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Abstract: Off-site construction (OSC) has been recognized as an approach to transform the 

construction sector from a labor–intensive to a modernized and green industry. Despite a number 

of advantages, the development of OSC still remains its infancy in China due to various 

interactive barriers. Some studies have been conducted to explore the barriers to the OSC adoption. 

However, very few studies attempted to investigate the complex interrelationships among these 

barriers. In order to fill this gap, this study adopts Interpretive Structural Model (ISM) technique 

to explore the interrelationships amongst barriers to the OSC adoption in China. Firstly, critical 

barriers were identified through literature review and semi-structured interviews with various 

stakeholders. Then, the overall structure amongst barriers was revealed through ISM technique. 

By using the Matrice d’Impacts Croise's Multiplication Appliquée a Classement (MICMAC) 

technique, the barriers were classified into four groups according to their driving-power and 

dependence power. The results indicate that specific attentions should be given to inadequate 

policy and regulations, lacking knowledge and expertise, dominated traditional project process as 

well as low standardization. The research findings provide valuable information for policy-makers 

on the overall structure amongst barriers. These results shed lights on effectively developing 

measures to facilitate the OSC adoption in the construction sector.  

Key words: Off-site construction; prefabrication; Critical barriers; China; Interpretive Structural 

Model 

1. Introduction 

It is well acknowledged that China has one of the largest construction industries over the world 

(Chang et al., 2016). Along with significant economic contribution, the Chinese construction 

industry is facing challenge in pursuing the goal of sustainable development. For instance, the 

construction industry accounted for 20% of the total energy consumption in China in 2015 (Hong 

et al., 2017). This proportion might be even higher due to the largest urbanization is experienced 
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in China which is expected to a historic of 60% by 2020 (Gan et al., 2017). It is estimated that 

around 30 billion m2 of building area will be newly constructed by 2020 according to the National 

New-type Urbanization Plan (2014-2020) (Gan et al., 2015; SC, 2014). Meanwhile, the labor 

shortage of on-site construction workers have emerged in major cities of China due to intensive 

workloads, long working hours and poor living conditions (Wang et al., 2016). There are a number 

of issues associated with traditional on-site construction method such as low productivity, high 

waste, heavy environmental burden and poor safety (Teng et al., 2017).  

Under off-site construction (OSC), a certain amount of building components are manufactured in 

a controlled environment, transported to the construction site and assembled into buildings (Hong 

et al., 2018; Mao et al., 2015). Originated from the manufactured industry, OSC is a radical 

innovation to replace conventional in-situ construction method (Kamali & Hewage, 2017; 

Steinhardt et al., 2013). Currently, the adoption of OSC has made considerable progress in 

countries and regions such as Japan, Denmark, Netherlands, Sweden, Germany, Hong Kong, 

Singapore and so on (Jaillon et al., 2010; Mao et al., 2016; Zhai et al., 2014). Lessons derived 

from these countries and regions highlight the inherent benefits of the OSC, including reducing 

construction waste, improving quality control, reducing noise and dust, improving health and 

safety, saving times and costs, lowing labor demand, reducing resource depletion, and a 

consequence increasing in predictability, productivity, whole-life performance, and profitability 

(Chiang et al., 2006; Hong et al., 2018; Jaillon & Poon, 2008; Kamali & Hewage, 2016; Li et al., 

2016; Li et al., 2014; Li et al., 2014; Nadim & Goulding, 2010; Pan et al., 2012). This indicates 

that the OSC adoption can be regarded as a good alternative to meet housing demand timely as 

well as to facilitate the shifting the dependence of construction industry on labor towards a 

“knowledge -based” industry (Nadim et al., 2011).  

The Chinese government has recognized these benefits and regarded the adoption of OSC as an 

effective tool to facilitate the industrialization of construction industry. OSC is expected to 

account for 30% of total construction within the next decade (SC, 2016). It is mandatory to adopt 

OSC for affordable housing development in many jurisdictions, such as Chongqing, Beijing, and 

Shenzhen. The total floor area of OSC housing is expected to exceed 40million m2 by 2017. 

Meanwhile, in the context of urbanization, the massive housing demand within limited time 

framework creates best opportunity for its extensive adoption.  

The construction industry is well-known for its low level of innovation (Xue et al., 2017). The 

promotion of adopting OSC is indeed a formidable task for the construction industry as its 

“lock-in” to the conventional in-site construction method (Zhang et al., 2012). As a sequence, the 

http://www.youdao.com/w/formidable/#keyfrom=E2Ctranslation
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projected market share of OSC in China remains below 2% of its entire construction sector, far 

below the national target (Mao et al., 2016). This has motivated studies to explore individual 

barriers to the OSC adoption in China (Luo et al., 2015; Mao et al., 2015; Zhang et al., 2014). 

However, the interrelated relationships among barriers have been largely overlooked. Liu et al. 

(2015) argued that the OSC adoption as innovation is featured with complex, dynamic and 

non-linear. As extraordinary variety of materials required for the products, the construction is a 

complex product system (Xue, Zhang, Yang, & Dai, 2014). The distinguished characteristic of 

complex product system is that many interconnected elements are organized in a hierarchical way, 

with nonlinear and continuously emerging properties (Miller et al., 1995). The OSC adoption will 

introduce changes into this complex system which creates a ripple effect of secondary and tertiary 

impacts (Slaughter, 2000). Therefore, it is imperative to understand the interrelationships among 

these barriers so that effective strategies could be developed accordingly. This has been 

underscored by previous studies that suggested the interactive relationships among barriers to the 

adoption of construction innovations (Prasad et al. 2015; Luthra et al. 2014; Dalvi-Esfahani et al. 

