
Bond University
Research Repository

Is antimicrobial administration to food animals a direct threat to human health? A rapid
systematic review

Scott, Anna Mae; Beller, Elaine; Glasziou, Paul; Clark, Justin; Ranakusuma, Respati W;
Byambasuren, Oyungerel; Bakhit, Mina; Page, Stephen W; Trott, Darren; Mar, Chris Del
Published in:
International Journal of Antimicrobial Agents

DOI:
10.1016/j.ijantimicag.2018.04.005

Licence:
CC BY-NC-ND

Link to output in Bond University research repository.

Recommended citation(APA):
Scott, A. M., Beller, E., Glasziou, P., Clark, J., Ranakusuma, R. W., Byambasuren, O., Bakhit, M., Page, S. W.,
Trott, D., & Mar, C. D. (2018). Is antimicrobial administration to food animals a direct threat to human health? A
rapid systematic review. International Journal of Antimicrobial Agents, 52(3), 316-323.
https://doi.org/10.1016/j.ijantimicag.2018.04.005

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

For more information, or if you believe that this document breaches copyright, please contact the Bond University research repository
coordinator.

Download date: 20 Apr 2024

https://doi.org/10.1016/j.ijantimicag.2018.04.005
https://research.bond.edu.au/en/publications/3e2a425c-d5c1-4fb5-a443-2b1dec7438a6
https://doi.org/10.1016/j.ijantimicag.2018.04.005


 

Accepted Manuscript

Is antimicrobial administration to food animals a direct threat to
human health? A rapid systematic review.

Anna Mae Scott , Elaine Beller , Paul Glasziou , Justin Clark ,
Respati W. Ranakusuma , Oyungerel Byambasuren , Mina Bakhit ,
Stephen W. Page , Darren Trott , Chris Del Mar

PII: S0924-8579(18)30107-9
DOI: 10.1016/j.ijantimicag.2018.04.005
Reference: ANTAGE 5420

To appear in: International Journal of Antimicrobial Agents

Received date: 23 February 2018
Revised date: 4 April 2018
Accepted date: 7 April 2018

Please cite this article as: Anna Mae Scott , Elaine Beller , Paul Glasziou , Justin Clark ,
Respati W. Ranakusuma , Oyungerel Byambasuren , Mina Bakhit , Stephen W. Page ,
Darren Trott , Chris Del Mar , Is antimicrobial administration to food animals a direct threat to
human health? A rapid systematic review., International Journal of Antimicrobial Agents (2018), doi:
10.1016/j.ijantimicag.2018.04.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ijantimicag.2018.04.005
https://doi.org/10.1016/j.ijantimicag.2018.04.005


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 

 

Highlights 
 

 We undertook a WHO-commissioned rapid systematic review of evidence to examine 

whether limiting the use of antimicrobials in food animals decreases antimicrobial 

resistance 1) in those food animals; 2) in humans 

 89 studies (3 direct, 86 indirect) provided adequate evidence that limiting antimicrobials 

given to animals reduces antimicrobial resistance in animals; heterogeneity precluded 

estimating the magnitude of effect 

 4 studies (1 direct, 3 indirect) suggested that withdrawing antimicrobials in food animals 

results in decreased antimicrobial resistance in humans 

 The paucity of well-designed primary studies that directly answer these questions 

means these should be urgently commissioned to strengthen the evidence of the 

magnitude of the effect of stopping antimicrobial use in food animals – particularly on 

resistance in the bacterial flora of humans 
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ABSTRACT   

 

Background:  

Large quantities of antimicrobials are given to food animals, especially in feed, potentially 

risking increased antimicrobial resistance in humans. However, the magnitude of this effect 

is unclear.  

 

Methods:  

We searched PubMed, Embase and Web of Science, for studies on interventions which 

limited antimicrobial use in food animals, in any setting and context, to reduce antimicrobial 

resistance 1) in those food animals; and 2) in humans. We validated our strategy by testing 

whether it identifies known relevant studies. Data from included studies were extracted into 

pre-designed and pilot-tested forms.  

