations to on or off (see
record above).
(rd, rec-dec, rec-decl, record-dec,
record-decl)

record-statements : <on|off>

Set the recording status for
statements to on or off (see record
above).
(rs, rec-stmt, record-stmt)

record-toggle :

Toggle the record status for
declarations and statements
(on->off, off->on)
(rt, rec-toggle)

run :

Execute the current statements
in the context of the current
declarations

save : <filename>

Save the current declarations and
statements to file. Use <filename>
if present, otherwise open browser.

show :

Show the current declarations and
statements
(sh)

statement : <code>

Interpret the given code as a
statement
(s, st, stmt)

type : <code>

Show the type of the given
expression
(t)

8


	Introduction
	Requirements for an Introductory Programming Environment and Shortfalls of Existing Environments
	JULI Design
	Language Subset
	Interaction Through Directives
	Sessions and Scripting
	Interaction vs STDIO
	Error Reporting
	Error Logging
	Prototype

	Trial Deployment and Analysis
	Empirical Results of Acadaemic Performance
	Empirical Results of Usage Errors

	Future Work
	Further Empirical Work
	Further Implementation and Additional Features
	Broader Deployment

	Conclusion
	JULI Directives