2017). An examination of these interactive relationships provides a comprehensive picture 

regarding the overall structure of barriers (Wang et al., 2008).   

Therefore, this study aims to fill this gap by developing a comprehensive model depicting the 

barriers and their interactive relationships via the Interactive Structural Modeling (ISM) and 

Matrice d’impacts croises-multipication appliqué a classement (MICMAC) technique. Specific 

objectives of this research are: 1) identifying the critical barriers to the OSC adoption; 2) 

determining the interactive relationships amongst these barriers; 3) prioritizing these barriers. In 

light of the significant role and urgent need of OSC in the rapid urbanization in China, the 

research findings help decision makers to visualize the barriers through revealing the overall 

structure while the model facilitates the identification of high-priority barriers. Corresponding 

strategies can be developed consequently. This sheds lights on how to facilitate the OSC adoption 

in developing countries.  

 

2. Research methods 

http://www.youdao.com/w/policy%20objective/#keyfrom=E2Ctranslation
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To achieve these research objectives, a hybrid research method (Fig.1) was adopted in this study. 

Firstly, a comprehensive literature review was conducted to identify the barriers to the OSC 

adoption. This is followed by a questionnaire survey to elicit the perceptions of experts regarding 

the contextual relationships amongst these barriers. By using Interpretive Structural Model (ISM) 

technique, the Adjacency Matrix and the Reachability Matrix can be constructed and the hierarchy 

structure can be depicted after checking transitivity by power iteration analysis. Finally, these 

barriers were classified according to driving power and dependence power by using the Matrice d’ 

Impacts Croise's Multiplication Appliquée a Classement (MICMAC) technique.  

2.1 ISM 

 Interpretive Structural Model (ISM) was first proposed by Warfield in 1974. It is an 

interpretive modeling technique based on the judgment of working participants in a group to 

decide whether and how the factors of complex situation are related together (Dalvi-Esfahani et al., 

2017; Prasad et al., 2015). ISM provides an effective method to recognize relationships among 

various items of a complex system (Abuzeinab et al., 2017; Luthra et al., 2014). Meanwhile, ISM 

has been adopted to highlight the courses of actions to solve the target problem (Dalvi-Esfahani et 

al., 2017). Currently, ISM has been adopted in the field of construction innovation, e.g. 

investigating barriers to sustainable business models in UK (Abuzeinab et al., 2017); exploring the 

interactions among barriers of adoption of smart grid technologies (Luthra et al., 2014); probing 

the interactions of barriers to implementing OHSAS 18001 in India (Prasad et al., 2015). With a 

reference of these studies, the basic steps to develop the ISM are as follows (Abuzeinab et al., 

2017; Luthra et al., 2014; Prasad et al., 2015):  

Step 1: Variables related to the problems or issues under consideration are identified.  

Step 2: Identifying the contextual relationship among variables identified in Step 1. The 

Adjacency Matrix (AM) suggests the contextual relationship among variables that collected 

opinions from experts. The contextual relationships presenting the pair wise relationships between 

variables in AM can be described by using the letters of V, X, A, O. V means that variable i led to 

variable j; A means variable j led to variable i; X means variables i and j led to each other; O 

means variables i and j were unrelated.  

Step 3: Developing a Reachability Matrix (RM). The Adjacency Matrix (AM) demonstrates the 

direct relationships among barriers, while the Reachability Matrix suggests not only the direct 

relationships among barriers but also the indirect relationships. Based on the AM, two steps were 

implemented to develop the RM. Firstly, the initial RM (Ri) was developed by using the following rules 

that the binary values 1 and 0 are adopted to replace V, A, X, O in AM (Shen et al., 2016):  
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⚫ If the cell (i, j) entry in the AM was V, the cell (i, j) entry in the Reachability Matrix became 1 and 

the cell (j, i) entry became 0.  

⚫ If the cell (i, j) entry in the AM was A, the cell (i, j) entry in the Reachability Matrix become 0 and 

the cell (j, i) became 1.  

⚫ If the cell (i, j) in the AM was X, the cell (i, j) entry in the Reachability Matrix became 1 and the 

cell (j, i) became 1.  

⚫ If the cell (i, j) entry in the AM was O, the cell (i, j) entry in the Reachability Matrix became 0 and 

the cell (j, i) also became 0.  

As the initial RM based on AM only demonstrates the direct relationships among variables without 

telling the indirect relationships, it is necessary to conduct the power iteration analysis. This aims to 

check transitivity rules, e.g., if A→B and B→C, then A→C, to reveal the indirect relationships 

amongst variables. By adding the transitivity to the initial Reachability Matrix through Boolean 

operation which involved self-multiplication of matrix until it reached a stable state, the final 

Reachability Matrix can be generated (Wu et al., 2015). According to Shen et al. (2016), the finial RM 

can be generated using the following equation:  

Rf = Ri
k = Ri

k + 1, K > 1  

  Where Rf is final Reachability Matrix, and Ri is initial Reachability Matrix. 

Step 4: Partitioning is carried out to identify various levels of the model. To establish the hierarchy 

structure, variables’ level partitions were identified which is based on reachability set, antecedent set 

and intersection set. The reachability set of a variable consists of the variables itself and other variables 

that it may reach, and the antecedent set of a variable consists of the variables itself and other variables 

that may reach to it, and the interaction set of a variable consists of the common variables in its both 

reachability and antecedent set (Luthra et al., 2014). The reachability set and antecedent set for each 

variable was derived from the RM, and then, the intersection set was generated. To determine the level 

of each variable, the reachability set should be compared with the intersection set (Shen et al., 2016). 

Variables with the reachability set and intersection set were identical should be considered as pertaining 

to level 1. Next, the variables identified in level 1 will be discarded for the next iteration to identify 

further levels. New reachability set and intersection set for the remaining variables were examined. 