 

Results:  

We included 104 articles containing 93 studies. Heterogeneity (from different animal species, 

environs, antimicrobial classes, interventions, administration routes, sampling, and methods), 

was considerable, precluding meta-analysis. The evidence was therefore synthesised 

narratively. 89 studies (3 directly, 86 indirectly) addressed the question whether limiting 

antimicrobial exposure in food animals led to decreased antimicrobial resistance in those 

animals. The evidence was adequate to conclude this, although the magnitude of the effect 

could not be quantified; 4 studies (1 directly, 3 indirectly) examined the question of whether 

withdrawal of antibiotics changed resistance of potential pathogens in retail food for human 

consumption, and in bacteria of humans themselves. The direct (observational) study of 

broiler hatchery in ovo antimicrobial injection found a credible effect in terms of size 

reduction and time sequences.    

 

Interpretation:  

Limiting antimicrobial use in food animals reduces antimicrobial resistance in food animals, 

and probably reduces antimicrobial resistance in humans. The magnitude of the effect 

cannot be quantified. 
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BODY TEXT  
 

1. Background 

Large quantities of antimicrobials – including those within the same class as human 

therapeutic drugs – are administered to food animals, to treat and prevent bacterial diseases 

in animals but also in some cases to promote growth.[1-4] The practice of antimicrobial use 

generates resistance which potentially threatens both human and animal health, with 

devastating downstream economic consequences.[1, 2]  The World Health Organisation 

(WHO) reports on health consequences of foodborne diseases,[5] but not the human health 

burden from antimicrobial-resistant disease associated with antimicrobial use in food animals.  

 

There is a long history of public health concern about antimicrobial use in food animals. The 

United Kingdom‟s Netherthorpe Committee in 1960 investigated whether it constituted a 

danger to humans. The Swann Committee in 1969 concluded that it does,[6] and 

subsequently many scientific, regulatory, and professional organisations elsewhere have 

expressed concern. A new wave of concern arose in the 1990s with the registration of 

fluoroquinolones and third-generation cephalosporins for therapeutic use in food animals. 

This led to a WHO Consultation on Medical Impact of the Use of Antimicrobials in Food 

Animals, which concluded that use of antimicrobials in food animals can lead to antimicrobial 

resistance in humans, particularly in foodborne pathogens such as Salmonella and 

Campylobacter, despite considerable uncertainty about the magnitude of the effect.[7]  

 

Responding to current calls for guidelines to preserve the long-term effectiveness of 

antimicrobials critically important for human medicine, the WHO commissioned two 

systematic reviews of the evidence, which addressed the following two questions: whether a 

limitation on the use of antimicrobial agents in food animals reduced the presence of 

antimicrobial-resistant genetic elements or antimicrobial resistant bacteria (1) in food animals; 

and (2) in humans.  

 

Two groups were selected to conduct the systematic reviews simultaneously, albeit 

independently of each other. We present our findings as one of the two groups[8] awarded 

funding. The WHO Guideline on the use of medically important antimicrobials in food 

animals – which was informed by these systematic reviews – was published recently.[9]  

 

2. Material and methods  

We undertook a rapid systematic review to meet deadlines required by the WHO guidelines 

development timetable, in accordance with a pre-existing protocol and using accepted 
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methods.[10-12] This required us to deploy 10 staff with expertise in systematic reviewing, 

information retrieval, antimicrobial use in humans and animals, and biostatistics.  

 

A set of potentially relevant studies was built from several sources: 1) forward and backward 

citation searches on one relevant reference for each question;[13, 14] 2) an updated search 

of a recent relevant report on the subject;[1] and 3) known relevant studies provided by the 

WHO Group developing the guideline at our request. The resulting set consisted of 26 

articles spanning the period from 1976 to 2016, which we labelled a „validation set‟ 

(Appendix A). The common key words of the studies comprising the validation set were then 

used to build two searches: one search for the animal question, and one search for the 

human question. These search strategies were tested in PubMed, to verify that all of the 

articles in the validation set were found by the strategy. These final search strategies were 

run on 10 June 2016 without language or date restrictions, and were modified appropriately 

to search Embase and Web of Science. Full search strategies are presented in Appendix B. 