Variables with the reachability set and intersection set were identical should be considered as pertaining 

to level 2. The interactions were repeated until all the variables are classified in levels. Then the 

hierarchy structure is revealed. 

Step 5: Drawing the directed graph, and then checking conceptual inconsistency, followed by 

necessary modifications, if required.  
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2.2 MICMAC techniques 

Matrice d’Impacts Croises Multipication Appliqué a classement (MICMAC) technique is used 

to investigate how impacts are distributed “through reaction paths and loops for developing 

hierarchies for members of an element set” (Wang et al., 2008). Generally, it is conducted by 

examining the driving power and dependence power of each factor. The driving power of a factor 

suggests the total number of other factors been it affects, while the dependence power refers to the total 

number of other factors it is affected by (Shen et al., 2016). The driving power and dependence power 

can be calculated by adding together all the entry values of the row and the column respectively 

corresponding to the concerned factor in the RM. As a result, each factor can be grouped into four 

classifications: autonomous factors (weak driving power and weak dependence power), dependent 

factors (weak driving power and strong dependence power), linkage factors (strong driving power 

and strong dependence power), and driver or independent factors (strong driving power and weak 

dependence power) (Luthra et al., 2014).  

2.3 Questionnaire survey 

The questionnaire survey was conducted in the city of Chongqing, a western city in China 

where is experiencing rapid urbanization. The urbanization rate is expected to reach 70% in 2020, 

where nearly 242 thousand million people live in urban area. The massive ongoing construction 

activities in the context of urbanization provide a best opportunity to promote the OSC adoption. 

Based on the “Opinions on accelerating the modernization of the construction industry” issued by 

the Chongqing municipal government in 2015, all the public housing should adopt OSC from 

2017 and the OSC is expected to account for 20% of the new construction in 2020. There are more 

practices to promote the OSC adoption in Chongqing than any other western cities, such as 

establishing manufacturing base of OSC, constructing demonstrating project, etc.  

A snowball sampling technique was employed to recruit experts with rich knowledge and 

expertise on adopting OSC (Shi et al., 2015). A total of 20 experts were contacted through 

telephone and e-mails, and 8 experts finally agreed to participate in this research. The total 

participation rate is 40%. Similar sample size was found in previous studies, e.g., Shen et al. 

(2016), Wang et al. (2008), Luthra et al. (2014). No previous reference suggested the required 

minimum number of experts for ISM (Liu et al., 2015). According to Liu et al. (2016), this is 

common and acceptable in construction research and meaningful results can be obtained when 

well-developed selection criteria are used for sampling. The profiles of participated experts are 

shown in table 1. All eight experts hold senior management positions in their respective 

institutions, and have rich experiences on the OSC.  
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Table 1. Profile of experts participated in semi-structured interviews 

Expert Working organization Role in the organization Years of experience 

A University Professor 5 

B University Professor 8 

C University Professor 10 

D Construction authority Director 9 

E Manufacturer Executive 14 

F Developer General Manager 7 

G Designer Professional Engineer 13 

H Contractor Department Manager 15 

These 8 experts were asked to judge whether those barriers identified by literature review are 

reprehensive in the context of China. Firstly, those barriers identified in section 3 were distributed 

to experts by email with the requirement to confirm and agree on the interpretation of each of 

these barriers. In addition, they were invited to list other barriers. Secondly, all 8 experts 

undertook the pair-wise comparison of the barriers by answering the questions “do you think 

factor i directly affect the factor j”. The contextual interrelationships among barriers were 

determined on the agreement among all respondents. However, different experts may judge the 

pair-wise comparison of two barriers differently. As suggested by Shen et al. (2016), the principle 

of "the minority gives way to the majority" was adopted to address this issue. In this research, the 

contextual relationship among barriers was determined if five or more expert agree. 

3. Literature review of barriers to OSC adoption 

To identify barriers to the adoption of OSC, a systematic method was adopted in this study to 

search and review related literature. Web of Science database was selected. Keywords of 

“barriers”, “offsite construction”, or other terms associated with OSC, such as “prefabricated 

construction”, “precast concrete building”, “modern methods of construction”, “industrialized 

building”, “offsite prefabrication” and so on were used to search the database. These papers were 

reviewed where a set of barriers were identified. 

Higher cost (B1) 

There are mixed results about cost associated with OSC adoption. It has been reported in 

developed countries that the benefit of cost saving is driver of OSC adoption (Hong et al., 2018; 

Polat, 2008). It is worth noting that all these countries have extensively adopted OSC or portend a 

wider uptake in the near future (Mao et al., 2016). As for China, the OSC adoption lagged behind 

developed countries arguably due to higher cost (Zhang et al., 2014). Besides, the required skilled 
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labors might induce higher cost especially in developing countries with lower wages for labors 

(Chiang et al., 2006; Polat, 2008). Related education and training for unqualified labor also incur 

cost (Zhai et al., 2014).  

Ineffective logistics (B2) 

Logistics related issues imped the OSC adoption, such as limited storage space and 

transportation constraints (Kamali & Hewage, 2016; Tam et al., 2007). The constraints of 

transportation highlighted the carrying capacity of bridge and pavements, clearances in tunnels, 

and so on (Jaillon et al., 2008). Chiang et al. (2006) suggested most manufactures set their 

fabrication yards in remote area for cheaper labor and land cost, resulting in longer transportation 

route. This might incur additional cost but also severe delays in delivering prefabricated 

components to construction site (Polat, 2010).  