 

We scoped the volume and quality of the evidence through an examination of the first 100 

references found by the searches. The examination suggested that both greater volume and 

higher quality evidence will be found for the question addressing antimicrobial resistance in 

animals. Accordingly, we included only the study designs of higher quality and less prone to 

bias for the animal question, and relaxed the rigour by additionally including interrupted time 

series and before and after designs for the human question. 

 

The inclusion and exclusion criteria were as follows: 

 

Animal question:  

 Inclusion: Studies addressing the question; study designs that were probable or 

certain to be: reviews (systematic, literature), RCTs, challenge trials, controlled 

trials, or cohort studies; published in any language and on any date 

 Exclusion: studies that were certain or probable to be: case-control, interrupted 

time series, before and after, cross-sectional, ecological, case series. 

 

Human question:  

 Inclusion: Studies addressing the question; studies that were probable or certain 

to be: reviews (systematic, literature), RCTs, challenge trials, controlled trials, 

cohort studies, case-control, interrupted  time series, before and after; published 

in any language and on any date 
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 Exclusion: studies that were certain or probable to be: cross-sectional, ecological, 

case series.  

 
No restriction on the basis of ready accessibility of literature was used.  
 
The literature search was supplemented in three ways: 1) the WHO Guidelines Group and 

the content experts on our team provided key known relevant references; 2) a forward (citing 

articles) citation search was done in Web of Science on a key identified study on the effect in 

humans[15] to identify studies that have subsequently cited that study; and 3) the references 

of a study comparing the impact of stopping antimicrobials to continuing antimicrobials in 

food animals[16] was hand searched. There was insufficient time to contact study authors 

directly, or systematically search the grey literature, although where we found grey literature, 

we considered it against inclusion/exclusion criteria.  

 

Ideally, in systematic reviews, two or more authors screen titles and abstracts for 

inclusion,[17] but time constraints in rapid systematic reviews mean this is frequently 

foreshortened to a single reviewer.[12] We adopted a compromise: the entire set of 

references was screened by a single author, but a second author screened a random 

sample of 10% references. The two authors subsequently met to resolve discrepancies.  

Included references were then reviewed in full-text by pairs of authors working independently, 

with discrepancies resolved by discussion or by a third reviewer if necessary. Data from 

included studies were extracted using pre-piloted data extraction forms (Summary of 

Findings, and Table of Included Studies), and checked by a second author.  

 

The following information was extracted from studies into a Table of Included Studies form: 

study location and date; species and number studied; comparison (e.g. antimicrobial vs no 

antimicrobial, antimicrobial vs lower dose, etc.); study design; sampling (setting, approach, 

proportion of subjects sampled, duration, frequency); exposure (antimicrobial, dose, duration, 

frequency); comparator (type, does, duration, frequency); and unit of measurement (e.g. 

prevalence of resistance, odds ratios, etc.) The Summary of Findings form collected the 

following information: study author and date; exposed and unexposed animal species; 

exposed and unexposed humans (professional category if applicable); method of measuring 

resistance; and prevalence of resistance prior, during and after exposure.    

  

The considerable heterogeneity of the included studies precluded formal assessment for risk 

of bias and meta-analysis. Instead, we categorised the included studies by study-design, 

using a hierarchy of evidence specifically devised for animal studies, and described the 

results narratively.  
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3. Results 

 

Database searches yielded 7,023 references, and supplementary search strategies yielded 

an additional 132 references. After amalgamation and de-duplication of the two sets of 

references, 3,709 references remained (Figure A.1). The 3,709 references were title/abstract 

screened by a single author, and a second author screened a random sample of 10% 

(n=371) references. Title/abstract screening involved checking the titles and abstracts of 

identified references against the inclusion and exclusion criteria. Those references whose 

titles and abstracts appeared to meet the inclusion criteria were included; if it was uncertain 

whether a reference met the inclusion criteria, we included it. Resolution of discrepancies in 

the two authors‟ decisions about inclusions and exclusions of references resulted in an 

inclusion of 9 previously excluded references.  At this stage, 210 references were advanced 

to full-text screening. Full-text screening against the inclusion and exclusion criteria was 

conducted by pairs of authors working independently, with discrepancies resolved by 

discussion or by a third reviewer if necessary; 106 references were excluded, leaving 104 

(Figure A.1) to be data-extracted.  

 

3.1 Interventions influencing resistance in bacteria in animals  

 

There were 89 studies in 97 publications relevant to answering the animal question: 24 (27%) 

were randomised controlled trials (RCTs) conducted under field conditions, considered a 

higher level of evidence than the other study designs (Figure A.2). The remainder of the 

studies were: other types of controlled trials and challenge studies (n=46); cohort studies 

(n=17); and interrupted time series (ITS) (n=2) (both of which were found by hand searching, 

although this study-type was not initially included). No studies meeting the inclusion criteria 

were systematic or literature reviews.  

 

The most commonly studied animals were pigs (28 studies, including 7 RCTs, 13 other 

controlled trials and challenge studies, 7 cohort studies, 1 ITS) and cattle/steers/calves (28 

studies, including 12 RCTs, 13 other controlled trials and challenge studies, 3 cohort). Other 

animals studied were chickens (23 studies, including 5 RCTs, 14 other controlled trials, 3 

cohort studies, and 1 ITS) and turkeys, lambs, sheep, fish, and mixed (3 studies or fewer 

each).  

 

Of the 89 included studies, 3 directly answered the question whether a limitation on the use 

of antimicrobial agents in food animals reduced the presence of antimicrobial-resistant 
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genetic elements or antimicrobial resistant bacteria in food animals; 86 studies answered the 

question indirectly. The studies directly answering the question included: an RCT which 

compared the impact of continuing exposure to oxytetracycline and neomycin versus 

withdrawal,[18] and two ITS studies comparing the resistance to tetracyclines before and 

after their withdrawal in the United Kingdom,[19] and the resistance to cephalosporin before 

and after the withdrawal of ceftiofur in Japan.[20]   

 

Among the remainder of the included studies, the common comparisons were antimicrobial 

versus no antimicrobial, evaluated by 67 studies (22 RCTs, 32 other controlled trials and 

challenge studies, and 13 cohort studies). Other studies compared various doses and/or 

durations of antimicrobials. Some comparisons were also conducted as part of „challenge 

trials‟, in which animals were artificially infected (“challenged”) with bacteria carrying genetic 

material known to promote resistance. Some studies compared animals given an 

antimicrobial with those not given an antimicrobial, with the groups kept in isolation from one 

another, whereas other studies kept both groups together, and assessed transfer of 

resistance from animals that received antimicrobials to those that did not.  

 

A wide range of antimicrobials or their combinations were studied. Among the 24 RCTs 

alone, 21 different antimicrobials or their combinations were studied. The only antimicrobials 

considered by more than one study (of any design), were: ceftiofur, an antimicrobial that can 

only be administered to animals by injection (6 studies), chlortetracycline, available in both 

oral and parenteral forms (9 studies); enrofloxacin, injection and water medication only (3); 

oxytetracycline and neomycin, oral and parenteral forms (2 studies); oxytetracycline (4 

studies); tetracycline (3 studies); tylosin, oral and parenteral forms (6 studies); and 

virginiamycin, oral only (2 studies).  

 

Studies also used a variety of methods to measure and quantify outcomes. 51 (57%) of the 

89 animal studies used microbial culture for phenotypic assessment only, 11 (12%) PCR 

determination, 26 (29%) both methods, and one study did not report the method used. The 

comparison of resistance levels between groups was expressed as the proportion of isolates 

with resistance, or absolute counts of resistant isolates, or both.  

 

In summary, the study aims and designs varied widely, with considerable heterogeneity in 

terms of antimicrobials, bacteria selected for challenge, or resistance measurement, animals, 

methods for measuring resistance, sampling timeframes, and methodology amongst studies. 

This precluded the possibility of a meta-analysis. However, a summary of results is 
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presented in Table A.1; more detailed results are presented in Appendix C and full 

references for all of the included studies are provided in Appendix D.  

  

 

[insert table A.1 here] 

 

Table A.1 utilises WHO‟s categorisation of antimicrobials that are important for human 

medicine into: Critically Important, Highly Important, and Important.[21] A further category – 

„other‟ – is added to the table, to indicate studies that evaluated antimicrobials not on the 

WHO list.  