Poor manufacturing capacity (B3) 

OSC practices closely associated with the design and manufacturing capacity of manufactures 

(Mao et al., 2015). Zhang et al. (2014) suggested there is lack of building mould manufacturer in 

China which satisfy the customized demands. Housing developers have to produce the building 

blocks as well as to buy it, which stretches the production chain and increases the overall cost. On 

the other hand, unlike developed countries (e.g. U.S.), most manufacturers in developing countries 

are small or medium sized without adequate financial resources for quality control procedures and 

standards (Polat, 2010). This might lead to poor product quality.  

Quality problems (B4) 

The quality issue is a paradox when adopting OSC. The high quality is considered as one 

advantage of adopting OSC, while negative perception from failure or low-quality products has 

been regarded as prominent factors hindering its wider adoption (Kamali & Hewage, 2016). 

Lovell et al. (2010) argued the unproven durability inhibited the extensively adoption of OSC. 

This is mainly attributed to the poor performance of precast concrete structures in earthquake 

events (Luo et al., 2015; Polat, 2008). Other quality problems include: cracks and water leakages, 

poor sound insulation, which has affected its market demand (Zhang et al., 2014). Meanwhile, 

lacking technical supports (e.g. R&D, testing lab, and related professionals) lead to poor quality 

performance (Zhang et al., 2012).  

Poor aesthetic performance (B5) 

There are mixed results on the aesthetic performance of OSC adoption as reported in previous 

studies. OSC allows more flexible designs to achieve more complex patterns (Polat, 2008). 
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However, Arditi et al. (2000) argued the monotony is a result of the excessive tendency towards 

repetitiveness due to higher cost of producing various precast components. Thus, the variations in 

architectural design are indeed less frequent when adopting OSC (Jaillon et al., 2010). The limited 

variety of precast concrete components might negatively affect the architectural creativity (Polat, 

2010). It probably posed a great challenge for adopting OSC in China, as the design versatility and 

aesthetic would be actually suffered (Zhai et al., 2014).  

Dominated traditional project process (B6) 

The traditional project process is not suitable for adopting OSC (Nadim et al., 2010). Kamali et 

al. (2016) suggested the OSC adoption requires more time in pre-project planning in order to deal 

with issues of architectural design, labor and prefabricated components, transportation, 

technological solutions. However, majority of Chinese residential developers are reluctant to 

invest on the preparatory phase as excessive time might induce higher capital cost (Zhai et al., 

2014). Meanwhile, unable to finalize the design early on has been regarded as significant barrier 

for adopting prefabrication construction (Pan et al., 2008).  

Low standardization (B7) 

The low standardization significantly affects the OSC adoption. It will cause severe 

compatibility problems occurring especially when multiple manufacturers involved in an OSC 

project (Polat, 2008). For instance, incompatibility has been regarded as a severe issue in 

implementing integrated prefabricated façade development (Li, 2016). This is mainly attributed to 

lacking peremptory industry norms for OSC, which has been considered as the cornerstone of the 

overall success of adopting OSC (Zhang et al., 2014). Without a national standard, most of 

construction components are not standardized, and in turn, makes it hard to design prefabricated 

building (Mao et al., 2015; Zhang et al., 2012).  

Complicated management (B8) 

The OSC adoption requires high level of management. The OSC adoption involves 

multi-parties, and a high level of integration is required (Luo et al., 2015). However, the poor 

collaboration has been observed as a result of the fragmented nature of construction industry. It is 

difficult to develop collaborative relationship between stakeholders in a project-based industry, 

where each party work individually as an independent organizational entity chasing its own 

interests (Xue et al., 2017). As Pan et al. (2007) highlighted, unfavorable organizational 

mechanism was one of barriers of adopting OSC. Similarly, competency of subcontractors is 

crucial for the OSC adoption (Steinhardt et al., 2016). 



11 

 

Lacking knowledge and expertise (B9) 

Arditi et al. (2000) pointed that the current curriculum did not address OSC comprehensively 

especially in developing countries. Lacking expertise of contractors may lead to delays such as 

erecting the prefabricated structure and panels (Polat, 2008). Meanwhile, the OSC adoption, 

characterized by a high degree of mechanization, necessitates the presence of sufficiently highly 

qualified construction workers. Lack of qualified labor leads to poor erection practices which 

affects the structural ultimately (Polat, 2010).  

Inappropriate business model (B10) 

The current business model of construction industry is featured with a cycle of “land acquisition, 

development and outright sale” (Pan et al., 2012). Such business model may not satisfy the 

growing challenges from new technologies (Liu et al., 2016). House building is often decoupled 

from contracting, but focusing on land acquisition and gaining profit from that process. This is 

mainly because land prices have major effect on the final out-turn costs, representing up to 50% of 

total cost in some regions.  

Limited market demand (B11) 

The limited market demand presents significant challenge for any salesperson and or developer, 

so the feasibility of adopting OSC will be doubted (Mao et al., 2015). This will lead to client’s 

skepticism and resistance who actually determines the OSC adoption. Meanwhile, due to 

fluctuations in the market demand for OSC, high upfront payments are required by manufacturers 

in order to keep their production and distribution system profitably (Steinhardt et al., 2016). This 

has been regarded as one of barriers to the wide adoption of OSC mainly attributing to failing to 

achieve economic scale effects (Arditi et al., 2000; Nadim et al., 2010). The uncertainty of market 

demand will present enormous difficulty in achieving return on high investment, such as longer 

capital payback period. This might cause difficulty in obtaining finance from institution which is 

more familiar with traditional construction approach (Luo et al., 2015; Zhai et al., 2014).  