 

In Table A.1, each study‟s result was coded in the following manner: black indicates that the 

study found higher resistance in bacteria isolated from animals exposed to more 

antimicrobial (e.g. higher resistance found in animals exposed to antimicrobials, than in 

animals not exposed to antimicrobials; or in animals exposed to a higher dose of 

antimicrobials than in animals exposed to a lower dose). Light grey indicate the opposite – 

that a lower resistance was found in animals exposed to more antimicrobial, or that lower 

resistance was found in animals exposed to antimicrobial than in animals unexposed. Finally, 

criss-crossed pattern indicates that the study found mixed results – e.g. animals exposed to 

more antimicrobials initially showed higher resistance but subsequently showed lower 

resistance than animals exposed to less antimicrobials, or that exposed animals showed 

higher resistance to one antimicrobial but lower resistance to another antimicrobial.  

 

Studies addressing the animal question directly suggest that a limitation of antimicrobials in 

food animals leads to a decrease in resistance to antimicrobials in those animals. One RCT 

examined the impact of discontinuation of feeding dairy calves with milk replacer containing 

oxytetracycline and neomycin, compared to its continuation. It found that the discontinuation 

was significantly associated with increased susceptibility to tetracyclines in both E. coli and 

Salmonella, with the effect most pronounced in the first 3 months.[18] An ITS study 

examined the impact of the United Kingdom‟s 1971 ban on the use of tetracyclines in pigs to 

promote growth. It showed that prior to the ban, the percentage of samples with tetracycline 

resistance increased from 18% (in 1956) to 64% (in 1970). The prevalence of resistance 

decreased to 23-41% 2-5 years after the ban.[19] Another interrupted time series study 

examined the impact of voluntary withdrawal, in March 2012, of off-label use of ceftiofur in 

chicken hatcheries in Japan. The study examined the impact on the prevalence of resistance 

to a broad-spectrum cephalosporin in E coli isolates from healthy broilers, and found a 

decrease from 16.4% resistance in 2010 to 4.6% resistance in 2013 (p=0.001).[20] 
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The majority of the studies addressing the question indirectly, showed that exposing animals 

to antimicrobials results in higher resistance to those antimicrobials, than exposing animals 

to no (or a lower dose) of those antimicrobials. This result is consistent across included 

study types – RCT conducted under field conditions, other controlled trial types and 

challenge studies, cohort study, and interrupted time series. The result also holds regardless 

of the WHO classification of importance to human health – critical, highly important or 

important. The majority of RCTs and other controlled and challenge studies focused on 

evaluating antimicrobials that are categorised as „critically important‟ or „highly important‟ to 

human health; very few studies evaluated antimicrobials classified as „important.‟   

 

3.2 Interventions influencing resistance in bacteria in humans  

 

We identified only one study which directly addressed the question of whether stopping the 

use of antimicrobials in food animals resulted in reduced antimicrobial resistance in bacteria 

in humans – the original question asked by the WHO committee.[15] The study reported 

data from Quebec, Canada, where injections of ceftiofur – a third generation cephalosporin – 

into eggs in chicken hatcheries was voluntarily withdrawn in 2005, and then partially 

reintroduced in 2007. The study measured the prevalence of resistance in Salmonella 

enterica serovar Heidelberg isolated from both retail chicken carcasses and clinical samples 

from infected humans across Canada, as well as E. coli samples (chickens only). The study 

found that the withdrawal of in ovo antimicrobial use in chickens was associated with a 

reduction in resistance in both bacterial species isolated from chicken meat for human 

consumption, and in clinical samples from infected humans (Figure A.3). Re-introduction of 

the in ovo antimicrobial use was similarly associated with an increase in resistance in both 

cohorts. The temporal pattern of changes in resistance was consistent with a causal effect. 