Lacking social climate & acceptance (B12) 

As the external environment, social climate and acceptance play a critical role in promoting the 

OSC adoption. As a technological innovation in construction industry, the OSC adoption often 

attracts resistance, which is attributing to the protectionism and conservatism inherent within the 

industry culture, namely the risk-averse culture (Nadim et al., 2010). The reluctance to innovation 

of construction industry has been reported (Pan et al., 2008). The public perception is that 

prefabricated houses are only for low-income social housing (Nadim et al., 2011). 
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Inadequate policies and regulations (B13) 

The intensive OSC adoption cannot be achieved without governmental invention (Zhai et al., 

2014). The public policies and regulation instruments facilitating the OSC adoption have been 

highlighted, which is argued as inadequate and immature in China. Lacking governmental 

regulations and incentives was identified as the foremost obstacle suggesting insufficient support 

from government for moving forward OSC adoption (Mao et al., 2015). Regulations of 

construction sector in China place less emphasis on OSC (Luo et al., 2015; Zhai et al., 2014).  

4. Findings and discussion 

4.1 Barriers to the OSC adoption 

Those barriers identified in section 3 were distributed to experts by email in the first instance 

with the requirement to confirm and agree on the interpretation of each of these barriers. Positive 

feedback was received therefore no change was made to the list of barriers. The final list of critical 

barriers to the OSC adoption is shown in Table 2. These barriers not only focus on the 

characteristics of OSC (e.g. cost, logistics, quality, aesthetic), but also involve the environment, 

relating to market, knowledge and expertise, policies and regulations. These barriers are generally 

in line with previous studies conducted in China (e.g. Mao et al. 2015; Zhai et al. 2014; Zhang et 

al. 2014).  

Table 2. Barriers of the OSC adoption 

No Factors Key References 

B1 Higher initial cost  (Mao et al., 2016; Zhai et al., 2014; Zhang et al., 2014) 

B2 Ineffective Logistics (Chiang et al., 2006; Pan & Goodier, 2011; Tam et al., 2007) 

B3 Poor Manufacturing capability (Mao et al., 2015; Polat, 2010) 

B4 Quality problems  (Kamali & Hewage, 2016; Lovell & Smith, 2010; Zhang et al., 

2014) 

B5 Poor aesthetic performances  (Luo et al., 2015; Polat, 2008; Zhai et al., 2014) 

B6 Dominated traditional project 

process   

(Jaillon & Poon, 2010; Kamali & Hewage, 2016; Nadim & 

Goulding, 2010) 

B7 Low standardization (Arditi et al., 2000; S. Li, 2016; Zhang & Skitmore, 2012) 

B8 Complicated management   (Luo et al., 2015; Steinhardt et al., 2016; Xue et al., 2017) 

B9 Lacking knowledge and expertise  (Polat, 2008, 2010; Zhang et al., 2014) 

B10 Inappropriate business model  (H. Liu et al., 2016; Pan et al., 2008; Pan & Goodier, 2011) 

B11 Limited market demand  (Arditi et al., 2000; Nadim & Goulding, 2011; Steinhardt et al., 

2016) 

B12 Lacking social climate & acceptance  (Polat, 2010; Steinhardt et al., 2016) 

B13 Inadequate policies and regulations  (Jaillon & Poon, 2010; Mao et al., 2015; Zhai et al., 2014) 

It is worth noting that the barrier related to regulations and policies was not regarded as critical 
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barrier to OSC adoption within the context of USA (Arditi et al., 2000; Polat, 2008); Hong Kong 

(Tam et al., 2007), United Kingdom (Nadim et al., 2011; Pan et al., 2008), and Sweden (Jonsson et 

al., 2014). This might suggest that regulations and policies of these countries have been well 

established, facilitating the OSC adoption. Similarly, the critical role of labor union has been 

highlighted in previous studies, e.g. Arditi et al. (2000), and Polat (2008), which was not identified 

in this study. This might be explained by two reasons. First, as Polat (2010) argued, the labor 

union’s negative attitude might prevent the OSC extensive adoption as they tend to protect their 

workers as the reduction of work onsite. This probably demonstrates that the labor union plays a 

critical role in the diffusion of technological innovation in western countries. However, the role of 

labor union in China might be different from other countries due to different political system. 

Second, as mentioned in the section 1, with the emergency of labor shortage, the Chinese 

construction industry actually is suitable for promoting the OSC adoption. Attributing to the “dirty, 

bitter, and tired” working environment, the new generation of young migrant workers is more 

likely to decline to engage in the construction industry (Wang et al., 2016). With the improvement 

of working environment as well as higher salary, it seems that the potential unemployment issue 

will not be concerned as a barrier of the OSC adoption.  

4.2 ISM 

Building Adjacency Matrix 

Following the principle of “the minority gives way to the majority”, the contextual relationships 

among 13 barriers are constructed in an Adjacency Matrix based on the feedback from 8 experts 

(Table 3). Most direct-effect relationships were found between B13 (Inadequate policies and 

regulations) and other barriers, B9 (Lacking knowledge and expertise) and other barriers, and B1 

(Higher cost) and other barriers. The least direct-effect relationships were between B10 and other 

barriers, B7 and other barriers.  

 

Table 3. Adjacency Matrix 

 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 

B1 V O X O V V O V A X V V  

B2 V O O O V O O O A O O   

B3 V O A O V O O O A A    

B4 O A A O V O V V O     

B5 O A A O V O O O      

B6 V O O O O A O       

B7 V O O O A O        

B8 V O O O V         
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B9 V A A O          

B10 V O O           

B11 V V            

B12 V             

B13              

 

Developing Reachability Matrix 

 By applying the transformation rules described above, the Adjacency Matrix with the binary 

value 1 and 0 can be obtained. By aid of the computation tool MATLAB to conduct the power 

iteration analysis, the transitivity rules have been checked. Any entry 1* represent the 

incorporating the transitivity. For instance, B2 (Ineffective logistics) is related to B1 (Higher cost), 

and B1 is related to B4 (Quality problems), then, B2 (Ineffective logistics) is necessarily related to 

B4 (Quality problem). By adding transitivity to Adjacency Matrix, the final Reachability Matrix 

can be obtained (Table 4).  

Table 4. The Final Reachability Matrix 

 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 Dri 

B1 0 1* 1 0 0 0 0 0 1 1 0 0 1 5 

B2 0 1* 1* 0 0 0 0 0 1 1* 0 1 1 6 

B3 0 1* 1 0 0 0 0 0 1 1 1 0 1 6 

B4 0 1 1 0 0 0 0 0 1* 1 0 0 1 5 

B5 0 1 1 0 0 0 0 0 1 1* 0 0 1* 5 

B6 0 1* 1* 0 0 1 0 1 1* 1 0 0 1 7 

B7 0 1* 1* 0 1 0 1 0 1* 1 0 0 1* 7 

B8 0 1* 1* 0 0 1 0 0 1* 1* 0 0 1 6 

B9 0 1 1 0 1 1 0 0 1 1 1 1 1 9 

F10 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

B11 0 1* 1 0 0 0 0 0 1* 1* 0 0 1 5 

B12 0 1 1 0 0 0 0 0 1* 1* 0 0 1* 5 

B13 1 1 1 1 1 1 1* 1* 1* 1 1 1 1 13 

Dep 1 12 12 2 3 4 2 2 12 12 3 3 12  

Noting: Dep=dependence power; Dri= Driving power;  

Establishing the hierarchy structure 

Based on the Reachability Matrix, the reachability set and antecedent set of every barrier can be 

found by conducting the procedures described in section 3.2. As a result, all barriers are classified 

into different levels (Table 5). It can be observed that level 1 includes 6 barriers, namely B1, B4, 

B5, B10, B11, B12, and 3 barriers were classified into level 2 such as, B2, B3, and B8. The lower 

level might suggest these barriers would be at the top of the hierarchy and would not lead to other 
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barriers above their own level. In other words, these barriers are likely to be affected by other 

barriers. Higher level indicates these barriers situated in the bottom of the hierarchy and can exert 

great influences to the adoption of OSC. It deserved to notice that only one barrier was classified 

into level 4 and level 5, containing B7, and B13 respectively. Barriers of B6 and B9 were 

classified to level 3 indicating they not only influence the barriers in higher level but also would 

be affected by these barriers in lower level.  

  Table 5. Level partitioning factors 

Factor Reachability set Antecedent set  Intersection set Level 

B1 1,4,5,11,12 1,2,3,4,5,6,7,8,9,11,12 1,4,5,11,12 1 

B2 1,2,4,5,11,12 2,9,13 2 2 

B3 1,3,4,5,11,12 3,9,13 3 2 

B4 1,4,5,11,12 1,2,3,4,5,6,7,8,9,11,12 1,4,5,11,12 1 

B5 1,4,5,11,12 1,2,3,4,5,6,7,8,9,11,12 1,4,5,11,12 1 

B6 1,4,5,6,8,11,12 6,13 6 3 

B7 1,4,5,7,9,11,12 7,13 7 4 

B8 1,4,5,8,11,12 6,8,9,13 8 2 

B9 1,2,3,4,5,8,9,11,12 7,9,13 9 3 

B10 10 10,13 10 1 

B11 1,4,5,11,12 1,2,3,4,5,6,7,8,9,11,12 1,4,5,11,12 1 

B12 1,4,5,11,12 1,2,3,4,5,6,7,8,9,11,12 1,4,5,11,12 1 

B13 1,2,3,4,5,6,7,8,9,10,11,12,13 13 13 5 
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Fig 2. ISM based hierarchical model for barriers to adopt OSC. 
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As shown in Fig.2, this study demonstrated the interactive relationships amongst barriers. It 

should be pointed that this does not provide a step by step roadmap for action but depict the chain 

of influence of barriers in the system. These research findings help to better understand the effect 

of these barriers by positioning them in a hierarchy structure. Based on the results of level 

partitioning, the hierarchical structural model can be developed. As shown in Fig 2, Level 5 B13 

(Inadequate policies and policies) is at the bottom of the ISM hierarchy, indicating that it is the 

most crucial impediment of the OSC adoption in Chinese construction sector. Effectively dealing 

with this barrier will to a large extent facilitate the OSC adoption in the Chinese construction 

sector. It should be noted that barrier B7 (Low standardization) situated at the fourth level of the 

ISM hierarchy, also exhibits great influences on the OSC adoption.  

At the same time, 5 barriers occupy the middle portion of the ISM model ranging from B8 

(Complicated management), B3 (Poor manufacturing capability), B2 (Ineffective logistics), B6 

(Dominated traditional project process), B9 (Lacking knowledge and expertise). Among this, level 

3 B6 (Dominated traditional project process) and B9 (Lacking knowledge and expertise) directly 

affect level 2 B2 (Ineffective logistics), B3 (Poor manufacturing capability) and B8 (Complicated 

management), and play a role in connecting the level 2 and level 4. Similarly, level 2 B2 

(Ineffective logistics), B3 (Poor manufacturing capability) and B8 (Complicated management) 

play a connecting role between level 1 and level 3. These barriers paly a connecting role in the 

hierarchy structure suggests they will affect the barriers in the lower levels and could be affected 

by the barriers in the higher levels.  