The findings of this study are expanded with national-level data from Canada, reported by 

the Public Health Agency of Canada[22]  and the Canadian Integrated Program for 

Antimicrobial Resistance Surveillance[23] (Figure A.4)  

 

Additionally, three studies addressed the human question indirectly – that is, they examined 

whether the introduction of antimicrobials was associated with increased resistance in 

animals and humans.[24-26]  A cohort study of pigs and human farm residents, conducted in 

the Netherlands, found a significant dose-response relationship (across all farms) between 

the dose of antimicrobial and multi-antimicrobial-resistant livestock associated methicillin-

resistant Staphylococcus aureus (LA-MRSA): 16% increase in odds for a doubling of dose in 

pigs, and 1.2% increase in odds for a doubling of dose in humans.[24] A second study 
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reported resistance monitoring data among poultry in the United States, reporting that the 

odds ratio for resistance in human Campylobacter clinical isolates was 2.5 for the presence 

of resistance after fluoroquinolones were introduced for food animal use in 1995-6, 

compared to prior to introduction.[25] Similar findings from Spain showed that after 

fluoroquinolones were introduced for food animal use, there was an increase in prevalence 

of resistance in the  human Campylobacter clinical isolates (general population) from a 

baseline of approximately 10% to >80%.[26, 27] In both reports of an increasing trend of 

fluoroquinolone resistance prevalence in Campylobacter it was not possible to apportion the 

relative contributions of human and animal use of the concurrently used fluoroquinolones. 

 

4. Discussion  

Our rapid systematic review examined whether a limitation on the use of antimicrobial 

agents in food animals reduced antimicrobial resistance in those food animals and in 

humans. The majority of studies addressed the question indirectly – that is, they examined 

whether an increase in exposure to antimicrobials increases resistance. Three (3) studies 

directly addressed the animal question, suggesting that a limitation of antimicrobial exposure 

in food animals leads to a decrease in resistance to antimicrobials in particular bacterial 

species in those animals, however the magnitude of the effect cannot be quantified. A single 

study – of injectable antimicrobial use – provided evidence to directly address the human 

question. It concluded that limiting in ovo antimicrobial exposure in broiler chickens reduced 

the burden of antimicrobial resistance in the animals themselves as well as in contact 

humans and consumers.[15] The size of the effect is large enough to make this study 

credible. Moreover, the time-courses are also credible for this to be a causal association. 

However, the overall body of evidence – consisting of a single study, of observational design 

– for the human question is thin, and on this basis, it is not possible to quantify the effect. 

Moreover, the effect is probably specific to the use of a critically important antimicrobial for 

routine injection into eggs to prevent E. coli infection (this is not an established practice in 

most poultry producing countries) and may differ for each antimicrobial, dosage, route of 

administration, infection type, food animal species and management system and 

environment.  

 

The review has a few limitations. First, it is limited by a paucity of well-conducted primary 

studies that directly addressed the questions – only 3 studies (one RCT and two interrupted 

time series) directly addressed the animal question, and 1 study (an interrupted time series) 

directly addressed the human question. The majority of the included studies (86 studies of 

animals, and 3 studies of humans) addressed the questions only indirectly, by examining the 

impact of an increase in antimicrobial exposure (e.g. greater duration, higher dose, 
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increased frequency) compared to its decrease (no antimicrobial, shorter duration of 

exposure, lower dose or decreased frequency). The majority of the studies showed that 

increased exposure to antimicrobials leads to increased resistance – or conversely, that a 

lower exposure is associated with lower resistance. The paucity of well-designed primary 

studies that directly address these questions means these studies should be urgently 

commissioned to strengthen the evidence of the magnitude of the effect of stopping 

antimicrobial use in food animals – particularly on resistance in bacteria in humans. 

 

Second, the conduct and reporting of the included studies were highly heterogeneous: there 

was a wide range of animal species studied; whether resistance was measured in index 

animals alone or in others to which resistance might have been transmitted; a variety of 

micro-organisms used to assess resistance (some of which are pathogens to humans); 

antimicrobial drugs investigated (with some „critical for human use‟); the purpose of 

antimicrobial use (as growth promoters or for prophylaxis to a whole population or to treat 

individually sick animals); and measures of resistance (most using bacterial culture 

susceptibility testing, while a minority used individual resistance gene detection by PCR). 