Meanwhile, it can be inferred that level 1 includes 6 barriers, such as B1 (Higher cost), B4 

(Quality problem), B5 (Poor aesthetic performance), B10 (Inappropriate business mode), B11 

(Limited market demand), B12 (Lacking social climate &acceptance), situating at the top of the 

ISM model, suggesting their lower influences to the OSC adoption and they are likely to be 

affected by other barriers. However, this might be contradicted with previous studies, e.g., Nadim 

and Goulding (2010) and Zhang et al. (2014), which considered higher cost as the most influential 

barriers of the wider using of OSC. This difference can be explained with the identification of the 

interactive relationships between these barriers. As the issue of higher cost situating at the bottom 

of the hierarchical structure is likely to be affected by others barriers, it cannot be regarded as 

essential factors affecting the OSC adoption. This might demonstrate the effect of high cost 

inhibiting the OSC adoption can be alleviated by measures and actions targeted to other factors 

which have direct affect.  
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4.3 MICMAC analysis 

As shown in table 5, the driving power and dependence power for each barrier can be calculated. 

The two-dimension chat can be generated as shown in Fig. 3. Then, these 13 barriers can be 

classified into four groups. It should be noted that none of these barriers belong to relay factors. 

There are four independent barriers with high influence power and low dependence power: B6 

(Dominated traditional project process), B7 (Low standardization), B9 (Lacking knowledge and 

expertise), B13 (Inadequate policies and regulations). There are six depending barriers with low 

influence power and high dependence power: B1 (Higher cost), B4 (Quality problems), B5 (Poor 

aesthetic performances), B11 (Limited market demand), B12 (Lacking social climate & attitudes). 

Autonomous barriers with low influence and low dependence power contain only 4 barriers: B2 

(Ineffective Logistics), B3 (Poor Manufacturing capability), B8 (Complicated management), B10 

(Inappropriate business model).  

 

13 B13            

12             

11             

10             

9   B9          

8             

7  B6,7           

6   B2,3 B8         

5            B1,4,5,11,12 

4             

3             

2             

1  B10           

 1 2 3 4 5 6 7 8 9 10 11 12 

Fig 3. The driving power and dependence power of each barrier to adopt OSC.  

 

The results of MICMAC analysis complement the ISM hierarchy structure by identifying the 

driving power and dependence power of each barrier. Putting together these results is constructive 

as it can guide us more effectively develop and implement actions and strategies. It can be 

observed that B13 (inadequate policies and regulations) lied in the bottom level of the hierarchy 

structure (Fig.2) and has highest driving power (Fig.3). Therefore, the top priority should be given 

to address the effect of B13 (inadequate policies and regulations). This result confirms the findings 

of previous studies (e.g. Mao et al. 2015, Zhang et al. 2014; Zhai et al. 2014), highlighting critical 

Autonomous factors 

Independent factors Linkage factors 

Dependent factors 
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role of related regulations and policies in promoting the OSC adoption. As it represented in table 3 

and table 4, the B13 (Inadequate policies and regulations) can exert direct or indirect influence to 

all other barriers. This not only implies that B13 is the most influential barrier to the OSC 

adoption but also suggests that the effect of other barriers can be alleviated by addressing this 

barrier. In other words, it is necessary to incorporate the issues of all other barriers into the 

policies and regulations. Despite this, the policies and regulations issued by Chinese government 

is still inadequate and ineffective in facilitating the OSC adoption.  

Addressing the effect of B9 (Lacking knowledge and expertise) should also be given priority as 

which situated at the level 3 with the second highest driving power. As shown in the Reachability 

Matrix (Table 5), B9 (Lacking knowledge and expertise) can exert direct influence on 9 barriers, 

ranging from B1, B2, B3, B5, B8, B9, B11 and B12. This imply addressing the effect of B9 

(Lacking knowledge and expertise) can relieve the effects of these barriers affected by itself. This 

is in line with previous studies (e.g. Luo et al., 2015; Nadim and Goulding, 2011), regarding the 

positive effect of training and education on facilitating the OSC adoption. The resistance to OSC 

can be alleviated by a better understanding of its benefits, and meanwhile, the capabilities of 

adopting OSC can also be improved with refers to the issues of logistics, manufacturing and the 

implementing process. Once the know-how of OSC adoption possessed by stakeholders, a new 

process model integrated process from conception to demolition phases will be anticipated. 

However, as Polat (2008) pointed, teaching the knowledge of OSC has not been given priority by 

educational institutions when they designing their academic curricula. Therefore, it is necessary to 

develop new course of the OSC adoption in civil engineering and architecture programs and 

specially training in masters programs to teach structural, architectural, and managerial aspect of 

OSC adoption. Besides, the training programs should also be made for different practitioners 

specifically. For instance, as Luo et al. (2015) suggested, cost-benefits analysis should be 

highlighted for client, a course of manufacturing and component assembly will benefit contractors, 

design features and methods could emphasized for designers.  

Similarly, B6 (dominated traditional project process) situating at the level 3 was perceived with 

the third highest driving power. This indicates that addressing the effect of B6 (dominated 

traditional project process) should also be given priority. In combination with the hierarchy 

structure (Fig.2) and the Reachability Matrix (Table 5), it is clearly that B6 (dominated traditional 

project process) has direct influences on the barriers of B1 (Higher cost), B4 (Quality problem), 

B8 (Complicated management). This is can be said that the traditional project process is no longer 

suitable for the OSC adoption causing the poor performances in terms of cost, quality and 

management. Indeed, as Polat (2008) pointed, severe delay in production and erection schedules, 
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substantial cost overruns and constructability problems may be encountered unless good 

communications and coordination is achieved among all the key parties. While, the traditional 

project process has been criticized for involved parties working individually with its own target 

resulting the low level of shared information and communication (Zhai et al., 2014). It is 

recommended that the conception integration should be applied at all phases and within and 

between organizations involved in the process of adopting OSC. This can address the conflicts 

among contractors, manufacturers and designers, leading to severe time delays in production and 

erection schedule, and substantial cost overruns (Arditi et al., 2000; Polat, 2008). Furthermore, an 

integrated supply chain with responsive and reliable relationship is strongly recommended by 

Steinhardt et al. (2016). This helps to form strategic partnering as well as co-makership 

relationships between contractors, manufacturers, which provide the benefits of 

fully-customizable end products, shared technical information and so on. Meanwhile, the issue of 

ineffective logistics might be well addressed by their better coordination and negotiations.  