Reporting methods were also difficult to compare, as some studies reported the difference 

between exposed and unexposed groups as the proportion of individuals with resistance, 

some as the proportion of samples with resistance (which may include multiple samples per 

individual) and some as the proportion of resistant isolates (which may include multiple 

isolates per sample, or per individual). A systematic review commissioned by the WHO to be 

conducted in parallel with the present one, found statistical heterogeneity of this evidence to 

be greater than 90%.[8] Since we do not know the distribution of resistance in multiple 

samples or isolates from the same individual, these measurements cannot be combined in 

meta-analysis with those from studies concerning measures in individuals, we considered it 

inappropriate to undertake meta-analysis. Instead we summarise the data descriptively 

without a summary estimate as a pragmatic and less misleading approach.[17] 

 

The finding that use of one antimicrobial can result in selection for resistance to a different 

antimicrobial class,[18, 28, 29] and the apparent spontaneous appearance of resistance 

without any direct exposure to the implicated antimicrobial,[18, 29-32] may have a number of 

causes and may represent an un-observed exposure to the drug, a spontaneous horizontal 

transfer of genes on integrative conjugative elements (ICEs), or activation of associated 

genes. If the latter, the implication is that use of one antimicrobial may carry potential 

problems for other antimicrobials, particularly if co-selection is occurring favouring 

acquisition and maintenance of multidrug-resistant plasmids, transposons or other 

integrative conjugative elements. Furthermore the role of other potential co-selective agents 
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such as biocides and heavy metals (e.g. copper, zinc) requires further investigation,[33-35] 

particularly where they are used as replacements for traditional antimicrobials in food 

animals for growth promotion and/or therapeutic or prophylactic purposes.[36, 37] 

 

5. Conclusion 

 

Despite the paucity of evidence, it seems biologically plausible to conclude that the use of 

antimicrobials in animals can result in the selection and dissemination of antimicrobial 

resistance determinants to bacteria in other food animals, including their carcasses and 

meat for human consumption, and to humans themselves. More primary studies are required 

to strengthen the research evidence, a conclusion also reached recently by the Food and 

Agriculture Organisation of the United Nations.[38] Importantly, several countries (e.g. 

Canada CIPARS, Denmark DANMAP; United States NARMS) now have comprehensive and 

well-established surveillance and reporting systems for monitoring antimicrobial resistance in 

food, animal and human pathogens and food animal commensals, as well as antimicrobial 

use in both human and veterinary sectors. These and emerging programmes in other 

countries, will allow for more integrative studies to correlate resistance levels with 

antimicrobial use and can be expected to provide substantial insights and evidence in 

answering important questions to guide antimicrobial risk management options. Such 

programmes are also critical to maintain the longevity of currently registered shared drug 

classes, as new human-only and animal-only drug classes are developed. 
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Figure A.1: PRISMA[39] Flow Diagram 
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Figure A.2: Hierarchy of evidence for animal studies (modified from original) in Sergeant 2014 [40] 

 

Figure A.3: Resistance to ceftiofur over time in Quebec, Canada (redrawn from data in Dutil 2010[15]) 
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Figure A.4: Resistance to ceftiofur over time in Canada (redrawn from data in Public Health Agency of Canada [22] and Canadian 
Integrated Program for Antimicrobial Resistance Surveillance [23] 
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Table A.1: Resistance to antibiotics important to human health: studies comparing animals exposed to (more) antibiotics, and 
animals exposed to no/less of those antibiotics. 

 

Study type Reference* Isolate 

Resistance to antibiotics important to human 
medicine 

Critically 
Important 
Antibiotics 

Highly 
Important 
Antibiotics 

Important 
Antibiotics 

Other 
Antibiotics 

R
C

T
s 

u
n

d
er

 f
ie

ld
 c

o
n

d
it

io
n

s 

Usui 2014 Campylobacter         

Amachawadi 2015 Enterococcus         

Beyer 2015 Escherichia     

da Costa 2008, 2009, 2010 Various         

Le Devendec 2015  Various         

Kanwar 2013, 2014 Escherichia       

Pereira 2014  Escherichia       

Kaneene 2008  Various       

Wagner 2008  Various       

Chen 2008  Various         

Davies 1999 Enterococcus         

McDermott 2005 Enterococcus         

Agga 2014, 2015 Escherichia         

Checkley 2010 Escherichia         

Delsol 2003  Various         

Edrington 2014  Various         

Platt 2008  Various         

Alexander 2008, Mirzaagha 2011 Escherichia         

Butaye 2005 Enterococcus         

Chambers 2015  Various         

Olumeyan 1986  Various         

Study type Reference Isolate 

Resistance to antibiotics important to human 
medicine 

Critically 
Important 
Antibiotics 

Highly 
Important 
Antibiotics 

Important 
Antibiotics 

Other 
Antibiotics 

O
th

er
 c

o
n

tr
o

lle
d

 t
ri

al
s 

an
d

 c
h

al
le

n
g

e 
st

u
d

ie
s 

Farnell 2005 Campylobacter         

Ladely 2007  Campylobacter         

Lin 2007  Campylobacter         

Logue 2010  Campylobacter         

Stapleton 2010  Campylobacter         

Takahashi 2005  Campylobacter XXXXXXX       

Cameron-Veas 2015  Escherichia      

Cavaco 2008  Escherichia      

Herrero-Fresno 2016  Escherichia      

Huang 2014  Escherichia      

Jimenez-Belenguer 2016  Escherichia      

Jiang 2006  Salmonella      

Aarestrup 1998  Various      

Alali 2009b  Various      

Daniels 2009  Various      

Zaheer 2013  Various      

van der Horst 2013  Escherichia      

Alali 2004  Escherichia       

Berge 2006 Escherichia       

Kim 2005  Escherichia         

Ebner 2000  Salmonella         

Johnson 2015 Escherichia       

Khachatryan 2004  Escherichia   XXXXXXX   

Khachatryan 2006  Escherichia       

Kobe 1995  Escherichia       

Bauer-Garland 2006 Salmonella       

DeGeeter 1976  Salmonella       

Evangelisti 1975 Salmonella       

Funk 2006  Salmonella       

Moodley 2011  Staphylococcus       

Molitoris 1986  Streptococcus   XXXXXXX   

Finlayson 1973 Various       

Wierup 1975  Escherichia     

Alexander 2010; Beukers 2015  Escherichia         

Sharma 2008, Wu 2011  Escherichia         

Inglis 2005  Various      

Kobe 1996  Escherichia      

Cassenego 2011  Enterococcus         

Brunton 2014  Escherichia         

Benazet 1980 Salmonella         

Delsol 2005  Various         

Edrington 2003  Various         

Kempf 2013  Various        

Study type Reference Isolate 

Resistance to antibiotics important to human 
medicine 

Critically 
Important 
Antibiotics 

Highly 
Important 
Antibiotics 

Important 
Antibiotics 

Other 
Antibiotics 

C
o

h
o

rt
 s

tu
d

ie
s 

Juntunen 2010  Campylobacter     

Heuer 2002a  Enterococci          

Andersen 2015  Escherichia     

Baron 2014  Escherichia     

Callens 2015  Escherichia      

Sato 2004  Campylobacter          

Petersen 2002  Acinetobacter          

Akwar 2008  Escherichia         

Benedict 2015  Escherichia         
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Duse 2015  Escherichia         

Mathew 1999  Escherichia         

Morley 2011  Escherichia       XXXXXXXXX 

Alali 2010b  Salmonella         

Keelara 2013; Quintana-Hayashi 2012  Salmonella         

Rajala-Schultz 2009  Staphylococci         

Nulsen 2008  Various         

Scott 2012  Various       XXXXXXXXX 

Study type Reference Isolate 

Resistance to antibiotics important to human 
medicine 

Critically 
Important 
Antibiotics 

Highly 
Important 
Antibiotics 

Important 
Antibiotics 

Other 
Antibiotics 

IT
S

 

Hiki 2015  Escherichia         

Smith 1975   Escherichia         
 

*References to these studies are provided in Appendix D 
 
 
 

Legend:  
Antibiotics to which resistance is measured by each study are classified using WHO’s taxonomy of antibiotics important for human medicine: 
Critically Important, Highly Important, Important [92]. ‘Other’ category indicates that a study evaluated resistance to antibiotic not on the WHO list. 
 

Coding scheme: 

 Higher resistance in animals exposed to more antibiotic, than those exposed to less antibiotic. 

XXX 
Mixed results (e.g. animals exposed to more antibiotic had more resistance initially but less resistance 
subsequently, than animals exposed to less antibiotic).  

 Lower resistance in animals exposed to less antibiotic, than those exposed to more antibiotic  

 

 