The fourth barriers should be given priority is B7 (Low standardization) situating at the level 4 

of the hierarchy structure with the third highest driving power. As it can be seemed from Fig.2, B7 

(Low standardization) was included in three influence chains which generally highlighted the low 

standardization (B7) leading to the lacking knowledge and expertise (B9), and then, the ineffective 

logistics (B2) and poor manufacturing capability (B3), and resulting quality problem (B4), poor 

aesthetic performance (B5), lacking social climate &attitude (B12), and limited market demand 

(B11). All these factors finally lead to the high cost (B1). This probably suggests the low 

standardization can be concerned as one of the most influential barriers of the OSC adoption. Thus, 

it is urgent to establish the national codes and standards for adopting OSC. This is in line with 

previous studies (e.g. Polat 2010; Polat 2008; Zhang et al. 2014; Zhai et al. 2014), suggesting that 

the establishment a nationwide standardization is the basis of the further development of OSC 

adoption. Three technical norms for prefabricated concrete structure building (GB/T51231-2016), 

prefabricated steel structure building (GB/T51232-2016) and prefabricated timber structure 

building (GB/T51233-2016) have been issued by Ministry of Housing and Urban-Rural 

Development in 2017. This provides technical guidelines for the OSC adoption in terms of design, 

install, construct, and operate. However, as Y. Gan et al. (2017) argued, the production norms and 

standards for OSC components as well as the quality criteria for component products is still 

lacking. As a sequence, manufacturers have to set their own quality management method leading 

to the inconsistency of the quality standards and quality problems. One of the effective ways of 

standardization is to establish a modulus system (Zhang et al. 2014). 

The five dependent barriers (B1, B4, B5, B11, B12) in Fig.3 are affected by diving barriers and 
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linkage barriers. As Shen et al. (2016) suggested, dependent barriers can be improved if driving 

barriers can be well addressed. For instance, the performance of dependent barrier B12 (lacking 

social climate & acceptance) is largely determined by lacking knowledge and expertise (B9), 

which is a driving barrier. This suggests that efforts are required to educate the public on the 

benefits of the OSC adoption through various avenues, such as newspapers, demonstration 

projects, seminars and workshops, etc. As a result, the general public’s recognition of OSC can be 

enhanced, and then, their negative perception will be improved gradually. If the driving barrier of 

lacking knowledge and expertise (B9) provides strong support by issuing effective policies (B13), 

the performance of poor manufacturing capability (B3), ineffective logistics (B2), and complicated 

management (B8) will be improved accordingly. Consequently, not only the lacking social climate 

& acceptance (B12) but also other dependent barriers (B11, B5, B4, and B1) will be improved. 

Then, the addressed barrier of limited market demand (B11) will further improve the barrier of 

lacking social climate & acceptance (B12). 

5. Conclusions 

Rapid urbanization and the emergence of information technology for construction industry 

provide best opportunity for adopting OSC. There are a number of benefits associated with OSC 

adoption such as cost savings, time savings, less waste and improved efficiency. However, The 

OSC adoption still remains its infancy in China. This research identified 13 critical barriers to the 

OSC adoption. By conducting ISM analysis, these 13 barriers are structured in a hierarchy, and 

divided into five distinct levels. Then, by applying the MICMAC analysis, one autonomous factor, 

six independent factors, and seven dependent factors were identified in Fig 3. It is more effective 

to address the independent factors as they are most influential to impede the OSC adoption. 

Similarly, the advantages of OSC can be used to reduce the intensity of barriers.  

  Previous studies generally only identified critical factors that affect the OSC adoption. In 

contrast, this study is the unique effort in understanding the interactive relationship among these 

factors. The ISM based hierarchy model sheds lights on how these factors affect each other. 

Findings reveal the nature of structural relationships, which substantially contribute towards 

policy formulation for effectively facilitating the OSC adoption. The factors are positioned in a 

two-dimensional diagram according to their driving-power and dependence-power. These findings 

provide valuable insights on the priority of allocating resources to address these factors. 

Understanding the priority of these factors provides essential information for policies makers to 

facilitate the OSC adoption.  
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There are some policy implications from this study. Firstly, as the OSC adoption results in less 

works on-site, it is necessary to take the labor unions’ attitude into consideration when adopting 

technological innovations. Due to different political system, the role of labor union in China might 

not be as crucial as it plays for the OSC adoption in western countries. Secondly, the findings of 

this research suggest the high cost might not be the most influential factor to the OSC adoption as 

presented in other studies. According to the ISM based model, the issue of high cost can be 

alleviated by the enforcement of measurements addressing other factors which have direct effect 

on this factor. Thirdly, the results of MICMAC analysis suggest that the effectiveness of 

promoting the OSC adoption largely depends on addressing the following issues: inadequate 

policies and regulations, lacking knowledge and expertise, dominated traditional project process 

and the low standardization. Other factors with high influence power also deserve more attentions 

such as ineffective logistics, poor manufacturing capability, complicated management, and so on.  

 One limitation of this study is the developed model is derived from experts’ opinions and 

experts were drawn from a single region, i.e. Chongqing. Thus, similar research can be conducted 

in other cities in China as the level of adopting OSC varies from one city to another. This helps to 

better understand the different structural relationships among these factors as well as exploring the 

unique measures to promoting the OSC adoption in different regions. Meanwhile, Future research 

opportunities exist to quantify these interrelationships via a large scale nationwide questionnaire 

survey. 
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